From 0cea5929464a1a7c40260e0d3ab30f4d52f9ae65 Mon Sep 17 00:00:00 2001 From: Lars Hubatsch <hubatsch@pks.mpg.de> Date: Tue, 22 Sep 2020 15:22:57 +0200 Subject: [PATCH] 1D works again. Much more general functions. 3D can be rescaled by maximum. 1D seems perfect up until material conservation kicks in at boundary. --- FloryHugg_DiffUnbleached.ipynb | 179 +++++++++++---------------------- 1 file changed, 56 insertions(+), 123 deletions(-) diff --git a/FloryHugg_DiffUnbleached.ipynb b/FloryHugg_DiffUnbleached.ipynb index d631829..021188e 100644 --- a/FloryHugg_DiffUnbleached.ipynb +++ b/FloryHugg_DiffUnbleached.ipynb @@ -16,8 +16,6 @@ "# domain = ms.Sphere(df.Point(0, 0, 0), 1.0)\n", "# mesh = ms.generate_mesh(domain, 50)\n", "mesh = df.UnitIntervalMesh(10000)\n", - "dt = 0.001\n", - "\n", "F = df.FunctionSpace(mesh, 'CG', 1)" ] }, @@ -27,26 +25,27 @@ "metadata": {}, "outputs": [], "source": [ - "def calc_sim(c0, c_tot, Ga0):\n", + "def calc_sim(c0, c_tot, Ga0, dt, n_t, sym):\n", " tc = df.TestFunction(F)\n", " c = df.Function(F)\n", " X = df.SpatialCoordinate(mesh)\n", "# X.interpolate(df.Expression('x[0]', degree=1))\n", + " if sym == 0:\n", " # Weak form 1D:\n", - " form = ((df.inner((c-c0)/dt, tc) +\n", + " form = ((df.inner((c-c0)/dt, tc) +\n", " df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc))) -\n", " df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc))-\n", " tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0))+\n", " tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0))) * df.dx\n", - " \n", - "# # Weak form radial symmetry:\n", - "# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n", - "# df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc*X[0]*X[0]))) -\n", - "# df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc*X[0]*X[0]))-\n", - "# tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*X[0]*X[0]))+\n", - "# tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0*X[0]*X[0]))-\n", - "# (1-c_tot)*Ga0*2*X[0]*c.dx(0)*tc+\n", - "# (1-c_tot)*Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n", + " elif sym == 2:\n", + " # Weak form radial symmetry:\n", + " form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n", + " df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*tc*X[0]*X[0]))) -\n", + " df.inner(df.grad(c_tot), df.grad((1-c_tot)*Ga0/c_tot*c*tc*X[0]*X[0]))-\n", + " tc*df.inner(df.grad(c), df.grad((1-c_tot)*Ga0*X[0]*X[0]))+\n", + " tc*df.inner(df.grad(c_tot), df.grad((1-c_tot)/c_tot*c*Ga0*X[0]*X[0]))-\n", + " (1-c_tot)*Ga0*2*X[0]*c.dx(0)*tc+\n", + " (1-c_tot)*Ga0/c_tot*c*2*X[0]*c_tot.dx(0)*tc) * df.dx\n", " # Weak form radial symmetry:\n", "# form = ((df.inner((c-c0)/dt, tc*X[0]*X[0]) +\n", "# df.inner(df.grad(c), df.grad((1-c_tot+Ga0*c_tot*c_tot)*tc*X[0]*X[0]))) -\n", @@ -59,95 +58,23 @@ " t = 0\n", " # Solve in time\n", " ti = time.time()\n", - " for i in range(100):\n", - "# print(time.time() - ti)\n", + " for i in range(n_t):\n", " df.solve(form == 0, c)\n", " df.assign(c0, c)\n", " t += dt\n", " print(time.time() - ti)\n", - " return c0" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "jupyter": { - "source_hidden": true - } - }, - "outputs": [], - "source": [ - "# Interpolate c_tot and initial conditions\n", - "# 3D:\n", - "# c_tot.interpolate(df.Expression('0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2))+0.5', degree=1))\n", - "# c0.interpolate(df.Expression(('(x[0]<0.5) && sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))<0.2 ? 0 :'\n", - "# '0.4*tanh(-350*(sqrt((x[0])*(x[0])+(x[1])*(x[1])+(x[2])*(x[2]))-0.2)) + 0.5'),\n", - "# degree=1))\n", - "\n", - "\n", - "# 1D, no partitioning\n", - "c0_1 = df.Function(F)\n", - "c_tot_1 = df.Function(F)\n", - "Ga0_1 = df.Function(F)\n", - "# c_tot_1.interpolate(df.Expression('0*tanh(350000*(x[0]-0.01))+0.9', degree=1))\n", - "c_tot_1.interpolate(df.Expression('0.9', degree=1))\n", - "c0_1.interpolate(df.Expression(('x[0]<0.1 ? 0 :'\n", - " '0*tanh(350000*(x[0]-0.01))+0.9'),\n", - " degree=1))\n", - "# Ga0_1.interpolate(df.Expression('4.*(tanh(350000*(x[0]-0.01))+1)+1', degree=1))\n", - "Ga0_1.interpolate(df.Expression('x[0]<0.1 ? 1:9',\n", - " degree=1))\n", - "\n", - "# 1D, high partitioning\n", - "c0_9 = df.Function(F)\n", - "c_tot_9 = df.Function(F)\n", - "Ga0_9 = df.Function(F)\n", - "# c_tot_9.interpolate(df.Expression('0.4*tanh(-350000*(x[0]-0.01))+0.5', degree=1))\n", - "c_tot_9.interpolate(df.Expression('x[0]<0.1 ? 0.9 :0.1', degree=1))\n", - "# c0_9.interpolate(df.Expression(('x[0]<0.01 ? 0 :'\n", - "# '0.4*tanh(-350000*(x[0]-0.01))+0.5'),\n", - "# degree=1))\n", - "c0_9.interpolate(df.Expression('x[0]<0.1 ? 0 :0.1',\n", - " degree=1))\n", - "# Ga0_9.interpolate(df.Expression('0*(tanh(-350000*(x[0]-0.01))+1)+1', degree=1))\n", - "Ga0_9.interpolate(df.Expression('1', degree=1))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "p1_i = 0.9\n", - "p1_o = 0.1\n", - "p2_i = 0.8\n", - "p2_o = 0.2\n", - "a1 = 0\n", + " return c0\n", "\n", "def p_tot(p_i, p_o):\n", " return str(p_i-p_o)+'*(-0.5*tanh(3500*(x[0]-0.1))+0.5)+'+str(p_o)\n", "\n", - "ct_1 = df.Function(F)\n", - "ct_2 = df.Function(F)\n", - "c0_1 = df.Function(F)\n", - "c0_2 = df.Function(F)\n", - "g_1 = df.Function(F)\n", - "g_2 = df.Function(F)\n", - "\n", - "ct_1.interpolate(df.Expression(p_tot(p1_i, p1_o), degree=1))\n", - "ct_2.interpolate(df.Expression(p_tot(p2_i, p2_o), degree=1))\n", - "P1 = c_tot1(0)/c_tot1(1)\n", - "P2 = c_tot2(0)/c_tot2(1)\n", - "\n", - "g_1.interpolate(df.Expression('1', degree=1))\n", - "g_2.interpolate(df.Expression(p_tot(p1_o/p2_o, 1), degree=1))\n", - "D_out1 = 1-c_tot1(1)\n", - "a = (P2*D_out1/P1-1+p2_o)/p2_o**2\n", + "def create_func(f_space, expr_str, deg):\n", + " f = df.Function(f_space)\n", + " f.interpolate(df.Expression(expr_str, degree=deg))\n", + " return f\n", "\n", - "c0_1.interpolate(df.Expression('x[0]<0.1 ? 0 :'+p_tot(p1_i, p1_o), degree=1))\n", - "c0_2.interpolate(df.Expression('x[0]<0.1 ? 0 :'+p_tot(p2_i, p2_o), degree=1))" + "def eval_func(func, x):\n", + " return [func([x]) for x in x]" ] }, { @@ -156,29 +83,16 @@ "metadata": {}, "outputs": [], "source": [ - "# c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1)\n", - "# c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9)\n", + "c_tot_1 = create_func(F, p_tot(0.9, 0.9), 1)\n", + "c0_1 = create_func(F, 'x[0]<0.1 ? 0 :' + p_tot(0.9, 0.9), 1)\n", + "Ga0_1 = create_func(F, p_tot(1, 1/9), 1)\n", "\n", - "# c0_1 = calc_sim(c0_1, c_tot1, 0)\n", - "# c0_2 = calc_sim(c0_2, c_tot2, a)\n", + "c_tot_9 = create_func(F, p_tot(0.9, 0.1), 1)\n", + "c0_9 = create_func(F, 'x[0]<0.1 ? 0 :'+p_tot(0.9, 0.1), 1)\n", + "Ga0_9 = create_func(F,p_tot(1, 1), 1)\n", "\n", - "c0_1 = calc_sim(c0_1, ct_1, g_1)\n", - "c0_2 = calc_sim(c0_2, ct_2, g_2)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# 1D:\n", - "plt.plot(np.linspace(0, 1, 10000), [1.465*c0_1([x]) for x in np.linspace(0, 1, 10000)])\n", - "plt.plot(np.linspace(0, 1, 10000), [c0_2([x]) for x in np.linspace(0, 1, 10000)])\n", - "plt.xlim(0.0, 0.125)\n", - "# plt.ylim(0, 0.3)\n", - "# 3D:\n", - "# plt.plot(np.linspace(0, 0.5, 1000), [c0([x, 0, 0]) for x in np.linspace(0, 0.5, 1000)])" + "c0_1 = calc_sim(c0_1, c_tot_1, Ga0_1, 0.001, 10, 0)\n", + "c0_9 = calc_sim(c0_9, c_tot_9, Ga0_9, 0.001, 10, 0)" ] }, { @@ -187,8 +101,10 @@ "metadata": {}, "outputs": [], "source": [ - "plt.plot(np.linspace(0, 1, 2000), [Ga0_1([x]) for x in np.linspace(0, 1, 2000)])\n", - "plt.xlim(0, 0.1)" + "x = np.linspace(0, 1, 10000)\n", + "plt.plot(x, eval_func(c0_1, x))\n", + "plt.plot(x, eval_func(c0_9, x))\n", + "plt.xlim(0, 0.2)" ] }, { @@ -197,7 +113,25 @@ "metadata": {}, "outputs": [], "source": [ - "plt.plot(np.linspace(0, 1, 1000), [c_tot_9([x]) for x in np.linspace(0, 1, 1000)])" + "p1_i = 0.9; p1_o = 0.1\n", + "p2_i = 0.8; p2_o = 0.2\n", + "p3_i = 0.9; p3_o = 0.9\n", + "\n", + "ct_1 = create_func(F, p_tot(p1_i, p1_o), 1)\n", + "ct_2 = create_func(F, p_tot(p2_i, p2_o), 1)\n", + "ct_3 = create_func(F, p_tot(p3_i, p3_o), 1)\n", + "\n", + "g_1= create_func(F, '1', 1)\n", + "g_2= create_func(F, p_tot(p1_o/p2_o, 1), 1)\n", + "g_3= create_func(F, p_tot(1, 1), 1)\n", + "\n", + "c0_1 = create_func(F, 'x[0]<0.1 ? 0 :'+p_tot(p1_i, p1_o), 1)\n", + "c0_2 = create_func(F, 'x[0]<0.1 ? 0 :'+p_tot(p2_i, p2_o), 1)\n", + "c0_3 = create_func(F, 'x[0]<0.1 ? 0 :'+p_tot(p3_i, p3_o), 1)\n", + "\n", + "c0_1 = calc_sim(c0_1, ct_1, g_1, 0.001, 50, 0)\n", + "c0_2 = calc_sim(c0_2, ct_2, g_2, 0.001, 50, 0)\n", + "c0_3 = calc_sim(c0_3, ct_3, g_3, 0.001, 50, 0)" ] }, { @@ -206,12 +140,11 @@ "metadata": {}, "outputs": [], "source": [ - "plt.plot(np.linspace(0, 1, 1000), [(1-ct_1([x]))*ct_1([x]) for x in np.linspace(0, 1, 1000)])\n", - "plt.plot(np.linspace(0, 1, 1000), [(1-ct_2([x]))*g_2([x]) for x in np.linspace(0, 1, 1000)])\n", - "plt.show()\n", - "\n", - "plt.plot(np.linspace(0, 1, 1000), [g_2([x]) for x in np.linspace(0, 1, 1000)])\n", - "# plt.plot(np.linspace(0, 1, 1000), [(1-c_tot1([x])-a*c_tot1([x])**2) for x in np.linspace(0, 1, 1000)])" + "plt.plot(x, eval_func(c0_1, x)/np.max(eval_func(c0_1, x)))\n", + "plt.plot(x, eval_func(c0_2, x)/np.max(eval_func(c0_2, x)))\n", + "plt.plot(x, eval_func(c0_3, x)/np.array(0.47))\n", + "plt.xlim(0.0, 0.125)\n", + "plt.ylim(0, 1.2)" ] }, { -- GitLab