#!/usr/bin/env Rscript #+ echo=FALSE suppressMessages(require(docopt)) doc <- ' Perform an enrichment analysis for a set of genes Usage: cp_enrichment.R [options] <grouped_gene_lists_rdata> Options: --overlay_expr_data Tsv with overlay data for the kegg pathways ' opts <- docopt(doc, commandArgs(TRUE)) ## does not work when spining # opts <- docopt(doc, "--overlay_expr_data ctrl_fc_expr_filtered.txt geneClusters.RData" ) devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/core_commons.R") devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/ggplot_commons.R") devtools::source_url("https://raw.githubusercontent.com/holgerbrandl/datautils/v1.13/R/bio/diffex_commons.R") require.auto(knitr) require.auto(clusterProfiler) require.auto(ReactomePA) ## to fix child support issue with knitr, see also ## http://stackoverflow.com/questions/20030523/knitr-nested-child-documents ## https://github.com/yihui/knitr/issues/38 # todo disabled because root.dir in parent document seems the only working solution #if(exists('project_dir')) setwd(project_dir) #print(getwd()) ## load the data geneLists <- local(get(load(opts$grouped_gene_lists_rdata))) #geneLists %<>% filter(cluster %in% c("cluster_1", "cluster_2")) if(!is.null(opts$overlay_expr_data)){ overlayData <- read.delim(opts$overlay_expr_data) } ## TODO expose options to run gesa instead (by assuming that gene lists are sorted) ## see http://www.bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.pdf for details resultsBaseName=basename(opts$grouped_gene_lists_rdata) %>% trim_ext(".RData") %>% paste0(".") ######################################################################################################################## #' ## Enrichment Analysis #' This analysis was performed using [David](http://david.abcc.ncifcrf.gov/). The following ontologies were tested: `r paste(DEF_DAVID_ONTOLOGIES, collapse=', ')` listLabels <- geneLists %>% select(-ensembl_gene_id) %>% distinct listLabels %<>% transform(list_label=do.call(paste, c(listLabels, sep="__"))) geneLists %>% inner_join(listLabels) %>% ggplot(aes(list_label)) + geom_bar() + coord_flip() + ggtitle("gene list sizes to be tested for term enrichment") + ylab("") guess_cp_species <- function(ensIds){ an_id <-ensIds[1] if(str_detect(an_id, "ENSG")){ return("human") }else if(str_detect(an_id, "ENSMUSG")){ return("mouse") }else if(str_detect(an_id, "ENSDARG")){ return("zebrafish") }else if(str_detect(an_id, "FBgn")){ return("fly") }else{ stop(paste("could not clusterProfiler species name from ", an_id)) } } guess_anno_db <- function(ensIds){ an_id <-ensIds[1] if(str_detect(an_id, "ENSG")){ return("org.Hs.eg.db") }else if(str_detect(an_id, "ENSMUSG")){ return("org.Mm.eg.db") }else if(str_detect(an_id, "ENSDARG")){ return("org.Dr.eg.db") }else if(str_detect(an_id, "FBgn")){ return("org.Dm.eg.db") }else{ stop(paste("could not anno db mart from ", an_id)) } } #source("https://bioconductor.org/biocLite.R") #biocLite("org.Mm.eg.db") #biocLite("org.Hm.eg.db") #biocLite("org.Dr.eg.db") #biocLite("org.Dm.eg.db") cpSpecies <- guess_cp_species(geneLists$ensembl_gene_id) annoDb <- guess_anno_db(geneLists$ensembl_gene_id) # e.g. "org.Hs.eg.db" ## supported ids #idType("org.Hs.eg.db") ## convert to entrez gene ids geneLists %<>% mutate(entrez_gene_id=bitr(x, fromType="ENSEMBL", toType="ENTREZID", annoDb=annoDb)) ## TODO expose as argument pCutoff <- 0.05 geneIds <- geneLists %>% filter(cluster %in% c("cluster_2")) %$% geneLists enrichKEGG(gene = geneIds, organism = cpSpecies, pvalueCutoff = pCutoff, readable = TRUE) enrichPathway(gene = geneIds, organism = cpSpecies, pvalueCutoff = pCutoff, readable = TRUE) enrichGO(gene = gene, universe = names(geneList), organism = "human", ont = "CC", pAdjustMethod = "BH", pvalueCutoff = 0.01, qvalueCutoff = 0.05, readable = TRUE) enrResults <- quote(geneLists %>% do(davidAnnotationChart(.$ensembl_gene_id))) %>% cache_it(paste0("enrdata_", digest(geneLists))) write.delim(enrResults, file=paste0(resultsBaseName, "enrResults.txt")) # enrResults <- read.delim(paste0(resultsBaseName, "enrResults.txt")) #' [Enrichment Results](`r paste0(resultsBaseName, "enrResults.txt")`) sigEnrResults <- subset(enrResults, Bonferroni <0.01) nrow(enrResults) nrow(sigEnrResults) write.delim(sigEnrResults, file=paste0(resultsBaseName, "sigEnrResults.txt")) # sigEnrResults <- read.delim(paste0(resultsBaseName, "sigEnrResults.txt")) #' [Very Significant Terms](`r paste0(resultsBaseName, "sigEnrResults.txt")`) #+ include=FALSE, eval=FALSE ## plot the enrichment results #sigEnrResults %>% group_by(Category, add=T) %>% do({ # logPlot <- . %>% ggplot(aes(Term, PValue)) + # geom_bar(stat="identity")+coord_flip() + # xlab("Enriched Terms") + # ggtitle(.