cycle_coalescence_asymmetry.ipynb 11 KB
Newer Older
felixk1990's avatar
felixk1990 committed
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
Felix's avatar
Felix committed
5
   "execution_count": 1,
felixk1990's avatar
felixk1990 committed
6
7
8
   "metadata": {},
   "outputs": [
    {
felixk1990's avatar
felixk1990 committed
9
     "data": {
Felix's avatar
Felix committed
10
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAaCElEQVR4nO3df3Dcd33n8ecL2SkiDlHTEE0iu2fDGOVSQjAWMcVcK4fm5NBSu2kyTTAppMl5Mo0NPYqLddDSm3YatS4cpE1wPcEJHD3UAzzCJJ4oGRyFUkiwjZIIOwiMgcTrHCGAnMgIYov3/bGrZCWv5LWk7652P6/HjEe73+/nu5/3hw372u+P/XwVEZiZWbpeUu0CzMysuhwEZmaJcxCYmSXOQWBmljgHgZlZ4uZVu4DTde6558bixYunte2xY8c488wzZ7egOc5jToPHnIaZjHnfvn3PRMQrSq2ruSBYvHgxe/funda2fX19tLe3z25Bc5zHnAaPOQ0zGbOkH0y2zoeGzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwSl1kQSNou6WlJ35xkvSTdKumgpMckvT6rWi7/SB+LN9/DQO4oizffw+Uf6cuqq5N8sGeAV3XuYvHme3hV5y4+2DNQ0X4Hckcr2i9AT3+OlV27WbL5HlZ27aanP1fRfgdyRyvab3HfKY3ZKifr9znLPYK7gNVTrL8CWFr4tx74eBZFXP6RPr7z9LFxy77z9LGKhMEHewb49ENPMFqY4XU0gk8/9ETmH8rV6hfy/8F27hggNzRCALmhETp3DGT+AVXcLxXsd2LfqYzZKqcS73NmQRARXwZ+MkWTNcCnIu8hoEnS+bNdx8QQONXy2fSZh588reW13i/Alt5BRo6Pjls2cnyULb2DddlvNfuu5pitcirxPivL+xFIWgzcHRGvKbHubqArIr5SeP4l4P0RcdKvxSStJ7/XQHNz8/Lu7u6yaxjIHX3hcXMj/HDkxXUXt5xd9utMR3HfE2XZt8fsMWc95rlgeHiYBQsWVLuMzM3W+7xq1ap9EdFWal01f1msEstKplJEbAO2AbS1tcXp/LLuXZvveeHxn198gg8PvDjk768r/3Wm44bOXS8cninWIPHdDPsu7rd4zFn3C/CBrt0v7MIWa2lqZGOGfRf3WzzmrPud2Hexeh7zXJDKL4sr8T5X86qhw8CioucLgSOz3cnS80rPyzHZ8tl07YpFp7W81vsF2NTRSuP8hnHLGuc3sKmjtS77rWbf1RyzVU4l3udq7hHsBDZI6gZWAEcj4qnZ7uT+97afdMJ46Xlncv9722e7q5P87dqLgfyx+dEIGiSuXbHoheWV6BeoWL8Aa5e1APnjmkeGRrigqZFNHa0vLK9Ev/AcLRXqd2LfqYzZKqci73NEZPIP+AzwFHCc/Lf/G4CbgJsK6wXcBnwXGADaynnd5cuXx3Q98MAD0962VnnMafCY0zCTMQN7Y5LP1cz2CCLi2lOsD+DmrPo3M7Py+JfFZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWBmljgHgZlZ4hwEVjd6+nOs7NrNQO4oK7t209Ofq3ZJZjWhmvcsNps1Pf05OncMMHJ8FBZBbmiEzh0DAL6Hr9kpeI/A6sKW3sF8CBQZOT5auOG3mU3FQWB14cjQyGktN7MXOQisLlzQ1Hhay83sRQ4CqwubOlppnN8wblnj/AY2dbRWqSKz2uGTxVYXxk4I588JPEdLUyObOlp9otisDA4Cqxtrl7WwdlkLfX19bFzXXu1yzGqGDw2ZmSXOQWBmljgHgZlZ4nyOwMysDD39Obb0DnJkaIQL6uxiBAeBmdkpjJvChPqbwsRBYGanrZ6/HZcy1RQm9TBuB4GZnZZ6/3ZcSr1PYZLpyWJJqyUNSjooaXOJ9WdL+qKkRyXtl3R9lvWY2cylOMFfvU9hklkQSGoAbgOuAC4CrpV00YRmNwMHIuISoB34sKQzsqrJzGau3r8dl1LvU5hkuUdwKXAwIg5FxPNAN7BmQpsAzpIkYAHwE+BEhjWZ2QzV+7fjUtYua+GWKy+mpakRAS1Njdxy5cV1cyhMEZHNC0tXAasj4sbC8+uAFRGxoajNWcBO4ELgLOCPIuKeEq+1HlgP0NzcvLy7u3taNQ0PD7NgwYJpbVurPOY0VHLMQyPHyf10hF8WfXa8RKLlVxtpapxfkRrA7/PpWrVq1b6IaCu1LsuTxSqxbGLqdACPAJcBrwLul/TvEfHsuI0itgHbANra2qK9vX1aBfX19THdbWuVx5yGSo95Llw15Pd59mQZBIeBRUXPFwJHJrS5HuiK/G7JQUnfI7938PUM6zKzGRqb4M/qQ5bnCPYASyUtKZwAvob8YaBiTwBvAZDUDLQChzKsyczMJshsjyAiTkjaAPQCDcD2iNgv6abC+q3A3wB3SRogfyjp/RHxTFY1mZnZyTL9QVlE7AJ2TVi2tejxEeC/ZlmDmZlNzbOPmpklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpY4B4GZWeLKCgJJ52RdiJmZVUe5ewQPS/qspLdKUqYVmZlZRZUbBK8GtgHXAQcl/Z2kV2dXlpmZVUpZQRB590fEtcCNwDuBr0t6UNJvTradpNWSBiUdlLR5kjbtkh6RtF/Sg9MahZmZTdu8chpJ+jXgHeT3CH4IbAR2Aq8DPgssKbFNA3AbcDlwGNgjaWdEHChq0wTcDqyOiCcknTeTwZiZ2ekrKwiArwH/G1gbEYeLlu+VtHWSbS4FDkbEIQBJ3cAa4EBRm7cDOyLiCYCIePp0ijczs5lTREzdIP/NfktEvPe0Xli6ivw3/RsLz68DVkTEhqI2HwXmA78BnAV8LCI+VeK11gPrAZqbm5d3d3efTikvGB4eZsGCBdPatlZ5zGnwmNMwkzGvWrVqX0S0lVp3yj2CiBiVdMk0+i11ddHE1JkHLAfeAjQCX5P0UER8e0IN28ifrKatrS3a29unUQ709fUx3W1rlcecBo85DVmNudxDQ49I2kn+fMCxsYURsWOKbQ4Di4qeLwSOlGjzTEQcA45J+jJwCfBtzMysIsoNgnOAHwOXFS0LYKog2AMslbQEyAHXkD8nUOwLwD9LmgecAawA/leZNZmZ2SwoNwjuiIj/KF4gaeVUG0TECUkbgF6gAdgeEfsl3VRYvzUiHpd0L/AY8MtCP9887VGYmdm0lRsE/wS8voxl40TELmDXhGVbJzzfAmwpsw4zM5tlUwZB4cdibwJeIan4qqGXk/+Wb2ZmNe5UewRnAAsK7c4qWv4scFVWRZmZWeVMGQQR8SDwoKS7IuIHks4sXOFjZmZ1otxJ5y6QdAB4HEDSJZJuz64sMzOrlHKD4KNAB/lLSImIR4HfyqgmMzOroLLvUBYRT05YNDrLtZiZWRWUe/nok5LeBISkM4B3UzhMZGZmta3cPYKbgJuBFvLTQryu8NzMzGpcuTemeSYi1kVEc0ScFxHviIgfZ12cmdlEPf05VnbtZiB3lJVdu+npz1W7pJpX7o1plpC/Gc3i4m0i4vezKcvM7GQ9/Tk6dwwwcnwUFkFuaITOHQMArF3WUuXqale55wh6gE8AXyQ/J5CZWcVt6R3Mh0CRkeOjbOkddBDMQLlB8POIuDXTSszMTuHI0MhpLbfylBsEH5P0IeA+4BdjCyPiG5lUZWZWwgVNjeRKfOhf0NRYhWrqR7lBcDH5G9dfxouHhoLx9ycwM8vUpo7WF88RFDTOb2BTR2sVq6p95QbBHwCvjIjnsyzGzGwqY+cBtvQOAs/R0tTIpo5Wnx+YoXKD4FGgCXg6u1LMzE5t7bIW1i5roa+vj43r2qtdTl0oNwiagW9J2sP4cwS+fNTMrMaVGwQfyrQKMzOrmrKCoHBfAiS9vNxtzMysNpT7y+L1wN8AI+SvGhL5q4ZemV1pZmZWCeV+u98E/EZEPJNlMWZmVnnlzj76XeBnWRZiZmbVUe4eQSfwVUkPM/6qoXdnUpWZmVVMuUHwL8BuYABPOmdmVlfKDYITEfHeTCsxM7OqKPccwQOS1ks6X9I5Y/8yrczMzCqi3D2Ctxf+dhYt8+WjZmZ1oNwflC3JuhAzM6uOsg4NSdor6U8lNWVcj5mZVVi55wiuAVqAvZK6JXVIUoZ1mZlZhZQVBBFxMCI+ALwa+D/AduAJSf/TJ43NzGpbuXsESHot8GFgC/B54CrgWfK/L5hsm9WSBiUdlLR5inZvkDQq6arySzczs9lQ7qRz+4Ah4BPA5ogY+3Xxw5JWTrJNA3AbcDlwGNgjaWdEHCjR7u+B3mmNwMzMZqTcy0evjohDpVZExJWTbHMpcHBsO0ndwBrgwIR2G8nvYbyhzFrMzGwWlRsEb5N0J/AccAewjPyewX1TbNMCPFn0/DCworiBpBby90O+jCmCoDAN9nqA5uZm+vr6yix7vOHh4WlvW6s85jR4zGnIaszlBsGfRMTHJHUArwCuB+4EpgqCUlcVxYTnHwXeHxGjU12EFBHbgG0AbW1t0d7eXmbZ4/X19THdbWuVx5wGjzkNWY253CAY+5R+K3BnRDxaxuWjh4FFRc8XAkcmtGkDugsvdS7wVkknIqKnzLrMzGyGyg2CfZLuA5YAnZLO4tSzkO4BlkpaAuTI/xbh7cUNin+xLOku4G6HgJlZZZUbBDcArwPmk/8Wfy5w11QbRMQJSRvIXw3UAGyPiP2Sbiqs3zrNms3MbBaVfY4AeA/5wzuPAG8Evgb801QbRcQuYNeEZSUDICLeVWYtZmY2i8r9Qdl7yF/V84OIWEX+qqEfZVaVmZlVTLlB8POI+DmApF+JiG8BrdmVZWZmlVLuoaHDhZlHe4D7Jf2Uk68AMjOzGlTu/Qj+oPDwryU9AJwN3JtZVWZmVjFlTzo3JiIejIidEfF8FgXZ7Ojpz7GyazcDuaOs7NpNT3+u2iWZ2RxV7qEhqyE9/Tk6dwwwcnwUFkFuaITOHQMArF3WUuXqzGyuOe09Apv7tvQO5kOgyMjxUbb0DlapIjObyxwEdejI0MhpLTeztDkI6tAFTY2ntdzM0uYgqEObOlppnN8wblnj/AY2dfinH2Z2Mp8srkNjJ4Tz5wSeo6WpkU0drT5RbGYlOQjq1NplLaxd1kJfXx8b17VXuxwzm8N8aMjMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxDkIzMwS5yAwM0ucg8DMLHEOAjOzxGUaBJJWSxqUdFDS5hLr10l6rPDvq5IuybKeaujpz7GyazdLNt/Dyq7d9PTnql2Smdk4md2zWFIDcBtwOXAY2CNpZ0QcKGr2PeC3I+Knkq4AtgErsqqp0nr6c3TuGGDk+CgAuaEROncMAPhG8mY2Z2S5R3ApcDAiDkXE80A3sKa4QUR8NSJ+Wnj6ELAww3oqbkvv4AshMGbk+ChbegerVJGZ2ckUEdm8sHQVsDoibiw8vw5YEREbJmn/PuDCsfYT1q0H1gM0Nzcv7+7unlZNw8PDLFiwYFrbTsdA7uik6y5uObsiNVR6zHOBx5wGj/n0rFq1al9EtJVal9mhIUAllpVMHUmrgBuAN5daHxHbyB82oq2tLdrb26dVUF9fH9Pddjo+0LWb3NDISctbmhrZuK4ydVR6zHOBx5wGj3n2ZHlo6DCwqOj5QuDIxEaSXgvcAayJiB9nWE/FbepopXF+w7hljfMb2NTRWqWKzMxOluUewR5gqaQlQA64Bnh7cQNJvw7sAK6LiG9nWEtVjJ0Q3tI7yJGhES5oamRTR6tPFJvZnJJZEETECUkbgF6gAdgeEfsl3VRYvxX4K+DXgNslAZyY7BhWrVq7rMUf/GY2p2W5R0BE7AJ2TVi2tejxjcBJJ4fNzKxy/MtiM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS5yDwMwscQ4CM7PEOQjMzBLnIDAzS1ymQSBptaRBSQclbS6xXpJuLax/TNLrs6zHKqOnP8fKrt0s2XwPK7t209Ofq3ZJZjaFeVm9sKQG4DbgcuAwsEfSzog4UNTsCmBp4d8K4OOFv1ajevpzdO4YYOT4KAC5oRE6dwwAsHZZSzVLM7NJZLlHcClwMCIORcTzQDewZkKbNcCnIu8hoEnS+RnWZBnb0jv4QgiMGTk+ypbewSpVZGanktkeAdACPFn0/DAnf9sv1aYFeKq4kaT1wHqA5uZm+vr6plXQ8PDwtLetVZUe8zWLnoNFpdY8V7E6/D6nwWOePVkGgUosi2m0ISK2AdsA2traor29fVoF9fX1Md1ta1Wlx/yBrt3khkZOWt7S1MjGdZWpw+9zGjzm2ZPloaHDjP9uuBA4Mo02VkM2dbTSOL9h3LLG+Q1s6mitUkVmdipZBsEeYKmkJZLOAK4Bdk5osxP448LVQ28EjkbEUxNfyGrH2mUt3HLlxbQ0NSLyewK3XHmxTxSbzWGZHRqKiBOSNgC9QAOwPSL