From 84198ae88833883faea4784a97ad0806e878858c Mon Sep 17 00:00:00 2001 From: Lars Hubatsch <hubatsch@pks.mpg.de> Date: Fri, 3 Jan 2020 17:05:30 +0100 Subject: [PATCH] Slightly more efficient mesh by making spacing dependent on steepness of tanh profile. --- ternary_frap.m | 24 ++++++++++++++++++++---- 1 file changed, 20 insertions(+), 4 deletions(-) diff --git a/ternary_frap.m b/ternary_frap.m index 1d09d6c..d1c3467 100644 --- a/ternary_frap.m +++ b/ternary_frap.m @@ -8,17 +8,29 @@ b = 0.025; c = 1/100000; u0 = 0.05; e = 0.4; + +%% Make useful mesh (by inverting the tanh profile and using this as spacing) +x = linspace(49.0, 51, 3000); +g = gamma0(x, a, 1*b, e); +g_unique = unique(g); +x = linspace(g_unique(1), g_unique(end-1), 300); +g_inv = spacing(x, a, 2*b, e); +g_inv = g_inv(2:end-1); +x = [linspace(49.0, g_inv(2), 30), g_inv(3:end-2), ... + linspace(g_inv(end-1), 51, 30), linspace(51.1, 200, 300)]; %% Solve pde -x = [linspace(49.0, 51, 3000), linspace(51.01, 200, 300)]; +tic +% x = [linspace(49.0, 49.8, 30), linspace(49.81, 50.2, 1000), ... +% linspace(50.21, 51, 30) linspace(51.01, 200, 600)]; t = linspace(0.001, 1, 1000); fh_ic = @(x) flory_ic(x, a, u0); fh_bc = @(xl, ul, xr, ur, t) flory_bc(xl, ul, xr, ur, t, u0); fh_pde = @(x, t, u, dudx) flory_hugg_pde(x, t, u, dudx, a, b, e, c, u0); sol = pdepe(0, fh_pde, fh_ic, fh_bc, x, t); +toc %% Plotting figure(1); hold on; for i = 1:length(t) -% i = 800; cla; xlim([49, 53]); ylim([0, 0.7]); ax = gca; ax.FontSize = 16; @@ -30,13 +42,13 @@ end %% Plot and check derivatives of pt figure; hold on; -x = linspace(40, 60, 10000); +x = linspace(40, 60, 100000); plot(x, phi_tot(x, a, b, e, u0)); plot(x, gradient_analytical(x, a, b, e)); plot(x(1:end-1)+mean(diff(x))/2, ... diff(phi_tot(x, a, b, e, u0)/mean(diff(x)))); plot(x, gamma0(x, a, b, e)); -max(gamma0(x, a, b, e))/min(gamma0(x, a, b, e)) +figure; plot(gamma0(x, a, b, e), spacing(gamma0(x, a, b, e), a, b, e)); %% Function definitions for pde solver function [c, f ,s] = flory_hugg_pde(x, t, u, dudx, a, b, e, c_p, u0) % Solve with full ternary model. Analytical derivatives. @@ -76,6 +88,10 @@ function g0 = gamma0(x, a, b, e) g0 = 10*e*(tanh((x+a)/b)+1)/2+0.001; end +function sp = spacing(x, a, b, e) + sp = b*atanh(2/(10*e)*(x-0.001)-1)-a; +end + function p = phi_tot(x, a, b, e, u0) p = e*(tanh(-(x+a)/b)+1)/2+u0; end -- GitLab