Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
N
ngs_tools
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
15
Issues
15
List
Boards
Labels
Service Desk
Milestones
Requirements
Requirements
List
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Analytics
Analytics
Insights
Issue
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
bioinfo
ngs_tools
Commits
b3338591
Commit
b3338591
authored
Mar 05, 2019
by
Lena Hersemann
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
added shinyApp to explore quality metrics
parent
c2894784
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
207 additions
and
0 deletions
+207
-0
sc_workflow/sc_apps/metrics_explorer
sc_workflow/sc_apps/metrics_explorer
+207
-0
No files found.
sc_workflow/sc_apps/metrics_explorer
0 → 100644
View file @
b3338591
#!/usr/bin/env bash
export
SCRIPT_DIRECTORY
=
"
$(
dirname
"
$0
"
)
/"
/usr/local/bin/Rscript -
<<
"
EOF
"
${
SCRIPT_DIRECTORY
}
args = commandArgs(trailingOnly = TRUE)
# LOAD packages --------------------------------------------------------------------------------------------------------
devtools::source_url("https://git.mpi-cbg.de/bioinfo/datautils/raw/v1.45/R/core_commons.R")
load_pack(destiny)
load_pack(plotly)
load_pack(shiny)
load_pack(data.table)
load_pack(rlist)
# Determine data directory from execution context ---------------------------------------------------------------------
dataPath= args[1]
#dataPath = "."
#-----------------------------------------------------------------------------------------------------------------------
# load all required data
all_files <- list.files(dataPath)
files_req <- c("dm.rds", "pca.rds", "cell_infos.txt")
if (any(!files_req %in% all_files)) { stop("ATTENTION: please make sure dm.rds, pca.rds and cell_infos.txt exist in your working directory") }
dm <- readRDS("dm.rds")
pca <- readRDS("pca.rds")
infos <- if(file.exists("scater_quality_metrics.txt")) {
read_tsv("scater_quality_metrics.txt")
} else {
read_tsv("cell_infos.txt")
}
# extract information on numeric values for the violin plots
infos_num <- infos %>% column_to_rownames("cell_id") %>% select_if(is.numeric) %>% mutate(cell_id = rownames(.)) %>%
push_left("cell_id") %>% gather(feature, value, -cell_id) %>% mutate(type = "numeric") %>% na.omit()
# extract information on the non-numeric values for the subsetting
infos_char <- infos %>% column_to_rownames("cell_id") %>% select_if(funs(!is.numeric(.))) %>% mutate(cell_id = rownames(.)) %>%
push_left("cell_id") %>% gather(feature, value, -cell_id) %>% mutate(type = "non_numeric") %>% na.omit()
infos <- rbind(infos_num, infos_char)
# select metrics suitable for subsetting and prepare radioButtons choices
info_groups <- infos %>% filter(type == "non_numeric") %>% select(-cell_id) %>% group_by(feature) %>% unique() %>% summarize(count = n()) %>% filter(between(count, 2,5)) %
$%
feature
radio_choices <- lapply(setNames(info_groups, info_groups), function(x) {
which(info_groups == x)
})
radio_choices <- list.append(radio_choices, "no subsetting" = length(radio_choices) + 1)
select_choices <- infos %>% filter(type == "numeric")
# combine dm data with all metrics
dm %<>% as.data.frame() %>% mutate(cell_id = rownames(.)) %>% select(cell_id, DC1:DC10) %>% right_join(infos, by = "cell_id")
# combine PCA data with all metrics
pca %<>% as.data.frame() %>% mutate(cell_id = rownames(.)) %>% select(cell_id, PC1:PC10) %>% right_join(infos, by = "cell_id")
app <- shinyApp(
ui <- navbarPage(title = "Explore Quality Metrics", id = "tabs",
tabPanel(title = "Violin plot",
sidebarPanel(width = 3,
selectInput(inputId = "choosen_metric", label = "Choose metrics",
choices = unique(select_choices
$feature
), selected = c("nGene", "nUMI", "percent.mito"),
multiple = TRUE, selectize=TRUE),
br(),
br(),
radioButtons("choosen_subsetting", label = "Choose data subsetting",
choices = radio_choices,
selected = length(radio_choices)),
br(),
tableOutput(outputId = "subset_summary")
),
mainPanel("",
