eq_unit_test_3d.hpp 7.63 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
/*
 * eq_unit_test_3d.hpp
 *
 *  Created on: Jan 4, 2016
 *      Author: i-bird
 */

#ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_
#define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_


#include "Laplacian.hpp"
#include "FiniteDifference/eq.hpp"
#include "FiniteDifference/sum.hpp"
#include "FiniteDifference/mul.hpp"
#include "Grid/grid_dist_id.hpp"
#include "data_type/scalar.hpp"
#include "Decomposition/CartDecomposition.hpp"
#include "Vector/Vector.hpp"
#include "Solvers/umfpack_solver.hpp"
#include "data_type/aggregate.hpp"

BOOST_AUTO_TEST_SUITE( eq_test_suite_3d )

//!

struct lid_nn_3d
{
	// dimensionaly of the equation ( 3D problem ...)
	static const unsigned int dims = 3;
	// number of fields in the system
	static const unsigned int nvar = 4;

	// boundary at X and Y
	static const bool boundary[];

	// type of space float, double, ...
	typedef float stype;

	// type of base grid
	typedef grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> b_grid;

	// type of SparseMatrix for the linear solver
	typedef SparseMatrix<double,int> SparseMatrix_type;

	// type of Vector for the linear solver
	typedef Vector<double> Vector_type;

	// Define the underline grid is staggered
	static const int grid_type = STAGGERED_GRID;
};

const bool lid_nn_3d::boundary[] = {NON_PERIODIC,NON_PERIODIC,NON_PERIODIC};

// Constant Field
struct eta
{
	typedef void const_field;

	static float val()	{return 1.0;}
};

// Model the equations

constexpr unsigned int v[] = {0,1,2};
constexpr unsigned int P = 3;
constexpr unsigned int ic = 3;

typedef Field<v[x],lid_nn_3d> v_x;
typedef Field<v[y],lid_nn_3d> v_y;
typedef Field<v[z],lid_nn_3d> v_z;
typedef Field<P,lid_nn_3d> Prs;

// Eq1 V_x

typedef mul<eta,Lap<v_x,lid_nn_3d>,lid_nn_3d> eta_lap_vx;
typedef D<x,Prs,lid_nn_3d> p_x;
typedef minus<p_x,lid_nn_3d> m_p_x;
typedef sum<eta_lap_vx,m_p_x,lid_nn_3d> vx_eq;

// Eq2 V_y

typedef mul<eta,Lap<v_y,lid_nn_3d>,lid_nn_3d> eta_lap_vy;
typedef D<y,Prs,lid_nn_3d> p_y;
typedef minus<p_y,lid_nn_3d> m_p_y;
typedef sum<eta_lap_vy,m_p_y,lid_nn_3d> vy_eq;

// Eq3 V_z

typedef mul<eta,Lap<v_z,lid_nn_3d>,lid_nn_3d> eta_lap_vz;
typedef D<z,Prs,lid_nn_3d> p_z;
typedef minus<p_z,lid_nn_3d> m_p_z;
typedef sum<eta_lap_vz,m_p_z,lid_nn_3d> vz_eq;

// Eq4 Incompressibility

typedef D<x,v_x,lid_nn_3d,FORWARD> dx_vx;
typedef D<y,v_y,lid_nn_3d,FORWARD> dy_vy;
typedef D<z,v_z,lid_nn_3d,FORWARD> dz_vz;
typedef sum<dx_vx,dy_vy,dz_vz,lid_nn_3d> ic_eq;


// Directional Avg
typedef Avg<x,v_y,lid_nn_3d> avg_x_vy;
typedef Avg<z,v_y,lid_nn_3d> avg_z_vy;

typedef Avg<y,v_x,lid_nn_3d> avg_y_vx;
typedef Avg<z,v_x,lid_nn_3d> avg_z_vx;

typedef Avg<y,v_z,lid_nn_3d> avg_y_vz;
typedef Avg<x,v_z,lid_nn_3d> avg_x_vz;

// Directional Avg

typedef Avg<x,v_y,lid_nn_3d,FORWARD> avg_x_vy_f;
typedef Avg<z,v_y,lid_nn_3d,FORWARD> avg_z_vy_f;

typedef Avg<y,v_x,lid_nn_3d,FORWARD> avg_y_vx_f;
typedef Avg<z,v_x,lid_nn_3d,FORWARD> avg_z_vx_f;

typedef Avg<y,v_z,lid_nn_3d,FORWARD> avg_y_vz_f;
typedef Avg<x,v_z,lid_nn_3d,FORWARD> avg_x_vz_f;

#define EQ_1 0
#define EQ_2 1
#define EQ_3 2
#define EQ_4 3

// Lid driven cavity, uncompressible fluid

BOOST_AUTO_TEST_CASE(lid_driven_cavity)
{
133
	Vcluster & v_cl = create_vcluster();
Pietro Incardona's avatar
Pietro Incardona committed
134

Pietro Incardona's avatar
Pietro Incardona committed
135 136 137
	if (v_cl.getProcessingUnits() > 3)
		return;

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
	// Domain
	Box<3,float> domain({0.0,0.0,0.0},{3.0,1.0,1.0});

	// Ghost
	Ghost<3,float> g(0.01);

	long int sz[] = {32,16,16};
	size_t szu[3];
	szu[0] = (size_t)sz[0];
	szu[1] = (size_t)sz[1];
	szu[2] = (size_t)sz[2];

	Padding<3> pd({1,1,1},{0,0,0});

	// velocity in the grid is the property 0, pressure is the property 1
	constexpr int velocity = 0;
	constexpr int pressure = 1;

	// Initialize openfpm
	grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> g_dist(szu,domain,g);

Pietro Incardona's avatar
Pietro Incardona committed
159 160 161
	// Ghost stencil
	Ghost<3,long int> stencil_max(1);

162
	// Distributed grid
Pietro Incardona's avatar
Pietro Incardona committed
163
	FDScheme<lid_nn_3d> fd(pd,stencil_max,domain,g_dist.getGridInfo(),g_dist);
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

	// start and end of the bulk

	fd.impose(ic_eq(),0.0, EQ_4, {0,0,0},{sz[0]-2,sz[1]-2,sz[2]-2},true);
	fd.impose(Prs(),  0.0, EQ_4, {0,0,0},{0,0,0});
	fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2,sz[2]-2});
	fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2,sz[2]-2});
	fd.impose(vz_eq(),0.0, EQ_3, {0,0,1},{sz[0]-2,sz[1]-2,sz[2]-2});

	// v_x
	// R L
	fd.impose(v_x(),0.0, EQ_1, {0,0,0},      {0,sz[1]-2,sz[2]-2});
	fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-2});

	// T B
	fd.impose(avg_y_vx_f(),0.0, EQ_1, {0,-1,0},     {sz[0]-1,-1,sz[2]-2});
	fd.impose(avg_y_vx(),0.0, EQ_1,   {0,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-2});

	// A F
	fd.impose(avg_z_vx_f(),0.0, EQ_1, {0,-1,-1},     {sz[0]-1,sz[1]-1,-1});
	fd.impose(avg_z_vx(),0.0, EQ_1, {0,-1,sz[2]-1},{sz[0]-1,sz[1]-1,sz[2]-1});

	// v_y
	// R L
	fd.impose(avg_x_vy_f(),0.0, EQ_2,  {-1,0,0},     {-1,sz[1]-1,sz[2]-2});
	fd.impose(avg_x_vy(),1.0, EQ_2,    {sz[0]-1,0,0},{sz[0]-1,sz[1]-1,sz[2]-2});

	// T B
	fd.impose(v_y(), 0.0, EQ_2, {0,0,0},      {sz[0]-2,0,sz[2]-2});
	fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1,0},{sz[0]-2,sz[1]-1,sz[2]-2});

	// F A
	fd.impose(avg_z_vy(),0.0, EQ_2,   {-1,0,sz[2]-1}, {sz[0]-1,sz[1]-1,sz[2]-1});
	fd.impose(avg_z_vy_f(),0.0, EQ_2, {-1,0,-1},      {sz[0]-1,sz[1]-1,-1});