$Category[1]) + # scale_y_log10() # print(logPlot) #}) #sigEnrResults %>% ## select(-Genes) %>% # do({ # enrResultsGrp <- . # ## DEBUG enrResultsGrp <- sigEnrResults ## geneLists %>% first(1) %>% select(-ensembl_gene_id) %>% paste0(., collapse="_") ##browser() # label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_") # # echo("processing", label) # # logPlot <- enrResultsGrp %>% # ## fix factor order # mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(Category))) %>% # ggplot(aes(Term, PValue, fill=Category)) + # geom_bar(stat="identity")+ # coord_flip() + # xlab("Enriched Terms") + # ggtitle(label) + # scale_y_log10() # # ggsave(paste0(resultsBaseName, label, ".enrichmed_terms.pdf")) # print(logPlot) #}) ##ggsave2() ## include=FALSE, error=TRUE #+ error=TRUE, echo=FALSE warning("dropping levels") sigEnrResults %<>% mutate(Category=ac(Category)) ## drop unsused level to get consistent color palette term_category_colors <- create_palette(unique(ac(sigEnrResults$Category))) dir.create("figures") term_barplot_files <- sigEnrResults %>% ## chop and pad category names mutate(Term=str_sub(Term, 1, 70) %>% str_pad(70)) %>% do({ enrResultsGrp <- . ## DEBUG enrResultsGrp <- sigEnrResults label <- geneLists %>% semi_join(enrResultsGrp) %>% first(1) %>% dplyr::select(-ensembl_gene_id) %>% paste0(., collapse="_") # warning(paste0("processing terms", paste(ac(unique(enrResultsGrp$Category)), collapse=","))) logPlot <- enrResultsGrp %>% ## fix factor order mutate(Term=reorder(Term, -PValue) %>% reorder(as.integer(as.factor(Category)))) %>% ggplot(aes(Term, PValue, fill=Category)) + geom_bar(stat="identity")+ scale_fill_manual(values = term_category_colors, drop=F, name="Ontology") + coord_flip() + xlab("Enriched Terms") + ggtitle(label) + scale_y_log10() # print(logPlot) ## todo use builtin method to create filesystem-compatible name fileNameLabel <- label %>% str_replace_all("!=", "ne") %>% str_replace_all(">", "gt") %>% str_replace_all("<", "lt") %>% str_replace_all(fixed("&"), "AND") %>% str_replace_all(fixed("|"), "OR") %>% str_replace_all(" ", "_") # ggsave(paste0("enrichmed_terms__", fileNameLabel, ".pdf")) # print(logPlot) tmpPng <- paste0("figures/enrterms__", fileNameLabel, ".png") ggsave(tmpPng, logPlot, width=10, height = 2+round(nrow(enrResultsGrp)/5), limitsize=FALSE) data.frame(file=tmpPng) }) #+ results="asis" l_ply(term_barplot_files$file, function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))}) ######################################################################################################################## # ' ## Enriched KEGG Pathways #+ eval=nrow(sigEnrResults %>% filter(Category=="KEGG_PATHWAY")) >0 #' To understand spatio-temporal changes in gene expression better we now overlay enriched kegg pathways with the -log10(q_value) of each contrast. The direction of the expression changes is encoded as color, whereby red indicates that sample_1 is overexpressed. Because we have multiple contrasts of interest, this defines a slice-color barcode for each gene. To relate the barcode to contrasts we define the following slice order: ## todo why is tidyr not processing an empty dataframe keggPathways <- sigEnrResults %>% filter(Category=="KEGG_PATHWAY") %>% separate(Term, c('kegg_pathway_id', 'pathway_description'), sep="\\:", remove=F) %>% with(kegg_pathway_id) %>% ac() %>% unique() ##+ results='asis' #if(!exists("keggPathways") | nrow(keggPathways)==0){ # cat("No enriched pathways found") #} #+ echo=FALSE require(pathview) require(png) # keggPathways <- keggPathways[1] #if(nrow(keggPathways)==0){ # echo("no enriched kegg pathways were found in the dataset") #}else{ #keggOrCode <- "mmu" keggOrCode <- guess_pathview_species(geneLists$ensembl_gene_id) ## prepare p-value data sliceData <- overlayData %>% # dcast(ensembl_gene_id ~ comparison, value.var="plot_score") %>% column2rownames("ensembl_gene_id") #sliceData %>% head %>% kable() data.frame(set=names(sliceData)) %>% mutate(slice_index=row_number()) %>% kable() plot_pathway <- function(pathwayID, overlayData){ # pathwayID="mmu04015" # browser() # echo("processing pathway", pathwayID) pv.out <- pathview( gene.data = overlayData, pathway.id = pathwayID, species = keggOrCode, # out.suffix = pathwayID$kegg.description, # out.suffix = pathwayID, multi.state = ncol(overlayData)>1, # kegg.native=F, # node.sum = "mean", # the method name to calculate node summary given that multiple genes or compounds are mapped to it limit = list(gene = c(-4,4)), gene.idtype="ensembl" ) outfile <- paste0(pathwayID, ".pathview", ifelse(ncol(overlayData)>1, ".multi", ""), ".png") ## move pathway plots into figures sub-directory figuresPlotFile <- file.path("figures", outfile) system(paste("mv", outfile, figuresPlotFile)) system(paste("rm", paste0(pathwayID, ".xml"), paste0(pathwayID, ".png"))) ## interactive plotting # ima <- readPNG(outfile) # plot.new() # lim <- par() # rasterImage(ima, lim$usr[1], lim$usr[3], lim$usr[2], lim$usr[4]) pv.out$plotfile=figuresPlotFile pv.out$pathway_id=pathwayID return(pv.out) } #keggPathways <- c("mmu04976", "mmu04972", "mmu04810", "mmu04520", "mmu04530", "mmu04270", "mmu04015") #keggPathways <- c("mmu04015") pathwayPlots <- keggPathways %>% llply(function(pathwayID){ plot_pathway(pathwayID, sliceData) }) save(pathwayPlots, file=".pathwayPlots.RData") # pathwayPlots <- local(get(load("pathwayPlots.RData"))) ## prepare tooltips with expression scores ens2entrez <- quote({ mart <- biomaRt::useDataset(guess_mart(geneLists$ensembl_gene_id), mart = biomaRt::useMart("ensembl")) biomaRt::getBM(attributes=c('ensembl_gene_id', 'entrezgene', 'external_gene_name'), mart=mart) %>% filter(!is.na(entrezgene)) }) %>% cache_it("ens2entrez") %>% distinct(ensembl_gene_id) #unlen(ens2entrez$ensembl_gene_id) toolTipData <- overlayData %>% left_join(ens2entrez) makeTooltip <- function(entrez_id){ toolTipData %>% filter(entrezgene==entrez_id) %>% dplyr::select(-entrezgene) %>% gather() %$% paste(key, value, sep=": ") %>% paste(collapse="\n") #%>% cat } #entrez_id=14679 #entrez_id=34234234234234 #makeTooltip("14679") #+ results="asis", echo=FALSE ## simple non-clickable plots ## http://stackoverflow.com/questions/12588323/r-how-to-extract-values-for-the-same-named-elements-across-multiple-objects-of #unlist(lapply(pathwayPlots, "[[", "plotfile")) # unlist(lapply(pathwayPlots, "[[", "plotfile")) %>% l_ply(function(pngFile){ cat(paste0("<img src='", pngFile, "'><br>"))}) #cat(" #<style type='text/css'> # img { # max-width: 100%; # } #</style> #") ## todo add tooltips with additinal info ## http://stackoverflow.com/questions/5478940/how-to-create-a-html-tooltip-on-top-of-image-map ## extended version with clickable links pathwayPlots %>% l_ply(function(plotData){ #pngFile="mmu04015.pathview.png" #plotData <- pathwayPlots[[1]] #plotData <- unlist(pathwayPlots) # pathway_id=(basename(pngFile) %>% str_split_fixed("[.]", 2))[,1] pngFile <- plotData$plotfile pathway_id=plotData$pathway_id ## create link for image map keggNodes <- plotData$plot.data.gene %>% ## remove box offset mutate(x=x-22, y=y-8) %>% ## todo does not work for non-gene elements mutate(link=paste0("http://www.kegg.jp/dbget-bin/www_bget?", keggOrCode, ":", kegg.names )) %>% rowwise() %>% do({ curNode=.; mutate(as.df(curNode), tooltip=makeTooltip(as.integer(curNode$kegg.names)))}) ## create tooltip by using mapping to # "http://www.kegg.jp/dbget-bin/www_bget?mmu:16412 ## first the image itself # cat(paste0("<img usemap='#", pathway_id,"' src='", pngFile, "'><br>")) cat(paste0("<p><div style='width: 2000px'><img style='float: left' usemap='#", pathway_id,"' src='", pngFile, "'></div><br>")) cat(paste0("<map name='", pathway_id,"'>")) #keggNodes %>% rowwise() %>% {curNode=.; cat(curNode$name)} #see http://www.html-world.de/180/image-map/ keggNodes %>% a_ply(1, function(curNode){ rectDef=with(curNode, paste(x, y, x+width, y+height, sep=",")) # paste0("<area href='", curNode$link, "' alt='Text' coords='", rectDef , "' shape='rect'>") %>% cat() paste0("<area href='", curNode$link, "' title='", curNode$tooltip, "' alt='Text' coords='",rectDef , "' shape='rect'>") %>% cat() }) cat("</map></p><br>") }) ## respin it for cild inclusion # require(knitr); setwd("/Volumes/projects/bioinfo/scripts/ngs_tools/dev/common"); spin("david_enrichment.R", knit=F)