diff --git a/Plots_Droplet_FRAP.ipynb b/Plots_Droplet_FRAP.ipynb index 0e860b07cd52a0996a3f98cf0461347e39bb1d45..91fc4abd6f6c6d5cb686cfcab358d9f7fd6cdd14 100644 --- a/Plots_Droplet_FRAP.ipynb +++ b/Plots_Droplet_FRAP.ipynb @@ -24,7 +24,8 @@ "sns.set_style(\"ticks\")\n", "rcParams['axes.linewidth'] = 0.75\n", "rcParams['xtick.major.width'] = 0.75\n", - "rcParams['ytick.major.width'] = 0.75" + "rcParams['ytick.major.width'] = 0.75\n", + "rcParams['text.usetex']=True" ] }, { @@ -39,7 +40,8 @@ "pl.rcParams.update(params)\n", "\n", "def nice_fig(xla, yla, xli, yli, size, fs=12): \n", - " rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", + "# rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", + " rc('font',**{'family':'serif','serif':['Palatino']})\n", " plt.gcf().set_size_inches(size[0], size[1])\n", " plt.xlabel(xla,fontsize=fs) \n", " plt.ylabel(yla,fontsize=fs)\n", @@ -296,7 +298,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Figure 1:" + "### Figure 1: Fitting $D_{in}$ and data analysis." ] }, { @@ -448,6 +450,71 @@ "save_nice_fig(fol+'Fig1/tot_recov.pdf')" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Figure 4: Obtaining info about outside." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Partitioning vs. $D_{out}$, showcasing four different simulation start cases.**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "P_Do = np.loadtxt(fol+'/Fig4/Part_vs_Do.csv', delimiter=',')\n", + "P = [5, 150, 5, 150]\n", + "D_o = [0.1, 0.1, 1, 1]\n", + "plt.gca().set_prop_cycle(None)\n", + "nice_fig('Partitioning P', '$D_{out}$ [$\\mu m^2/s$]', [0.9,320], [0.000001,340], [2.3,2])\n", + "lines = plt.loglog(P_Do[0, :], P_Do[1:, :].transpose())\n", + "plt.plot(P_Do[0, :], P_Do[0, :], '--', c='grey')\n", + "plt.legend([lines[2], lines[0], lines[3], lines[1]],\n", + " ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,\n", + " title=r'\\underline{$D_{out}$/P [$\\mu m^2/s$]:}', columnspacing=0.5, labelspacing=0.3,\n", + " loc=(0.4, 0), handletextpad=0.4, handlelength=0.5)\n", + "plt.gca().set_prop_cycle(None)\n", + "plt.plot(P[0], D_o[0], 'd')\n", + "plt.plot(P[1], D_o[1], 'd')\n", + "plt.plot(P[2], D_o[2], 'd')\n", + "plt.plot(P[3], D_o[3], 'd')\n", + "plt.annotate('$D_{out}$/P = 1 $\\mu m^2/s$', [1,40], c='grey')\n", + "plt.xticks([1, 10, 100]);\n", + "save_nice_fig(fol+'Fig4/D_vs_P.pdf')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Panel: Cost function**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "P_Cost = np.loadtxt(fol+'/Fig4/Part_vs_Cost.csv', delimiter=',')\n", + "nice_fig('Partitioning P', 'Cost function [a.u.]', [0.9,320], [0.000000001,0.01], [2.3,2])\n", + "lines = plt.loglog(P_Cost[0, :], P_Cost[1:, :].transpose())\n", + "plt.legend([lines[2], lines[0], lines[3], lines[1]],\n", + " ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,\n", + " title=r'\\underline{$D_{out}$/P set to:}', columnspacing=0.5, labelspacing=0.3,\n", + " loc=(0.081, 0), handletextpad=0.4, handlelength=0.5)\n", + "plt.xticks([1, 10, 100]);\n", + "save_nice_fig(fol+'Fig4/D_vs_Cost.pdf')" + ] + }, { "cell_type": "code", "execution_count": null,