%% Solve Fokker Planck equation for given parameter set % nu = 10^-6; % chi = 8.1/3; % Cubic equation solution: https://en.wikipedia.org/wiki/Cubic_equation clear all; clc; e = 0.7; b = 0.025; a1 = 1; b1 = -8/3*e^2*b^6; c1 = 32/3; d1 = -32/3*e^2; del0 = b1^2-3*a1*c1; del1 = 2*b1^3-9*a1*b1*c1+27*a1^2*d1; C = nthroot((del1+sqrt(del1^2-4*del0^3))/2, 3); Xi = (-1+sqrt(-3))/2; Chi = @(k) 1/(3*a1)*(b1+Xi^k*C+del0/(Xi^k*C)); Chi(1) Chi(2) Chi(3) b^3*(Chi(3)/(Chi(3)-2))^(-3/2) %% clear all; clc; nu = 10^-6; chi = 7/3; b = nu^(1/3)*sqrt(chi/(chi-2)); e = sqrt(3/8*(chi-2)); T = Ternary_model(0, 'Gauss', [-6, b, 0.5, e, 0.16, 0.2],... linspace(0.0, 400, 5000)); % T.t = 0:0.01:20; T.t = [0, 0.1, 1, 9.9]; T.solve_tern_frap() %% Frank's solution to the transfer/rate problem via Laplace transform x0 = 2; D_m = 1*(1-T.u0-T.e); % to make equal to ternary FRAP D_p = 1*(1-T.u0+T.e); ga = (T.u0-T.e)/ (T.u0+T.e); %% p_out = @(D_p, D_m, ga, x0, x, t) 1./(2*sqrt(D_p*pi*t))*... (exp(-(x+x0).^2./(4*D_p*t))*(ga*sqrt(D_p)-sqrt(D_m))./... (ga*sqrt(D_p)+sqrt(D_m))+exp(-(x-x0).^2./(4*D_p*t))); p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+ga*sqrt(D_p)))*... exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t)); x_left = linspace(-4, 0, 1000); x_right = linspace(0, 4, 1000); %% Plot with full ternary model for i = 1:200 figure(2); hold on; cla; j = i+2; plot(x_left, p_in(D_p, D_m, ga, x0, x_left, j/100)); plot(x_right, p_out(D_p, D_m, ga, x0, x_right, j/100)); plot(T.x+T.a, T.sol(i, :), 'LineWidth', 2); axis([-6, 3, 0, 2.5]); shg; pause(); end %% figure(3); hold on; cla; plot(x_left, p_in(D_p, D_m, ga, x0, x_left, j/100), 'LineWidth', 2); plot(x_right, p_out(D_p, D_m, ga, x0, x_right, j/100), 'LineWidth', 2); plot(T.x+T.a, T.sol(i, :), 'LineWidth', 2); axis([-1, 3, 0, 0.7]);