## Scater ```r load_pack(SingleCellExperiment) load_pack(scater) data("sc_example_counts") data("sc_example_cell_info") # https://www.rdocumentation.org/packages/scater/versions/1.0.4/topics/plotExplanatoryVariables example_sce <- SingleCellExperiment(assays = list(counts = sc_example_counts), colData = sc_example_cell_info) example_sce <- SingleCellExperiment(assays = list(counts = sc_example_counts[,1:10]), colData = sc_example_cell_info[1:10,]) exprs(example_sce) <- log2(calculateCPM(example_sce, use.size.factors = FALSE) + 1) example_sceset <- calculateQCMetrics(example_sce) # example_sceset <- calculateQCMetrics(example_sce, feature_controls = 1:20) # example_sceset <- calculateQCMetrics(example_sce, feature_controls = 1:3) # example_sceset <- calculateQCMetrics(example_sce, feature_controls = list(covariates=c("Cell_Cycle", "Treatment"))) example_sceset <- plotPCA(example_sce) plotQC(example_sceset, type = "expl") varLabels(example_sceset) plotExplanatoryVariables(example_sce) plotQC(example_sce, type = "expl", method = "pairs", theme_size = 6) plotQC(example_sce, type = "expl", method = "pairs", theme_size = 6) plotExplanatoryVariables(example_sce, variables = c("Treatment", "Cell_Cycle")) # + # theme(axis.text = element_text(size = 12), axis.title = element_text(size = 12)) + # ggtitle("Influence of putative batch factors on sample variance") plotExpression(example_sce, rownames(example_sce)[1 : 6], x = "Mutation_Status", exprs_values = "exprs") plotExpression(example_sce, rownames(example_sce)[1 : 6], x = "Mutation_Status", exprs_values = "exprs", colour = "Treatment") plotReducedDim(example_sce, use_dimred = "PCA", ncomponents = 2) ```