2S7qpsH4rsAt4K3AQ+BlwfVb1WOWsXdbiD36zGpLlOQIiYhf5D/viZVuLHgdwc5Y1mJnZ1PzLYjOzxDkIzMwS5yAwM0ucg8DMLHHKn6+tHZJ+BPxgmpufCzwzi+XUAo85DR5zGmYy5v8UEa8otaLmgmAmJO2NiLZq11FJHnMaPOY0ZDVmHxoyM0ucg8DMLHGpBcG2ahdQBR5zGjzmNGQy5qTOEZiZ2clS2yMwM7MJHARmZolLJggkrZY0KOmgpM3VridrkhZJekDS45L2S3pPtWuqBEkNkvol3V3tWipFUpOkz0n6VuH9/s1q15QlSf+98N/0NyV9RtJLq11TFiRtl/S0pG8WLTtH0v2SvlP4+6uz0VcSQSCpAbgNuAK4CLhW0kXVrSpzJ4A/j4j/DLwRuDmBMQO8B3i82kVU2MeAeyPiQuAS6nj8klqAdwNtEfEa8lPcX1PdqjJzF7B6wrLNwJciYinwpcLzGUsiCIBLgYMRcSginge6gTVVrilTEfFURHyj8Pg58h8OdX2TAEkLgd8F7qh2LZUi6eXAbwGfAIiI5yNiqKpFZW8e0ChpHvAy6vSuhhHxZeAnExavAT5ZePxJYO1s9JVKELQATxY9P0ydfygWk7QYWAY8XOVSsvZR4C+AX1a5jkp6JfAj4M7CIbE7JJ1Z7aKyEhE54B+BJ4CnyN/V8L7qVlVRzWN3cSz8PW82XjSVIFCJZUlcNytpAfB54M8i4tlq15MVSb8HPB0R+6pdS4XNA14PfDwilgHHmKXDBXNR4Zj4GmAJcAFwpqR3VLeq2pdKEBwGFhU9X0id7k4WkzSffAj8a0TsqHY9GVsJ/L6k75M/9HeZpE9Xt6SKOAwcjoixvb3PkQ+GevU7wPci4kcRcRzYAbypyjVV0g8lnQ9Q+Pv0bLxoKkGwB1gqaYmkM8ifXNpZ5ZoyJUnkjxs/HhEfqXY9WYuIzohYGBGLyb+/uyOi7r8pRsT/A56U1FpY9BbgQBVLytoTwBslvazw3/hbqOOT4yXsBN5ZePxO4Auz8aKZ3rN4roiIE5I2AL3krzLYHhH7q1xW1lYC1wEDkh4pLPsfhftIW33ZCPxr4UvOIeD6KteTmYh4WNLngG+QvzKunzqdakLSZ4B24FxJh4EPAV3A/5V0A/lQvHpW+vIUE2ZmaUvl0JCZmU3CQWBmljgHgZlZ4hwEZmaJcxCYmSXOQWA1R9Li4hkZK9Rnn6STbhouqU3SrbPUx19Let9svFaWr2n1J4nfEViaJDVExGiWfUTEXmBvln2YZc17BFar5kn6pKTHCnPxvwxA0vcl/ZWkrwBXS/pvkvZIelTS54va3SXpVklflXRI0lVjLyzpLyQNFLbpKurzaklfl/RtSf+l0LZ97N4HhW/f2wt7D4ckvbvoNf+ycL+A+wtz6E/5LV3SqyTdK2mfpH+XdKGkswvje0mhzcskPSlpfqn2s/U/tNU/B4HVqlZgW0S8FngW+NOidT+PiDdHRDewIyLeEBFj8/TfUNTufODNwO+R/8Umkq4gP7XvisI2/1DUfl5EXAr8GflfeZZyIdBBfurzDxU+pNuAPyQ/A+yVwEmHmErYBmyMiOXA+4DbI+Io8Cjw24U2bwN6C3PunNS+jD7MAB8astr1ZET8R+Hxp8nfrOQfC8//rajdayT9LdAELCA/zciYnoj4JXBAUnNh2e8Ad0bEzwAiong++LGJ+/YBiyep656I+AXwC0lPA83kw+YLETECIOmLUw2sMGPsm4DP5qfTAeBXisb2R8AD5OdUuv0U7c1OyUFgtWri3CjFz48VPb4LWBsRj0p6F/m5W8b8ouixiv5ONu/KWPtRJv//TvFrjrUrNQ36VF4CDEXE60qs2wncIukcYDmwGzhzivZmp+RDQ1arfl0v3pv3WuArk7Q7C3iqMCX3ujJe9z7gT4rOJZwz40rztb1N0ksL395/d6rGhftGfE/S1YUaJOmSwrph4Ovkb095d0SMTtXerBwOAqtVjwPvlPQYcA7w8Una/SX5O7PdD3zrVC8aEfeS/9a9tzBr64wvvYyIPYXXfJT84aW9wNFTbLYOuEHSo8B+xt9a9d+AdzD+ENhU7c2m5NlHzSpA0oKIGC7saXwZWD92T2mzavM5ArPK2CbpIuClwCcdAjaXeI/AzCxxPkdgZpY4B4GZWeIcBGZmiXMQmJklzkFgZpa4/w8VewwwMdqd6QAAAABJRU5ErkJggg==\n",
felixk1990's avatar
felixk1990 committed
11
