diff --git a/Fenics_Cahn_Hilliard.ipynb b/Fenics_Cahn_Hilliard.ipynb
deleted file mode 100644
index cb709ff760d514d53a8b81202b7057c4093b47a8..0000000000000000000000000000000000000000
--- a/Fenics_Cahn_Hilliard.ipynb
+++ /dev/null
@@ -1,122 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": [
-    "# Standard Cahn-Hilliard Example that runs with fenics 2019.1\n",
-    "# Examples can be found at https://bitbucket.org/fenics-project/dolfin/src/master/python/demo/documented/cahn-hilliard/demo_cahn-hilliard.py.rst#rst-header-id1\n",
-    "# The resulting .pvd file can be opened using default settings in ParaView\n",
-    "\n",
-    "import random\n",
-    "from dolfin import *\n",
-    "# Class representing the intial conditions\n",
-    "class InitialConditions(UserExpression):\n",
-    "    def __init__(self, **kwargs):\n",
-    "        random.seed(2 + MPI.rank(MPI.comm_world))\n",
-    "        super().__init__(**kwargs)\n",
-    "    def eval(self, values, x):\n",
-    "        if x[0] > 0.5:\n",
-    "#             values[0] = 0.63 + 0.02*(0.5 - random.random())\n",
-    "            values[0] = 0.6\n",
-    "        else:\n",
-    "            values[0] = 0.35                \n",
-    "        values[1] = 0.0\n",
-    "#         values[0] = 0.63 + 0.02*(0.5 - random.random())\n",
-    "        values[1] = 0.0\n",
-    "    def value_shape(self):\n",
-    "        return (2,)\n",
-    "# Class for interfacing with the Newton solver\n",
-    "class CahnHilliardEquation(NonlinearProblem):\n",
-    "    def __init__(self, a, L):\n",
-    "        NonlinearProblem.__init__(self)\n",
-    "        self.L = L\n",
-    "        self.a = a\n",
-    "    def F(self, b, x):\n",
-    "        assemble(self.L, tensor=b)\n",
-    "    def J(self, A, x):\n",
-    "        assemble(self.a, tensor=A)\n",
-    "# Model parameters\n",
-    "lmbda  = 2.0e-02  # surface parameter\n",
-    "dt     = 5.0e-03  # time step\n",
-    "theta  = 0.5      # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson\n",
-    "# Form compiler options\n",
-    "parameters[\"form_compiler\"][\"optimize\"]     = True\n",
-    "parameters[\"form_compiler\"][\"cpp_optimize\"] = True\n",
-    "# Create mesh and build function space\n",
-    "mesh = UnitSquareMesh.create(96, 3, CellType.Type.quadrilateral)\n",
-    "P1 = FiniteElement(\"Lagrange\", mesh.ufl_cell(), 1)\n",
-    "ME = FunctionSpace(mesh, P1*P1)\n",
-    "# Define trial and test functions\n",
-    "du    = TrialFunction(ME)\n",
-    "q, v  = TestFunctions(ME)\n",
-    "# Define functions\n",
-    "u   = Function(ME)  # current solution\n",
-    "u0  = Function(ME)  # solution from previous converged step\n",
-    "\n",
-    "# Split mixed functions\n",
-    "dc, dmu = split(du)\n",
-    "c,  mu  = split(u)\n",
-    "c0, mu0 = split(u0)\n",
-    "# Create intial conditions and interpolate\n",
-    "u_init = InitialConditions(degree=1)\n",
-    "u.interpolate(u_init)\n",
-    "u0.interpolate(u_init)\n",
-    "# Compute the chemical potential df/dc\n",
-    "c = variable(c)\n",
-    "# f    = 100*c**2*(1-c)**2\n",
-    "# dfdc = diff(f, c)\n",
-    "X = 2.2\n",
-    "dfdc = ln(c/(1-c))+(1-2*X*c)\n",
-    "# mu_(n+theta)\n",
-    "mu_mid = (1.0-theta)*mu0 + theta*mu\n",
-    "# Weak statement of the equations\n",
-    "L0 = c*q*dx - c0*q*dx + dt*c*(1-c)*dot(grad(mu_mid), grad(q))*dx\n",
-    "L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx\n",
-    "L = L0 + L1\n",
-    "# Compute directional derivative about u in the direction of du (Jacobian)\n",
-    "a = derivative(L, u, du)\n",
-    "# Create nonlinear problem and Newton solver\n",
-    "problem = CahnHilliardEquation(a, L)\n",
-    "solver = NewtonSolver()\n",
-    "solver.parameters[\"linear_solver\"] = \"lu\"\n",
