%% Solve Fokker Planck equation T = Ternary_model(0, 'Gauss', [-1, 0.043, 0.05, 0.4, 0.16, 0.2],... linspace(0.0, 400, 5000)); T.t = 0:0.01:20; T.solve_tern_frap() %% Frank's solution to the transfer/rate problem via Laplace transform x0 = 2; D_m = T.g0(1)*(1-T.u0-T.e); % to make equal to ternary FRAP D_p = T.g0(end)*(1-T.u0); ga = 1/9; %% p_out = @(D_p, D_m, ga, x0, x, t) 1./(2*sqrt(D_p*pi*t))*... (exp(-(x+x0).^2./(4*D_p*t))*(ga*sqrt(D_p)-sqrt(D_m))./... (ga*sqrt(D_p)+sqrt(D_m))+exp(-(x-x0).^2./(4*D_p*t))); p_in = @(D_p, D_m, ga, x0, x, t) 1./(sqrt(pi*t)*(sqrt(D_m)+ga*sqrt(D_p)))*... exp(-(x-x0*sqrt(D_m/D_p)).^2/(4*D_m*t)); x_left = linspace(-4, 0, 1000); x_right = linspace(0, 4, 1000); %% Plot with full ternary model for i = 1:200 figure(2); hold on; cla; j = i+2; plot(x_left, p_in(D_p, D_m, ga, x0, x_left, j/100)); plot(x_right, p_out(D_p, D_m, ga, x0, x_right, j/100)); plot(T.x+T.a, T.sol(i, :), 'LineWidth', 2); axis([-1, 3, 0, 0.7]); shg; pause(); end %% figure(3); hold on; cla; plot(x_left, p_in(D_p, D_m, ga, x0, x_left, j/100), 'LineWidth', 2); plot(x_right, p_out(D_p, D_m, ga, x0, x_right, j/100), 'LineWidth', 2); plot(T.x+T.a, T.sol(i, :), 'LineWidth', 2); axis([-1, 3, 0, 0.7]);