diff --git a/sc_workflow/sc_quality_check.R b/sc_workflow/sc_quality_check.R index 18d043819b4b83bed3fe6919db7cbb0ca609c60b..04da439d76b19bb753b270d4f40d7bdde1a298a2 100644 --- a/sc_workflow/sc_quality_check.R +++ b/sc_workflow/sc_quality_check.R @@ -13,7 +13,7 @@ Quality control and filtering of scRNAseq data Usage: sc_quality_check.R ' -# commandArgs <- function(x) c("metrices") +# commandArgs <- function(x) c("metrices_subsetted") opts = docopt(doc, commandArgs(TRUE)) @@ -93,11 +93,10 @@ sce <- lapply(setNames(names(sce), names(sce)), function(x) { }) #'

-#' ## Check for sequencing saturation +#' ## Check sequencing saturation #' The following saturation plot of the invidivudal cells is based on the sequencing depth of per cell as well as higher #' and lower simulated sequencing depths. For this plot all features with a counts > 0 were taken into account. lapply(setNames(names(sce), names(sce)), function(x){ - x = "SC2" dat <- readData(data = counts(sce[[x]]), factors = colData(sce[[x]])) mysaturation = dat(dat, k = 0, ndepth = 7, type = "saturation") sat_data <- dat2save(mysaturation) @@ -117,7 +116,7 @@ lapply(setNames(names(sce), names(sce)), function(x){ #'

-#' ## Check cell's library sizes +#' ## Check library size #' The library size is defined by the sum of all counts per cell and corresponds to the number of reads mapped to the reference genome #'
lapply(names(sce), function(x){ @@ -130,7 +129,7 @@ lapply(names(sce), function(x){ # grid.arrange(grobs = ., nrow = plot_rows, heights=unit(0.5, "npc")) #'

-#' ## Check cell's number of expressed genes +#' ## Check number of expressed genes #' The number of expressed genes corresponds to the number of genes per cell with an actual count (i.e. > 0) #'
lapply(names(sce), function(x){