-    "solver.parameters[\"convergence_criterion\"] = \"incremental\"\n",
-    "solver.parameters[\"relative_tolerance\"] = 1e-6\n",
-    "# Output file\n",
-    "file = File(\"output.pvd\", \"compressed\")\n",
-    "\n",
-    "# Step in time\n",
-    "t = 0.0\n",
-    "T = 5000*dt\n",
-    "while (t < T):\n",
-    "    t += dt\n",
-    "    u0.vector()[:] = u.vector()\n",
-    "    solver.solve(problem, u.vector())\n",
-    "    file << (u.split()[0], t)"
-   ]
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.3"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/Fenics_FloryHugg_PhiTot.ipynb b/Fenics_FloryHugg_PhiTot.ipynb
index ab2a465dcd091f7b65b3fe40550cc64e8eaf6578..9c3710e4041ed0f2bf3834314f4c30908dee00ea 100644
--- a/Fenics_FloryHugg_PhiTot.ipynb
+++ b/Fenics_FloryHugg_PhiTot.ipynb
@@ -19,9 +19,10 @@
     "        super().__init__(**kwargs)\n",
     "    def eval(self, values, x):\n",
     "        if x[0] > 0.5:\n",
-    "            values[0] = 0.63 + 0.02*(0.5 - random.random())\n",
+    "#             values[0] = 0.63 + 0.02*(0.5 - random.random())\n",
+    "            values[0] = 0.6\n",
     "        else:\n",
-    "            values[0] = 0.4                \n",
+    "            values[0] = 0.35                \n",
     "        values[1] = 0.0\n",
     "    def value_shape(self):\n",
     "        return (2,)\n",
@@ -36,16 +37,16 @@
     "    def J(self, A, x):\n",
     "        assemble(self.a, tensor=A)\n",
     "# Model parameters\n",
-    "dt     = 5.0e-10  # time step\n",
+    "dt     = 5.0e-11  # time step\n",
     "theta  = 0.5      # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicolson\n",
     "kBTG0  = 1.0e-6\n",
-    "X = 3.5\n",
+    "X = 2.2\n",
     "kappa = 2\n",
     "# Form compiler options\n",
     "parameters[\"form_compiler\"][\"optimize\"]     = True\n",
     "parameters[\"form_compiler\"][\"cpp_optimize\"] = True\n",
     "# Create mesh and build function space\n",
-    "mesh = UnitSquareMesh.create(96, 1, CellType.Type.quadrilateral)\n",
+    "mesh = UnitSquareMesh.create(96, 3, CellType.Type.quadrilateral)\n",
     "P1 = FiniteElement(\"Lagrange\", mesh.ufl_cell(), 1)\n",
     "ME = FunctionSpace(mesh, P1*P1)\n",
     "# Define trial and test functions\n",
@@ -74,9 +75,9 @@
     "# time and therefore doesn't need discretization in time, check this is true with Chris!\n",
     "# In particular the c_mid in L0!\n",
     "L0 = (1/kBTG0*(c*q*dx - c0*q*dx) - dt*((1+2*X*c_mid)*mu_mid- 2*X*dot(grad(mu_mid), grad(mu_mid))\n",
-    "                            +2*X*(2*c_mid*dot(grad(c_mid), grad(c_mid)) + c_mid**2*mu_mid) \n",
-    "                            -kappa*(dot(grad(c_mid), grad(mu_mid)) - 2*c_mid*dot(grad(c_mid), grad(mu_mid))))*q*dx\n",
-    "                            -kappa*(c_mid**2*dot(grad(mu_mid), grad(q))+2*c_mid*q*dot(grad(mu_mid), grad(c_mid)))*dx)\n",
+    "                                        +2*X*(2*c_mid*dot(grad(c_mid), grad(c_mid)) + c_mid**2*mu_mid) \n",
+    "                                        -kappa*(dot(grad(c_mid), grad(mu_mid)) - 2*c_mid*dot(grad(c_mid), grad(mu_mid))))*q*dx\n",
+    "               -dt*kappa*(c_mid**2*dot(grad(mu_mid), grad(q))+2*c_mid*q*dot(grad(mu_mid), grad(c_mid)))*dx)\n",
     "# L1 = mu*v*dx - dfdc*v*dx - lmbda*dot(grad(c), grad(v))*dx\n",
     "L1 = mu*v*dx + dot(grad(c), grad(v))*dx\n",
     "L = L0 + L1\n",
@@ -93,12 +94,12 @@
     "\n",
     "# Step in time\n",
     "t = 0.0\n",
-    "T = 200*dt\n",
+    "T = 2000*dt\n",
     "while (t < T):\n",
-    "    t += dt\n",
     "    u0.vector()[:] = u.vector()\n",
     "    solver.solve(problem, u.vector())\n",
-    "    file << (u.split()[0], t)"
+    "    file << (u.split()[0], t)\n",
+    "    t += dt"
    ]
   }
  ],