	// v_z
	// R L
	fd.impose(avg_x_vz_f(),0.0, EQ_3, {-1,0,0},     {-1,sz[1]-2,sz[2]-1});
	fd.impose(avg_x_vz(),1.0, EQ_3,   {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-1});

	// T B
	fd.impose(avg_y_vz(),0.0, EQ_3, {-1,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-1});
	fd.impose(avg_y_vz_f(),0.0, EQ_3, {-1,-1,0},   {sz[0]-1,-1,sz[2]-1});

	// F A
	fd.impose(v_z(),0.0, EQ_3, {0,0,0},      {sz[0]-2,sz[1]-2,0});
	fd.impose(v_z(),0.0, EQ_3, {0,0,sz[2]-1},{sz[0]-2,sz[1]-2,sz[2]-1});

	// Padding pressure

	// L R
	fd.impose(Prs(), 0.0, EQ_4, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1});
	fd.impose(Prs(), 0.0, EQ_4, {sz[0]-1,-1,-1},{sz[0]-1,sz[1]-1,sz[2]-1});

	// T B
	fd.impose(Prs(), 0.0, EQ_4, {0,sz[1]-1,-1}, {sz[0]-2,sz[1]-1,sz[2]-1});
	fd.impose(Prs(), 0.0, EQ_4, {0,-1     ,-1}, {sz[0]-2,-1,     sz[2]-1});

	// F A
	fd.impose(Prs(), 0.0, EQ_4, {0,0,sz[2]-1}, {sz[0]-2,sz[1]-2,sz[2]-1});
	fd.impose(Prs(), 0.0, EQ_4, {0,0,-1},      {sz[0]-2,sz[1]-2,-1});

	// Impose v_x  v_y v_z padding
	fd.impose(v_x(), 0.0, EQ_1, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1});
	fd.impose(v_y(), 0.0, EQ_2, {-1,-1,-1},{sz[0]-1,-1,sz[2]-1});
	fd.impose(v_z(), 0.0, EQ_3, {-1,-1,-1},{sz[0]-1,sz[1]-1,-1});

	auto x = umfpack_solver<double>::solve(fd.getA(),fd.getB());

	// Bring the solution to grid
Pietro Incardona's avatar
Pietro Incardona committed
234
	fd.copy<velocity,pressure>(x,{0,0},{sz[0]-1,sz[1]-1,sz[2]-1},g_dist);
235

Pietro Incardona's avatar
Pietro Incardona committed
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	g_dist.write("lid_driven_cavity_3d_p" + std::to_string(v_cl.getProcessingUnits()));

	if (v_cl.getProcessUnitID() == 0)
	{
		if (v_cl.getProcessingUnits() == 1)
		{
			// Check that match
			bool test = compare("lid_driven_cavity_3d_p1_grid_0_test.vtk","lid_driven_cavity_3d_p1_grid_0.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
		}
		else if (v_cl.getProcessingUnits() == 2)
		{
			// Check that match
			bool test = compare("lid_driven_cavity_p2_grid_0_test.vtk","lid_driven_cavity_p2_grid_0.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
			test = compare("lid_driven_cavity_p2_grid_1_test.vtk","lid_driven_cavity_p2_grid_1.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
		}
		else if (v_cl.getProcessingUnits() == 3)
		{
			// Check that match
			bool test = compare("lid_driven_cavity_p3_grid_0_test.vtk","lid_driven_cavity_p3_grid_0.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
			test = compare("lid_driven_cavity_p3_grid_1_test.vtk","lid_driven_cavity_p3_grid_1.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
			test = compare("lid_driven_cavity_p3_grid_2_test.vtk","lid_driven_cavity_p3_grid_2.vtk");
			BOOST_REQUIRE_EQUAL(test,true);
		}
	}
265 266 267 268 269 270
}

BOOST_AUTO_TEST_SUITE_END()


#endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ */