diff --git a/Plots_Droplet_FRAP.ipynb b/Plots_Droplet_FRAP.ipynb index 91fc4abd6f6c6d5cb686cfcab358d9f7fd6cdd14..a325c4cb4889dfab47f76e09651f9fc337a0c8d4 100644 --- a/Plots_Droplet_FRAP.ipynb +++ b/Plots_Droplet_FRAP.ipynb @@ -14,7 +14,8 @@ "outputs": [], "source": [ "from fem_sol import frap_solver\n", - "from matplotlib import rc, rcParams\n", + "from matplotlib import cm, rc, rcParams\n", + "from matplotlib.ticker import MaxNLocator\n", "import fem_utils\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", @@ -40,8 +41,8 @@ "pl.rcParams.update(params)\n", "\n", "def nice_fig(xla, yla, xli, yli, size, fs=12): \n", - "# rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", - " rc('font',**{'family':'serif','serif':['Palatino']})\n", + " rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", + "# rc('font',**{'family':'serif','serif':['Palatino']})\n", " plt.gcf().set_size_inches(size[0], size[1])\n", " plt.xlabel(xla,fontsize=fs) \n", " plt.ylabel(yla,fontsize=fs)\n", @@ -454,7 +455,131 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Figure 4: Obtaining info about outside." + "### Figure 4: Obtaining info about outside: experiments." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: data time course with full model.**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PLYS = np.loadtxt(fol+'Fig4/PLYS_timecourse.csv', delimiter=',')\n", + "PLYS_fit = np.loadtxt(fol+'Fig4/PLYS_fit_timecourse.csv', delimiter=',')\n", + "l_data = plt.plot(PLYS[:, 0], PLYS[:, 1:], '#1f77b4', lw=3,\n", + " label='Experiment')\n", + "l_fit = plt.plot(PLYS_fit[:, 0], PLYS_fit[:, 1:], '--', lw=2,\n", + " c=sns.color_palette()[1], label='Simulation')\n", + "nice_fig('x [$\\mu m$]', 'intensity (a.u)', [0, 2.4*np.max(PLYS[:, 0])],\n", + " [0,0.5], [2.3,2])\n", + "plt.legend([l_data[0], l_fit[0]], ['ATP/PLYS', 'Full model'], frameon=False,\n", + " fontsize=9, handletextpad=0.4, handlelength=0.8)\n", + "save_nice_fig(fol+'Fig4/PLYS_spat_recov.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Experimental Partitioning vs $D_{out}$ for CMD**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PLYS = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PLYS.csv')\n", + "CMD = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/CMD.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax1 = plt.subplots()\n", + "plt.sca(ax1)\n", + "sns.lineplot(x=\"P\", y=\"D_out\", data=CMD, color=sns.color_palette()[1], ci='sd')\n", + "sns.lineplot(x=\"P\", y=\"D_out\", data=PLYS, color=sns.color_palette()[2], ci='sd')\n", + "plt.plot(np.logspace(0, 2, 10), 2*np.logspace(0, 2, 10), '--', c='grey')\n", + "ax1.set_yscale('log')\n", + "ax1.set_xscale('log')\n", + "nice_fig('Partitioning P', '$D_{out} \\;[\\mu m^2s^{-1}]$', [1,100], [0.1,100], [2.3,2])\n", + "plt.legend(['CMD/PLYS', 'PLYS/ATP'], frameon=False, fontsize=9)\n", + "plt.xticks([1, 10, 100]);\n", + "save_nice_fig(fol+'Fig4/PLYS_CMD.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Experimental Partitioning vs $D_out$ for PGL-3**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PGL_50 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_50.csv')\n", + "PGL_60 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_60.csv')\n", + "PGL_75 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_75.csv')\n", + "PGL_90 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_90.csv')\n", + "PGL_100 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_100.csv')\n", + "PGL_120 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_120.csv')\n", + "PGL_150 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_150.csv')\n", + "PGL_180 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_180.csv')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax1 = plt.subplots()\n", + "plt.sca(ax1)\n", + "sns.set_palette(sns.color_palette(\"Oranges\", 9))\n", + "# sns.color_palette(\"flare\", as_cmap=True)\n", + "l50 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_50, color=sns.color_palette()[1], ci=None)\n", + "l60 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_60, color=sns.color_palette()[2], ci=None)\n", + "l75 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_75, color=sns.color_palette()[3], ci=None)\n", + "l90 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_90, color=sns.color_palette()[4], ci=None)\n", + "leg1 = plt.legend(['50 mM', '60 mM', '75 mM', '90 mM'], labelspacing=0.3,\n", + " loc=(0.65, 0.0), handletextpad=0.4, handlelength=0.5, frameon=0)\n", + "l100 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_100, color=sns.color_palette()[5], ci=None)\n", + "l120 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_120, color=sns.color_palette()[6], ci=None)\n", + "l150 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_150, color=sns.color_palette()[7], ci=None)\n", + "l180 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_180, color=sns.color_palette()[8], ci=None)\n", + "plt.plot(np.logspace(0, 3, 10), 0.07*np.logspace(0, 3, 10), '--', c='grey')\n", + "ax1.set_yscale('log')\n", + "ax1.set_xscale('log')\n", + "nice_fig('Partitioning P', '$D_{out} \\;[\\mu m^2 s^{-1}]$', [1,1000], [0.0003,200], [2.3,2])\n", + "plt.xticks([1, 10, 100, 1000]);\n", + "plt.legend(loc=1)\n", + "plt.legend(['50 mM', '60 mM', '75 mM', '90 mM', '100 mM', '120 mM', '150 mM', '180 mM'], labelspacing=0.3,\n", + " loc=(0, 0.56), handletextpad=0.4, handlelength=0.5, frameon=0)\n", + "plt.gca().add_artist(leg1)\n", + "save_nice_fig(fol+'Fig4/PGL-3.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Figure 5: Obtaining info about outside: theory." ] }, { @@ -515,12 +640,62 @@ "save_nice_fig(fol+'Fig4/D_vs_Cost.pdf')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Valley in parameter space**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "con = np.loadtxt(fol+'Fig4/Valley.csv', delimiter=',')\n", + "levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))\n", + "nice_fig('Partitioning P', '$D_{out} \\;[\\mu m^2 s^{-1}]$', [1, 3], [-2,1], [2.3,2])\n", + "CS = plt.contourf(np.log10(con[:, 0]), np.log10(con[:, 1]), np.log10(con[:, 2:]), levels=levels, cmap=cm.coolwarm)\n", + "plt.plot(np.log10(150), np.log10(10**-1), 'y*', label='Initial Simul.', markersize=3)\n", + "plt.legend(loc=(0, 0.83), frameon=False, handletextpad=0.4)\n", + "plt.xticks([1, 2, 3], ['$10^1$', '$10^2$', '$10^3$'])\n", + "plt.yticks([-2, -1, 0, 1], ['$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$'])\n", + "plt.tick_params('x', pad=5)\n", + "fig1 = plt.gcf()\n", + "clb = fig1.colorbar(CS, ticks=[0, -2, -4, -6])\n", + "clb.ax.set_title('Cost')\n", + "save_nice_fig(fol+'Fig4/Sim_D_out_P.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Zoom in for valley in parameter space**" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))\n", + "nice_fig('Partitioning P', '', [1.9, 2.4], [-1.5,-0.5], [2.3,2])\n", + "CS = plt.contourf(np.log10(con[16:-27, 0]), np.log10(con[16:-27, 1]),\n", + " np.log10(con[16:-27, 2+16:-27]), levels=levels,\n", + " cmap=cm.coolwarm, vmax=-1.5)\n", + "plt.plot(np.log10(150), np.log10(10**-1), 'y*', label='Initial Simul.', markersize=3)\n", + "plt.legend(loc=(0, 0.83), frameon=False, handletextpad=0.4)\n", + "plt.xticks([2, 2.25], ['$10^2$', '$10^{2.25}$'])\n", + "plt.yticks([-1.5, -1, -0.5], ['$10^{-1.5}$', '$10^{-1}$', '$10^{-0.5}$'])\n", + "plt.tick_params('x', pad=5)\n", + "fig1 = plt.gcf()\n", + "clb = fig1.colorbar(CS, ticks=[-2, -4, -6])\n", + "clb.ax.set_title('Cost')\n", + "save_nice_fig(fol+'Fig4/Sim_D_out_P_inset.pdf')" + ] } ], "metadata": {