diff --git a/Plots_Droplet_FRAP.ipynb b/Plots_Droplet_FRAP.ipynb index c10bb9ceab73e2af7e804664ec171daea83da780..3bb41a4d9788b0ac2fc2c74dca818a34316051fd 100644 --- a/Plots_Droplet_FRAP.ipynb +++ b/Plots_Droplet_FRAP.ipynb @@ -84,6 +84,13 @@ "eps = np.linspace(0, 0.23, 100)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Multi Drop" + ] + }, { "cell_type": "code", "execution_count": null, @@ -218,6 +225,13 @@ "save_nice_fig(fol+'Fig3/spat_recov_neighbours.pdf')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Coverslip" + ] + }, { "cell_type": "code", "execution_count": null, @@ -240,9 +254,10 @@ " phi_tot_ext, G_in, G_out, range(len(me))):\n", " if i in [0, 1, 2, 3, 4, 5]:\n", " f_cs.append(frap_solver(p, 'Meshes/single_drop_'+m,\n", - " name='FRAP_'+m[:-4]+str(G_i), T=240, phi_tot_int=p_i, dt=0.02,\n", - " phi_tot_ext=p_e, G_in=G_i, G_out=G_o))\n", - " f_cs[-1].solve_frap()" + " name='FRAP_coverslip/FRAP_'+m[:-4]+str(G_i), T=240,\n", + " phi_tot_int=p_i, dt=0.02, phi_tot_ext=p_e, G_in=G_i,\n", + " G_out=G_o))\n", + "# f_cs[-1].solve_frap()" ] }, { @@ -252,18 +267,38 @@ "outputs": [], "source": [ "z = [0.25, 1.5, 4, 0.25, 1.5, 4]\n", + "\n", + "# eps = np.linspace(0, 3.5, 100) # for full profile\n", + "eps = np.r_[np.linspace(0, 0.4, 100), np.linspace(0.41, 2, 20)]\n", "profs_cs = []\n", "for i, z_i in enumerate(z):\n", " profs_cs.append([])\n", " for j in range(240):\n", " values=[]\n", - " fs = fem_utils.load_time_point('FRAP_coverslip/' + f_cs[i].name+\n", + " fs = fem_utils.load_time_point(f_cs[i].name+\n", " 't_p_'+str(j)+'.h5', f_cs[i].mesh)\n", " for n in ns:\n", " values.append([fs([4, 4, z_i]+e*n) for e in eps])\n", " profs_cs[i].append(np.mean(np.transpose(values), 1))" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Write out profiles to .csv\n", + "for i in [0, 1, 2, 3, 4, 5]:\n", + " z = str(f_cs[i].cent_poin[-1])\n", + " P = str(f_cs[i].phi_tot_int/f_cs[i].phi_tot_ext)\n", + " np.savetxt('eps_'+str(i)+'.csv', eps, delimiter=',')\n", + " np.savetxt('t_p_long_coverslip_' + P + '_' + z +'.csv',\n", + " profs_cs[i][1:], delimiter=',')\n", + " meta_data = np.r_[f_cs[i].dt, f_cs[i].T-1, eps, 0.25] # last param: droplet radius\n", + " np.savetxt('meta_data_long_coverslip_' + P + '_' + z + '.csv', meta_data, delimiter=',')" + ] + }, { "cell_type": "code", "execution_count": null,