diff --git a/@Ternary_model/Ternary_model.m b/@Ternary_model/Ternary_model.m
index 45178ccfbf0c705ce132eee86f476cadb3ca9852..18f0e53854d06afcc6260fcebcf13575ed47d64c 100644
--- a/@Ternary_model/Ternary_model.m
+++ b/@Ternary_model/Ternary_model.m
@@ -22,7 +22,7 @@ classdef Ternary_model < handle
         u0 = 0.05;
         e = 0.4;
         e_g0 = 0.16; % mobility spread. Also used in square mobility ansatz.
-        ic_c = 0; % initial concentration inside droplet
+        ic_c % initial concentration inside droplet
         u_g0 = 0.2;
         system_size = 300;
         x0 = 1; % Center of Gauss initial condition
diff --git a/int_prob.m b/int_prob.m
index 79cf09cb3eaf16094242a826a65c852982364613..60fc26cdbdcd55615d049f517bc95e2b063c5fdd 100644
--- a/int_prob.m
+++ b/int_prob.m
@@ -1,5 +1,6 @@
 function p = int_prob(l, T, x0, direc, ind_t, bp, ind_delta, T_mov)
 % direc ... change direction of jumps, 1: left->right, -1: right->left
+%                                      2: left->left,  -2: right->right
 % ind_t     ... time index at which propagators are evaluated
 % bp        ... boundary position at t==ind_t
 delta_x0 = diff(x0);
@@ -8,7 +9,11 @@ for i = 1:length(delta_x0)
     x = (x0(i)+x0(i+1))/2;
     % 1. cond.: corr. starting point?  2. cond: jumped outside of domain?
     corr_starting_point = direc*x < direc*bp;
-    corr_end_point = direc*(x-l) > direc*(bp-T{i}.v*T{1}.t(ind_delta+1));
+    if abs(direc) == 1 % jump across the boundary?
+        corr_end_point = direc*(x-l) > direc*(bp-T{i}.v*T{1}.t(ind_delta+1));
+    elseif abs(direc) == 2 % jump within the same phase?
+        corr_end_point = direc*(x-l) < direc*(bp-T{i}.v*T{1}.t(ind_delta+1));
+    end
     if corr_starting_point && corr_end_point
         if nargin==7
             p_i = @(j) interp1(T{j}.x, T{j}.sol(ind_t, :), x-l);
diff --git a/prob_laplace.m b/prob_laplace.m
index 0f311b800a01a3d8d9dd913d21960072649585fb..2149d2720d4bb794ef9ccbb698703e6c2c3b8f61 100644
--- a/prob_laplace.m
+++ b/prob_laplace.m
@@ -399,10 +399,10 @@ end
 
 %% %%%%%%%%%%%%%%%%%%%%%% FRAP JUMP LENGTH DISTRIBUTION %%%%%%%%%%%%%%%%%%%
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-params = {-5, b(7/3, 10^-6), 0.5, e(7/3), 0, 1, 10, 7, 0, 'Constituent'};
+params = {-5, b(7/3, 10^-6), 0.5, e(7/3), 0, 1, 10, 7, 0, 'Constituent', 0};
 t = linspace(0, 5, 51);
 direc = 1; % 1: jump from left to right, -1: jump from right to left.
-x0 = sort(5-direc*(0:0.002:4.01));
+x0 = sort(5-abs(direc)/direc*(0:0.002:4.01));
 %% Run simulations for 'delta' IC across outside
 F = {};
 parfor i = 1:length(x0)
@@ -415,7 +415,7 @@ end
 %%  Calc. probs. for each jump length in ls and sum over time
 T_mov = Ternary_model(0, 'FRAP', params, t, 0.2);
 T_mov.solve_tern_frap();
-ls = -direc*(0.001:0.04:4);
+ls = -abs(direc)/direc*(0.001:0.04:4);
 n_T=45;
 p = nan(length(ls), n_T);
 for j = 1:n_T