12
13
14
15
16
17
18
      "text/plain": [
       "<Figure size 432x288 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
felixk1990's avatar
felixk1990 committed
19
20
21
    }
   ],
   "source": [
Felix's avatar
Felix committed
22
    "import test as cat\n",
felixk1990's avatar
felixk1990 committed
23
24
    "import networkx as nx\n",
    "import matplotlib.pyplot as plt\n",
Felix's avatar
Felix committed
25
26
    "import cycle_analysis.cycle_tools_coalescence as ctc\n",
    "import cycle_analysis.test as cat\n",
felixk1990's avatar
felixk1990 committed
27
    "\n",
felixk1990's avatar
felixk1990 committed
28
29
    "# generate a dummy graph for testing\n",
    "# put an edge weight distribution on the system, available are random/gradient/bigradient/nested_square\n",
Felix's avatar
Felix committed
30
    "n=7\n",
Felix's avatar
Felix committed
31
    "G=nx.grid_graph(( n,n,1))\n",
Felix's avatar
Felix committed
32
    "G=cat.generate_pattern(G,'random')\n",
felixk1990's avatar
felixk1990 committed
33
34
35
36
37
    "\n",
    "weights=[G.edges[e]['weight'] for e in G.edges()]\n",
    "pos=nx.get_node_attributes(G,'pos')\n",
    "\n",
    "# merge all shortest cycles and create merging tree, then calc asymmetry of the tree's branches\n",
felixk1990's avatar
felixk1990 committed
38
    "T=ctc.coalescence()\n",
Felix's avatar
Felix committed
39
    "minimum_basis=T.construct_networkx_basis(G)\n",
felixk1990's avatar
felixk1990 committed
40
    "cycle_tree=T.calc_cycle_coalescence(G,minimum_basis)\n",
Felix's avatar
Felix committed
41
    "dict_asymmetry=T.calc_tree_asymmetry()\n",
felixk1990's avatar
felixk1990 committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
    "\n",
    "# plot branching asymmetry in dependence of branching level\n",
    "x,y=[],[]\n",
    "for n in dict_asymmetry:\n",
    "    x.append((cycle_tree.nodes[n]['pos'][1]-6)/2.)\n",
    "    y.append(dict_asymmetry[n])\n",
    "plt.scatter(x,y)\n",
    "plt.ylabel('asymmetry')\n",
    "plt.xlabel('branching level')\n",
    "plt.grid(True)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
Felix's avatar
Felix committed
79
   "version": "3.7.9"
felixk1990's avatar
felixk1990 committed
80
81
82
83
84
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}