% Numerical solution of ternary FRAP model with solvent, bleached and % unbleached species. Model is assumed to be equilibrated % (bleached+unbleached=const.=pt). Then bleached species initial % conditions are introduced. Integration of model via pdepe. pa = '/Users/hubatsch/ownCloud/Dropbox_Lars_Christoph/DropletFRAP/FRAP_paper/'; a = -1; b = 0.025; u0 = 0.05; e = 0.4; e_g0 = 0.16; o_g0 = 0.2; %% g0 = gamma0(x, a, b, e_g0, o_g0); pt = phi_tot(x, a, b, e, u0); %% Make useful mesh (by inverting the tanh profile and using this as spacing) x = linspace(-a-1, -a+1, 3000); g = gamma0(x, a, 1*b, e_g0, o_g0); g_unique = unique(g); x = linspace(g_unique(1), g_unique(end-1), 300); g_inv = spacing(x, a, 2*b, e_g0, o_g0); g_inv = g_inv(2:end-1); x = [linspace(-a-1, g_inv(2), 30), g_inv(3:end-2), ... linspace(g_inv(end-1), -a+1, 30), linspace(-a+1.1, 300, 300)]; %% Solve pde tic t = linspace(0.001, 0.5, 250); fh_ic = @(x) flory_ic(x, a, u0); fh_bc = @(xl, ul, xr, ur, t) flory_bc(xl, ul, xr, ur, t, u0); fh_pde = @(x, t, u, dudx) flory_hugg_pde(x, t, u, dudx, a, b, e, c, u0,... e_g0, o_g0); sol = pdepe(2, fh_pde, fh_ic, fh_bc, x, t); toc %% Plotting figure(1); hold on; for i = 1:length(t) cla; xlim([-a-1, -a+3]); ylim([0, 0.7]); ax = gca; ax.FontSize = 16; xlabel('position'); ylabel('volume fraction'); plot(x, phi_tot(x, a, b, e, u0), 'LineWidth', 2, 'LineStyle', '--'); plot(x, sol(i, :), 'LineWidth', 2); pause(); % % print([num2str(i),'.png'],'-dpng') end %% Figures % Time course figure; hold on; xlim([49, 53]); ylim([0, 0.5]); ax = gca; ax.FontSize = 16; xlabel('position'); ylabel('volume fraction'); plot(x, sol(1:2:300, :), 'LineWidth', 2, 'Color', [135/255 204/255 250/255]); plot(x, phi_tot(x, a, b, e, u0), 'LineWidth', 4, 'LineStyle', '--', 'Color',... [247/255, 139/255, 7/255]); % print([pa, 'ternary_time_course'], '-depsc'); %% Plot and check derivatives of pt figure; hold on; x = linspace(40, 60, 100000); plot(x, phi_tot(x, a, b, e, u0)); plot(x, gradient_analytical(x, a, b, e)); plot(x(1:end-1)+mean(diff(x))/2, ... diff(phi_tot(x, a, b, e, u0)/mean(diff(x)))); plot(x, gamma0(x, a, b, e)); figure; plot(gamma0(x, a, b, e), spacing(gamma0(x, a, b, e), a, b, e)); %% Function definitions for pde solver function [c, f ,s] = flory_hugg_pde(x, t, u, dudx, a, b, e, c_p, u0,... e_g0, o_g0) % Solve with full ternary model. Analytical derivatives. % pt ... phi_tot % gra_a ... analytical gradient of phi_tot pt = phi_tot(x, a, b, e, u0); gra_a = gradient_analytical(x, a, b, e); g0 = gamma0(x, a, b, e_g0, o_g0); c = 1; f = g0*(1-pt)/pt*(pt*dudx-u*gra_a); s = 0; end function u = flory_ic(x, a, u0) % FRAP initial condition if x < -a; u = 0.0; else; u = u0; end % Peak outside initial condition % if (x < -a+0.2) && (x > -a+0.1); u = 10; else; u = 0; end % u = 0.3; % u = phi_tot(x, -50, 1); end function [pl,ql,pr,qr] = flory_bc(xl, ul, xr, ur, t, u0) pl = 0; ql = 1; % % No flux % pr = 0;%ur - 0.01; % qr = 1; % Dirichlet BC pr = ur - u0; qr = 0; end function g0 = gamma0(x, a, b, e_g0, o_g0) g0 = e_g0*(tanh((x+a)/b)+1)/2+o_g0; end function sp = spacing(x, a, b, e_g0, o_g0) sp = b*atanh(2/(e_g0)*(x-o_g0)-1)-a; end function p = phi_tot(x, a, b, e, u0) p = e*(tanh(-(x+a)/b)+1)/2+u0; end function grad = gradient_analytical(x, a, b, e) grad = -e*(1-tanh(-(x+a)/b).^2)/b*0.5; end