{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fem_sol import frap_solver\n", "from matplotlib import cm, rc, rcParams\n", "from matplotlib.ticker import MaxNLocator\n", "import fem_utils\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "fol = '/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/'\n", "# sns.set_style(\"ticks\")\n", "rcParams['axes.linewidth'] = 0.75\n", "rcParams['xtick.major.width'] = 0.75\n", "rcParams['ytick.major.width'] = 0.75\n", "# rcParams['text.usetex']=True" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define colors\n", "pa = sns.color_palette(\"Set2\")\n", "sns.set_palette(pa)\n", "grey = (0.6, 0.6, 0.6)\n", "dark_grey = (0.2, 0.2, 0.2)\n", "green = pa[0]\n", "blue = pa[2]\n", "red = pa[1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pylab as pl\n", "params = {'legend.fontsize': 9,\n", " 'legend.handlelength': 1}\n", "pl.rcParams.update(params)\n", "\n", "def nice_fig(xla, yla, xli, yli, size, fs=12): \n", " rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})\n", "# rc('font',**{'family':'serif','serif':['Palatino']})\n", " plt.gcf().set_size_inches(size[0], size[1])\n", " plt.xlabel(xla,fontsize=fs) \n", " plt.ylabel(yla,fontsize=fs)\n", " plt.xlim(xli)\n", " plt.ylim(yli)\n", " plt.tick_params(axis='both', which='major', labelsize=fs)\n", "\n", "def save_nice_fig(name):\n", " plt.savefig(name, format='pdf', dpi=300, bbox_inches='tight',\n", " transparent=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### FRAP geometries" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# For radial average: define angles and radial spacing\n", "alphas = np.linspace(0,2*np.pi, 20)\n", "ns = np.c_[np.cos(alphas), np.sin(alphas), np.zeros(len(alphas))]\n", "eps = np.linspace(0, 0.23, 100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "me = ['Meshes/multi_drop_gauss.xml', 'Meshes/multi_drop_gauss_med.xml',\n", " 'Meshes/multi_drop_gauss_far.xml', 'Meshes/multi_drop_gauss.xml',\n", " 'Meshes/multi_drop_gauss_med.xml', 'Meshes/multi_drop_gauss_far.xml']\n", "point_lists = [[[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n", " [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n", " [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]],\n", " [[4, 4.5, 0.5], [4, 3.5, 0.5], [3.5, 4, 0.5], [4.5, 4, 0.5]],\n", " [[4, 5, 0.5], [4, 3, 0.5], [3, 4, 0.5], [5, 4, 0.5]],\n", " [[4, 5.5, 0.5], [4, 2.5, 0.5], [2.5, 4, 0.5], [5.5, 4, 0.5]]]\n", "phi_tot_int = [.99, .99, .99, .9, .9, .9]\n", "phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n", "G_in = [1, 1, 1, .1, .1, .1]\n", "G_out = [1, 1, 1, 0.99/0.9, 0.99/0.9, 0.99/0.9]\n", "\n", "f_i = []\n", "\n", "for p, m, p_i, p_e, G_i, G_o in zip(point_lists, me, phi_tot_int,\n", " phi_tot_ext, G_in, G_out):\n", " f = frap_solver([4, 4, 0.5], m, name='FRAP_multi_'+m[:-4]+str(G_i), point_list=p,\n", " T=50, phi_tot_int=p_i, phi_tot_ext=p_e, G_in=G_i, G_out=G_o)\n", " f.solve_frap()\n", " f_i.append(f)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "profs = []\n", "for i in range(len(f_i)):\n", "# if i>2:\n", " profs.append([])\n", " for j in range(50):\n", " values=[]\n", " fs = fem_utils.load_time_point(f_i[i].name+'t_p_'+str(j)+'.h5',\n", " f_i[i].mesh)\n", " for n in ns:\n", " values.append([fs([4, 4, 0.5]+e*n) for e in eps])\n", " profs[i].append(np.mean(np.transpose(values), 1))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.savetxt('t_p.csv', profs, delimiter=',')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ft = f_i[1]\n", "meta_data = np.r_[ft.dt, ft.T, eps]\n", "np.savetxt('meta_data.csv', meta_data, delimiter=',')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(eps,np.transpose(profs)[:,:])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,50], [0,1.1], [1.5,2])\n", "plt.plot([np.mean(x)/f_i[0].phi_tot_int for x in profs[0]],\n", " lw=2, label='d=0.5', ls='-')\n", "plt.plot([np.mean(x)/f_i[1].phi_tot_int for x in profs[1]],\n", " lw=2, label='d=1', ls='--')\n", "plt.plot([np.mean(x)/f_i[2].phi_tot_int for x in profs[2]],\n", " lw=2, label='d=1.5', ls=':')\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "plt.title('$P=99}$', size=12)\n", "plt.gca().get_yaxis().set_visible(False)\n", "save_nice_fig(fol+'Fig3/tot_recov_neighbours_bad.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', r'av. volume fraction $\\bar{\\phi}_\\mathrm{u}$', [0,30], [0,1.1], [1.5,2])\n", "plt.plot([np.mean(x)/f_i[3].phi_tot_int for x in profs[3]],\n", " lw=2, label='$d=0.5 \\,\\mathrm{\\mu m}$', ls='-')\n", "plt.plot([np.mean(x)/f_i[4].phi_tot_int for x in profs[4]],\n", " lw=2, label='$d=1 \\,\\mathrm{\\mu m}$', ls='--')\n", "plt.plot([np.mean(x)/f_i[5].phi_tot_int for x in profs[5]],\n", " lw=2, label='$d=1.5 \\,\\mathrm{\\mu m}$', ls=':')\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "plt.title('$P=9$', size=12)\n", "plt.legend(prop={'size': 9}, frameon=False, loc=(0.22, 0.025),\n", " handletextpad=0.4, labelspacing=0.2)\n", "save_nice_fig(fol+'Fig3/tot_recov_neighbours_good.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ml = np.loadtxt('/Users/hubatsch/Desktop/DropletFRAP/matlab_fit.csv',\n", " delimiter=',')\n", "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'volume fraction $\\phi_\\mathrm{u}$', [0,0.25], [0,1.1], [3.8,2])\n", "l_sim = plt.plot(eps, np.transpose(profs[0])[:,::8]/f_i[0].phi_tot_int, c=green,\n", " lw=4.5, alpha=0.7)\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "l_fit = plt.plot(np.linspace(0, 0.23, 100), np.transpose(ml)[:,::8], c='k', lw=1.5)\n", "plt.legend([l_sim[0], l_fit[0]], ['Model, eq. (6)', 'Fit, eq. (1)'], prop={'size': 9}, frameon=False)\n", "save_nice_fig(fol+'Fig3/spat_recov_neighbours.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Define parameters for all simulations\n", "point_list = [[4, 4, 0.5], [4, 4, 1.5], [4, 4, 4],\n", " [4, 4, 0.5], [4, 4, 1.5], [4, 4, 4]]\n", "me = ['coverslip.xml', '1_5.xml', 'symmetric.xml',\n", " 'coverslip.xml', '1_5.xml', 'symmetric.xml']\n", "phi_tot_int = [.99, .99, .99, .9, .9, .9]\n", "phi_tot_ext = [.01, .01, .01, .1, .1, .1]\n", "G_in = [1, 1, 1, .1, .1, .1]\n", "G_out = [1, 1, 1, 0.99/0.9, 0.99/0.9, 0.99/0.9]\n", "f_cs = []\n", "\n", "# Zip all parameters, iterate\n", "for p, m, p_i, p_e, G_i, G_o in zip(point_list, me, phi_tot_int,\n", " phi_tot_ext, G_in, G_out):\n", " f_cs.append(frap_solver(p, 'Meshes/single_drop_'+m,\n", " name='FRAP_'+m[:-4]+str(G_i), T=60, phi_tot_int=p_i,\n", " phi_tot_ext=p_e, G_in=G_i, G_out=G_o))\n", " f_cs[-1].solve_frap()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "z = [0.5, 1.5, 4, 0.5, 1.5, 4]\n", "profs_cs = []\n", "for i, z_i in enumerate(z):\n", " profs_cs.append([])\n", " for j in range(50):\n", " values=[]\n", " fs = fem_utils.load_time_point(f_cs[i].name+'t_p_'+str(j)+'.h5',\n", " f_cs[i].mesh)\n", " for n in ns:\n", " values.append([fs([4, 4, z_i]+e*n) for e in eps])\n", " profs_cs[i].append(np.mean(np.transpose(values), 1))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', '', [0,50], [0,1.1], [1.5,2])\n", "ls = ['-', '--', '-.']\n", "for i, f in enumerate(f_cs[0:3]):\n", " plt.plot([np.mean(x)/f.phi_tot_int for x in profs_cs[i]],\n", " label='d='+str(z[i]), ls=ls[i], lw=2)\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "plt.title('$P=99$', size=12)\n", "plt.gca().get_yaxis().set_visible(False)\n", "save_nice_fig(fol+'Fig3/tot_recov_cs_bad.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', r'av. volume fraction $\\bar{\\phi}_\\mathrm{u}$', [0,30], [0,1.1], [1.5,2])\n", "ls = ['-', '--', '-.']\n", "for i, f in enumerate(f_cs[3:]):\n", " plt.plot([np.mean(x)/f.phi_tot_int for x in profs_cs[i+3]],\n", " label='$h=$'+str(z[i])+'$\\,\\mathrm{\\mu m}$', lw=2, ls=ls[i])\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "plt.title('$P=9$', size=12)\n", "plt.legend(prop={'size': 9}, frameon=False, loc=(0.22, 0.025),\n", " handletextpad=0.4, labelspacing=0.2)\n", "save_nice_fig(fol+'Fig3/tot_recov_cs_good.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "ml_neigh = np.loadtxt('/Users/hubatsch/Desktop/DropletFRAP/matlab_fit_neigh.csv',\n", " delimiter=',')\n", "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'volume fraction $\\phi_\\mathrm{u}$', [0,0.25], [0,1.1], [3.8,2])\n", "l_sim = plt.plot(eps, np.transpose(profs_cs[0])[:,::8]/f_cs[0].phi_tot_int, c=green,\n", " lw=4.5, alpha=0.7)\n", "plt.plot(range(0, 100), np.ones(100), linestyle='--', color='k')\n", "l_fit = plt.plot(np.linspace(0, 0.23, 100), np.transpose(ml_neigh)[:,::8],\n", " ls='-', c='k', lw=1)\n", "plt.legend([l_sim[0], l_fit[0]], ['Model, eq. (6)', 'Fit, eq. (1)'], frameon=False, loc=(0.63, 0.0))\n", "save_nice_fig(fol+'Fig3/spat_recov_coverslip.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 1: Fitting $D_{in}$ and data analysis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: comparison PGL-3 diffusivity with Louise's viscosity**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "louise = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Louise.csv')\n", "lars = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Lars.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax1 = plt.subplots()\n", "ax2 = ax1.twinx()\n", "plt.sca(ax1)\n", "sns.lineplot(x=\"conc\", y=\"D\", data=lars, color=sns.color_palette()[1])\n", "sns.scatterplot(x=\"conc\", y=\"D\", data=lars, color=sns.color_palette()[1], alpha=0.7)\n", "plt.xlabel('$c_\\mathrm{salt}\\; [\\mathrm{mM}]$')\n", "plt.ylabel('$D_{\\mathrm{in}} \\;[\\mathrm{\\mu m^2\\cdot s^{-1}}]$', color=red)\n", "plt.yticks([0, 0.05, 0.1], rotation=90, color = pa[1])\n", "plt.ylim(0, 0.1)\n", "ax1.set_zorder(1) \n", "ax1.patch.set_visible(False)\n", "plt.sca(ax2)\n", "sns.lineplot(x=\"conc\", y=\"vis\", data=louise, color=grey, label='data from Jawerth \\net al. 2018')\n", "nice_fig('c_\\mathrm{salt} [\\mathrm{mM}]', '$\\eta^{-1} \\;[Pa\\cdot s]^{-1}$', [40,190], [0,7.24], [3*2.3,3*2])\n", "plt.yticks(color = grey)\n", "plt.ylabel('$\\eta^{-1} \\;[\\mathrm{Pa\\cdot s}]^{-1}$ ', color = grey)\n", "plt.legend(frameon=False, fontsize=9)\n", "# save_nice_fig(fol+'Fig1/Lars_vs_Louise.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Ratio between $D_{out}$ for maximum and minimum salt concentrations for PGL-3**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "lars[lars.conc==180].mean()/lars[lars.conc==50].mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel:coacervates PLYS/ATP, CMD/PLYS**m" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "coacervates = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig1/Coacervates.csv')\n", "sns.stripplot(data=coacervates, palette=[green, blue], jitter=0.35,**{'marker': '.', 'size': 10})\n", "ax = sns.barplot(data=coacervates, palette=pa, facecolor=(1, 1, 1, 0), edgecolor=[pa[0], pa[2]], capsize=.15, ci='sd', errwidth=1.5)\n", "plt.setp(ax.lines, zorder=100)\n", "nice_fig(None, '$D_\\mathrm{in} \\;[\\mathrm{\\mu m^2\\cdot s^{-1}}]$', [None, None], [0,6], [2.3,2])\n", "plt.xticks([0,1], ('CMD/PLYS', 'PLYS/ATP'), rotation=20)\n", "ax.get_xticklabels()[0].set_color(green)\n", "ax.get_xticklabels()[1].set_color(blue)\n", "plt.xlim(-0.7, 1.7)\n", "# save_nice_fig(fol+'Fig1/Coacervates.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: time course CMD**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "CMD = np.loadtxt(fol+'/Fig1/CMD_timecourse.csv', delimiter=',')\n", "CMD_fit = np.loadtxt(fol+'/Fig1/CMD_fit_timecourse.csv', delimiter=',')\n", "l_sim = plt.plot(CMD[:, 0], CMD[:, 1::2], '.', c=green)\n", "l_fit = plt.plot(CMD_fit[:, 0], CMD_fit[:, 1::2], '-', lw=1, c='k')\n", "plt.plot(range(0, 10), np.ones(10)*np.min(CMD_fit[:, 1]), linestyle='--', color=grey, lw=1.5)\n", "plt.legend([l_sim[0], l_fit[0]], ['data', 'fit'], ncol=2, loc=(0, 0.85), frameon=False)\n", "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)', [0,np.max(CMD_fit[:, 0])], [0,0.6], [2.3,2])\n", "save_nice_fig(fol+'Fig1/CMD_spat_recov.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: time course PGL-3**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PGL = np.loadtxt(fol+'/Fig1/PGL_timecourse.csv', delimiter=',')\n", "PGL_fit = np.loadtxt(fol+'/Fig1/PGL_fit_timecourse.csv', delimiter=',')\n", "l_sim = plt.plot(PGL[:, 0], PGL[:, 1::2], '.', c=red)\n", "l_fit = plt.plot(PGL_fit[:, 0], PGL_fit[:, 1::2], '-', lw=1, c='k')\n", "plt.plot(range(0, 10), np.ones(10)*np.min(PGL_fit[:, 1]), linestyle='--', color=grey, lw=1.5)\n", "plt.legend([l_sim[0], l_fit[0]], ['data', 'fit'], ncol=2, loc=(0.015, 0.865), frameon=False)\n", "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)', [0,np.max(PGL_fit[:, 0])], [0, 0.6], [2.3,2])\n", "save_nice_fig(fol+'Fig1/PGL_spat_recov.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: time course total intensity**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PGL = np.loadtxt(fol+'/Fig1/PGL_tot.csv', delimiter=',')\n", "ATP = np.loadtxt(fol+'/Fig1/ATP_tot.csv', delimiter=',')\n", "CMD = np.loadtxt(fol+'/Fig1/CMD_tot.csv', delimiter=',')\n", "# fig, ax1 = plt.subplots()\n", "# ax2 = ax1.twiny()\n", "# plt.sca(ax1)\n", "nice_fig('$t/T_\\mathrm{max}$', 'intensity (a.u)', [0,200], [0,0.62], [2.3,2])\n", "# plt.sca(ax2)\n", "# ax2.tick_params(axis=\"x\",direction=\"in\")\n", "plt.plot(PGL[::10, 0]/np.max(PGL[1:-1:2, 0]), PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)\n", "plt.plot(ATP[::1, 0]/np.max(ATP[:, 0]), ATP[::1,1], '.', label='PLYS/ATP', c='#FF508A', markersize=3, alpha=0.7, lw=2)\n", "plt.plot(CMD[::5, 0]/np.max(CMD[:, 0]), CMD[::5,1], '.', label='CMD/PLYS', c='#7F2845', markersize=3, alpha=0.7, lw=2)\n", "plt.legend(frameon=False, fontsize=9)\n", "plt.xlim(0, 1)\n", "save_nice_fig(fol+'Fig1/tot_recov.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,200], [0,0.62], [1,2])\n", "# plt.sca(ax2)\n", "# ax2.tick_params(axis=\"x\",direction=\"in\")\n", "plt.plot(PGL[::10, 0], PGL[::10,1], '.', label='PGL-3', c='#CC406E', markersize=3, alpha=0.7, lw=2)\n", "plt.legend(frameon=False, fontsize=9, handletextpad=0.4)\n", "save_nice_fig(fol+'Fig1/tot_recov_PGL.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nice_fig('time $t$ [s]', 'intensity (a.u)', [0,10], [0,0.62], [1,2])\n", "plt.plot(ATP[::1, 0], ATP[::1,1], '.', label='PLYS/ATP', c='#FF508A', markersize=3, alpha=0.7, lw=2)\n", "plt.plot(CMD[::5, 0], CMD[::5,1], '.', label='CMD/PLYS', c='#7F2845', markersize=3, alpha=0.7, lw=2)\n", "plt.legend(frameon=False, fontsize=9, loc=(-0.08, 0), handletextpad=0)\n", "plt.yticks([]); plt.ylabel('')\n", "save_nice_fig(fol+'Fig1/tot_recov_coac.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 2: model sketches" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = np.loadtxt(fol+'Fig2/model_timecourse.csv', delimiter=',')\n", "l_fit = plt.plot(model[:, 0], model[:, 1:], '-', lw=1,\n", " c=green, label='Simulation')\n", "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n", " [0,1], [2.3,2])\n", "plt.plot(model[:, 0], model[:, -1], c=green, lw=2)\n", "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n", "# plt.annotate('$t \\longrightarrow \\infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)\n", "# plt.annotate('$t \\longrightarrow \\infty$', (0.97, 0.89), (1.3,0.85), fontsize=12)\n", "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n", "save_nice_fig(fol+'Fig2/full_time_course.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "l_fit = plt.plot(model[:, 0], model[:, 2], '-', lw=1,\n", " c=dark_grey, label='Simulation')\n", "plt.plot(model[:, 0], model[:, -1], 'k', lw=2)\n", "nice_fig('radial distance $r/R$', 'volume fraction $\\phi_\\mathrm{u}$', [0, 2],\n", " [0,1], [2.3,2])\n", "plt.title('$t=0.22 \\;R^2/D_\\mathrm{in}$')\n", "plt.text(0.75, 0.18, '$\\phi_\\mathrm{u}$', fontsize=10)\n", "plt.gca().fill_between(model[:, 0], 0, model[:, 2], color=green)\n", "plt.gca().fill_between(model[:, 0], model[:, -1], model[:, 2], color=grey)\n", "plt.annotate('$\\phi_\\mathrm{tot}$', (1, 0.5), (1.5,0.5), fontsize=10)\n", "save_nice_fig(fol+'Fig2/snap_shot.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 4: Obtaining info about outside: experiments." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: data time course with full model.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PLYS = np.loadtxt(fol+'Fig4/PLYS_timecourse.csv', delimiter=',')\n", "PLYS_fit = np.loadtxt(fol+'Fig4/PLYS_fit_timecourse.csv', delimiter=',')\n", "l_data = plt.plot(PLYS[:, 0], PLYS[:, 1:], c=blue, lw=2,\n", " label='Experiment')\n", "l_fit = plt.plot(PLYS_fit[:, 0], PLYS_fit[:, 1:], '-', lw=1,\n", " c=dark_grey, label='Simulation')\n", "nice_fig('radial distance $r$ [$\\mathrm{\\mu m}$]', 'intensity (a.u)', [0, 2.4*np.max(PLYS[:, 0])],\n", " [0,0.7], [2.3,2])\n", "plt.legend([l_data[0], l_fit[0]], ['ATP/PLYS', 'Full model'], frameon=False,\n", " fontsize=9, handletextpad=0.4, handlelength=0.8)\n", "save_nice_fig(fol+'Fig4/PLYS_spat_recov_new.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Experimental Partition coefficient vs $D_{out}$ for CMD**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PLYS = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PLYS.csv')\n", "CMD = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/CMD.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax1 = plt.subplots()\n", "plt.sca(ax1)\n", "sns.lineplot(x=\"P\", y=\"D_out\", data=CMD, color=green, ci='sd')\n", "sns.lineplot(x=\"P\", y=\"D_out\", data=PLYS, color=blue, ci='sd')\n", "plt.plot(np.logspace(1, 2, 10), 2*np.logspace(1, 2, 10), '--', c='grey')\n", "ax1.set_yscale('log')\n", "ax1.set_xscale('log')\n", "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out} \\;[\\mathrm{\\mu m^2s^{-1}}]$', [1,100], [0.1,100], [2.3,2])\n", "plt.legend(['CMD/PLYS', 'PLYS/ATP'], frameon=False, fontsize=9, loc=(0.48,0.))\n", "plt.text(1.02, 1.7, '$D_\\mathrm{in, PLYS}$')\n", "plt.text(1.02, 6, '$D_\\mathrm{in, CMD}$')\n", "plt.xticks([1, 10, 100]);\n", "save_nice_fig(fol+'Fig4/PLYS_CMD.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Experimental Partition coefficient vs $D_out$ for PGL-3**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "PGL_50 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_50.csv')\n", "PGL_60 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_60.csv')\n", "PGL_75 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_75.csv')\n", "PGL_90 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_90.csv')\n", "PGL_100 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_100.csv')\n", "PGL_120 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_120.csv')\n", "PGL_150 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_150.csv')\n", "PGL_180 = pd.read_csv('/Users/hubatsch/Desktop/DropletFRAP/Latex/Figures/Fig4/PGL_180.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax1 = plt.subplots()\n", "plt.sca(ax1)\n", "temp = sns.color_palette()\n", "sns.set_palette(sns.color_palette(\"Oranges\", 9))\n", "l50 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_50, color=sns.color_palette()[1], ci=None)\n", "l60 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_60, color=sns.color_palette()[2], ci=None)\n", "l75 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_75, color=sns.color_palette()[3], ci=None)\n", "l90 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_90, color=sns.color_palette()[4], ci=None)\n", "leg1 = plt.legend(['50 mM', '60 mM', '75 mM', '90 mM'], labelspacing=0.3,\n", " loc=(0.65, 0.0), handletextpad=0.4, handlelength=0.5, frameon=0)\n", "l100 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_100, color=sns.color_palette()[5], ci=None)\n", "l120 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_120, color=sns.color_palette()[6], ci=None)\n", "l150 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_150, color=sns.color_palette()[7], ci=None)\n", "l180 = sns.lineplot(x=\"P\", y=\"D_out\", data=PGL_180, color=sns.color_palette()[8], ci=None)\n", "plt.plot(np.logspace(0, 3, 10), 0.07*np.logspace(0, 3, 10), '--', c='grey')\n", "# plt.plot(np.logspace(2, 3, 10), 30*np.ones(10), '--', c='m', lw=2)\n", "ax1.set_yscale('log')\n", "ax1.set_xscale('log')\n", "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out} \\;[\\mathrm{\\mu m^2 s^{-1}}]$', [1,1000], [0.0003,200], [2.3,2])\n", "plt.xticks([1, 10, 100, 1000]);\n", "plt.legend(loc=1)\n", "plt.legend(['50 mM', '60 mM', '75 mM', '90 mM', '100 mM', '120 mM', '150 mM', '180 mM'], labelspacing=0.3,\n", " loc=(0, 0.56), handletextpad=0.4, handlelength=0.5, frameon=0)\n", "plt.gca().add_artist(leg1)\n", "save_nice_fig(fol+'Fig4/PGL-3.pdf')\n", "sns.set_palette(temp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Figure 5: Obtaining info about outside: theory." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Partition coefficient vs. $D_{out}$, showcasing four different simulation start cases.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "P_Do = np.loadtxt(fol+'/Fig4/Part_vs_Do.csv', delimiter=',')\n", "P = [5, 150, 5, 150]\n", "D_o = [0.1, 0.1, 1, 1]\n", "plt.gca().set_prop_cycle(None)\n", "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out}$ [$\\mathrm{\\mu m^2/s}$]', [0.9,320], [0.000001,340], [2.3,2])\n", "lines = plt.loglog(P_Do[0, :], P_Do[1:, :].transpose())\n", "plt.plot(P_Do[0, :], P_Do[0, :], '--', c='grey')\n", "plt.legend([lines[2], lines[0], lines[3], lines[1]],\n", " ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,\n", " title=r'$D_\\mathrm{out}$/P [$\\mathrm{\\mu m^2/s}$]:', columnspacing=0.5, labelspacing=0.3,\n", " loc=(0.4, 0), handletextpad=0.4, handlelength=0.5)\n", "plt.gca().set_prop_cycle(None)\n", "plt.plot(P[0], D_o[0], 'd')\n", "plt.plot(P[1], D_o[1], 'd')\n", "plt.plot(P[2], D_o[2], 'd')\n", "plt.plot(P[3], D_o[3], 'd')\n", "plt.annotate('$D_{out}$/P = 1 $\\mathrm{\\mu m^2/s}$', [1,40], c='grey')\n", "plt.xticks([1, 10, 100]);\n", "save_nice_fig(fol+'Fig4/D_vs_P.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Cost function**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "P_Cost = np.loadtxt(fol+'/Fig4/Part_vs_Cost.csv', delimiter=',')\n", "nice_fig('Partition coefficient $P$', 'Cost function [a.u.]', [0.9,320], [0.000000001,0.01], [2.3,2])\n", "lines = plt.loglog(P_Cost[0, :], P_Cost[1:, :].transpose())\n", "plt.legend([lines[2], lines[0], lines[3], lines[1]],\n", " ['0.2', '0.02', '0.0067', '0.00067'], ncol=2, frameon=False,\n", " title=r'$D_\\mathrm{out}$/P set to:', columnspacing=0.5, labelspacing=0.3,\n", " loc=(0.081, 0), handletextpad=0.4, handlelength=0.5)\n", "plt.xticks([1, 10, 100]);\n", "save_nice_fig(fol+'Fig4/D_vs_Cost.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Valley in parameter space**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "con = np.loadtxt(fol+'Fig4/Valley.csv', delimiter=',')\n", "levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))\n", "nice_fig('Partition coefficient $P$', '$D_\\mathrm{out} \\;[\\mu m^2 s^{-1}]$', [1, 3], [-2,1], [2.3,2])\n", "CS = plt.contourf(np.log10(con[:, 0]), np.log10(con[:, 1]), np.log10(con[:, 2:]), levels=levels, cmap=cm.coolwarm)\n", "plt.plot(np.log10(150), np.log10(10**-1), 'y*', label='Initial Simul.', markersize=6)\n", "le = plt.legend(loc=(0, 0.83), frameon=False, handletextpad=0.4)\n", "le.get_texts()[0].set_color('white')\n", "plt.xticks([1, 2, 3], ['$10^1$', '$10^2$', '$10^3$'])\n", "plt.yticks([-2, -1, 0, 1], ['$10^{-2}$', '$10^{-1}$', '$10^0$', '$10^1$'])\n", "plt.tick_params('x', pad=5)\n", "fig1 = plt.gcf()\n", "clb = fig1.colorbar(CS, ticks=[0, -2, -4, -6])\n", "clb.ax.set_title('Cost')\n", "save_nice_fig(fol+'Fig4/Sim_D_out_P.pdf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Panel: Zoom in for valley in parameter space**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "levels = MaxNLocator(nbins=15).tick_values(np.log10(con[:, 2:].min()), np.log10(con[:, 2:].max()))\n", "nice_fig('Partition coefficient $P$', '', [1.9, 2.4], [-1.5,-0.5], [2.3,2])\n", "CS = plt.contourf(np.log10(con[16:-27, 0]), np.log10(con[16:-27, 1]),\n", " np.log10(con[16:-27, 2+16:-27]), levels=levels,\n", " cmap=cm.coolwarm, vmax=-1.5)\n", "plt.plot(np.log10(150), np.log10(10**-1), 'y*', label='Initial Simul.', markersize=6)\n", "le = plt.legend(loc=(0, 0.83), frameon=False, handletextpad=0.4)\n", "le.get_texts()[0].set_color('white')\n", "plt.xticks([2, 2.25], ['$10^2$', '$10^{2.25}$'])\n", "plt.yticks([-1.5, -1, -0.5], ['$10^{-1.5}$', '$10^{-1}$', '$10^{-0.5}$'])\n", "plt.tick_params('x', pad=5)\n", "fig1 = plt.gcf()\n", "clb = fig1.colorbar(CS, ticks=[-2, -4, -6])\n", "clb.ax.set_title('Cost')\n", "save_nice_fig(fol+'Fig4/Sim_D_out_P_inset.pdf')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 4 }