diff --git a/ternary_frap.m b/ternary_frap.m
index 6fd49a7c5fc4aec263426fbccf65685785a7ceb7..044c34a650c74ef2bf2db1618194fd15c64cf88d 100644
--- a/ternary_frap.m
+++ b/ternary_frap.m
@@ -3,25 +3,22 @@
 % (bleached+unbleached=const.=pt). Then bleached species initial
 % conditions are introduced. Integration of model via pdepe.
 
-% Still not sure whether this solution is correct. Diffusion seems to slow
-% towards the end!
-
 a = -50;
-b = 0.1;
+b = 0.01;
 c = 1/100000;
 u0 = 0.3;
 %% Solve pde
 x = [linspace(49, 55, 600), linspace(55.01, 200, 300)];
-t = linspace(0, 1, 10000);
+t = linspace(0, 0.001, 1000);
 fh_ic = @(x) flory_ic(x, a, u0);
 fh_bc = @(xl, ul, xr, ur, t) flory_bc(xl, ul, xr, ur, t, u0);
 fh_pde = @(x, t, u, dudx) flory_hugg_pde(x, t, u, dudx, a, b, c, u0);
 sol = pdepe(0, fh_pde, fh_ic, fh_bc, x, t);
 %% Plotting
 figure(1); hold on;
-for i = 1:1000 
+for i = 1:length(t)
     cla; xlim([49, 53]); ylim([0, 1.5]);
-    plot(x, phi_tot(x, a, b, u0)); plot(x, sol(i, :)); pause(0.01);
+    plot(x, phi_tot(x, a, b, u0)); plot(x, sol(i, :)); pause(0.03);
 end
 
 %% Plot and check derivatives of pt
@@ -39,7 +36,7 @@ function [c, f ,s] = flory_hugg_pde(x, t, u, dudx, a, b, c_p, u0)
 pt = phi_tot(x, a, b, u0);
 gra_a = gradient_analytical(x, a, b);
 c = c_p;
-f = ((u0+1)-pt)/pt*(pt*dudx-u*gra_a);
+f = ((u0+1.3)-pt)/pt*(pt*dudx-u*gra_a);
 s = 0;
 end