fixedRow(
column(12, HTML(paste('<br/>')),
plotOutput(outputId = "violin_plot", height = "auto")
)
)
)
),
tabPanel(title = "Diffusion map",
sidebarPanel(width = 3,
selectInput(inputId = "choosen_metric_dm", label = "Choose metrics", choices = unique(infos
$feature
), multiple = FALSE, selected = "nGene", selectize=TRUE),
br(),
br()
),
mainPanel("",
fixedRow(
column(12, HTML(paste('<br/>')),
plotlyOutput(outputId = "dm")
)
)
)
),
tabPanel(title = "PCA",
sidebarPanel(width = 3,
selectInput(inputId = "choosen_metric_pca", label = "Choose metrics", choices = unique(infos
$feature
), multiple = FALSE, selected = "nGene", selectize=TRUE),
br(),
br()
),
mainPanel("",
fixedRow(
column(12, HTML(paste('<br/>')),
plotlyOutput(outputId = "pca")
)
)
)
)
),
server <- function(input, output, session) {
## VIOLIN PLOTS
output
$violin_plot
<- renderPlot({
infos_features <- infos %>% filter(feature %in% input
$choosen_metric
& type == "numeric")
# infos_features <- infos %>% filter(feature %in% c("nUMI", "nGene"))
if (input
$choosen_subsetting
== length(radio_choices)) {
vp <- infos_features %>% ggplot(aes(feature, as.numeric(value))) + geom_violin() +
xlab("") + facet_wrap(~feature, scale = "free", ncol = 2)
} else {
subset_var <- radio_choices[as.numeric(input
$choosen_subsetting
)] %>% names()
infos_subset <- infos %>% filter(feature == subset_var) %>% select(cell_id, value)
# infos_subset <- infos %>% filter(feature == "phase") %>% select(cell_id, value)
colnames(infos_subset) <- c("cell_id", "subsets")
infos_features <- left_join(infos_features, infos_subset, by = "cell_id")
# infos_features
$subsets
<- factor(infos_features
$subsets
,levels = unique(infos_features
$subsets
))
vp <- infos_features %>% ggplot(aes(feature, as.numeric(value), fill = subsets)) + geom_violin() +
xlab("") + facet_wrap(~feature, scale = "free", ncol = 2)
}
vp + theme(strip.text.x = element_text(size = 20), axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank(),
panel.spacing = unit(2, "lines"),
axis.text.y=element_text(size = 12),
legend.text=element_text(size=14),
legend.title=element_blank()) +
ylab("")
}, height = function(){400*ceiling(length(input
$choosen_metric
)/2)})
output
$subset_summary
<- renderTable({
if (input
$choosen_subsetting
!= length(radio_choices)){
subset_var <- radio_choices[as.numeric(input
$choosen_subsetting
)] %>% names()
# subset_var <- radio_choices[as.numeric("2")] %>% names()
infos_sum <- infos %>% filter(feature == subset_var) %>% count(value)
colnames(infos_sum) <- c(subset_var, "count")
infos_sum
}
})
## DIFFUSION MAP
output
$dm
<- renderPlotly({
dm_data <- dm %>% filter(feature == input
$choosen_metric_dm
)
# dm_data <- dm %>% filter(feature == "nGene")
if(unique(dm_data
$type
) == "numeric"){
plot_ly(dm_data, x = ~DC1, y = ~DC2, z = ~DC3, color = ~as.numeric(value), size = I(5), type = "scatter3d") %>%
layout(autosize = F, width = 1000, height = 1000, margin = list(l = 50, r = 50, b = 50, t = 50, pad = 4))
} else {
plot_ly(dm_data, x = ~DC1, y = ~DC2, z = ~DC3, color = ~as.factor(value), size = I(5), type = "scatter3d") %>%
layout(autosize = F, width = 1000, height = 1000, margin = list(l = 50, r = 50, b = 50, t = 50, pad = 4))
}
})
## PCA
output
$pca
<- renderPlotly({
pca_data <- pca %>% filter(feature == input
$choosen_metric_pca
)
# pca_data <- pca %>% filter(feature == "nGene")
if(unique(pca_data
$type
) == "numeric"){
plot_ly(pca_data, x = ~PC1, y = ~PC2, z = ~PC3, color = ~as.numeric(value), size = I(5), type = "scatter3d") %>%
layout(autosize = F, width = 1000, height = 1000, margin = list(l = 50, r = 50, b = 50, t = 50, pad = 4))
} else {
plot_ly(pca_data, x = ~PC1, y = ~PC2, z = ~PC3, color = ~as.factor(value), size = I(5), type = "scatter3d") %>%
layout(autosize = F, width = 1000, height = 1000, margin = list(l = 50, r = 50, b = 50, t = 50, pad = 4))
}
})
}
)
#runApp(app, launch.browser=TRUE, port=5357)
runApp(app, launch.browser=TRUE)
EOF
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment