Commit 50f9d2cf authored by felixk1990's avatar felixk1990
Browse files

update notebooks

parent 4a65c7b3
......@@ -79,14 +79,14 @@ def calc_cycle_coalescence(input_graph,cycle_basis):
def calc_tree_asymmetry(cycle_tree):
list_asymmetry=[]
dict_asymmetry={}
for n in cycle_tree.nodes():
if cycle_tree.nodes[n]['branch_type']=='vanpelt_2':
list_asymmetry.append(cycle_tree.nodes[n]['asymmetry'])
dict_asymmetry[n]=(cycle_tree.nodes[n]['asymmetry'])
return list_asymmetry
return dict_asymmetry
def build_cycle_tree(cycle_tree,cycle_keys):
......
This diff is collapsed.
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAcPUlEQVR4nO3df3RddZ3u8fdjKGMgSGUYcyX03lamlumAUBtbhzozCcptQbHVKUsQO4zC7eodi8wwVts7P5xZzpLO7egSBe3tAkRHh4xCjRV6KV20gREF2logFKhUVGjKFdFpIZ0obfncP84OnKYnyU56dvY52c9rraycvfd3f8+T3Safs399tyICMzMrrtfkHcDMzPLlQmBmVnAuBGZmBedCYGZWcC4EZmYFd0zeAUbq5JNPjsmTJ49q3f3793P88cdXN9AYcfZ8OHs+6jV7Lefetm3b8xHxO5WW1V0hmDx5Mlu3bh3Vul1dXbS1tVU30Bhx9nw4ez7qNXst55b0s8GW+dCQmVnBuRCYmRWcC4GZWcG5EJiZFZwLgZlZwWVWCCTdJOk5SY8OslySviBpl6RHJL01qyznfa6LycvvoLtnH5OX38F5n+uqav+d23uYs3ITU5bfwZyVm+jc3lP1vrt79lW9b4C/6ezmtBXrmbz8Dk5bsZ6/6eyuav9ZyXKbl/efxXbPOns9q9ftnvXvaday3CO4GZg3xPLzganJ12Lgy1mEOO9zXTz53P7D5j353P6qFYPO7T2sWNtNz94+AujZ28eKtd1V+Y9Q3jdV7htKReDr9z/NoWQE2kMRfP3+p2u+GGS5zQf2T5X7zzp7PavX7Z717+lYyKwQRMS9wK+GaDIf+FqU3A9MlPTGaucYWASGmz9SqzbspO/AocPm9R04xKoNO2u6b4BbHnhmRPNrRdbbpZ7/TetZvW738fBvqiyfRyBpMnB7RJxRYdntwMqI+F4yfTfwyYg44m4xSYsp7TXQ3Nw8s6OjI3WG7p59r7xuboSf97267MyWE1P3k6b/gY62/3rOXq63t5empqaq9Zd17iy3+1htc6j+ds9avW73rH9Pq6W9vX1bRLRWWpZnIbgDuGZAIfhERGwbqs/W1tYYyZ3Fk5ff8crrvzrzIJ/tfvVm6p+ufHfqfgYzZ+WmV3YJy7VMbOS+5edWre/y7NXoG+C0FetfOSxUrkHix9dccNT996v23ZZZbvOB/Vd7u2edvVwt3+VaSb1u96x/T6tF0qCFIM+rhnYDk8qmTwX2VPtNpr6h8rgfg80fqWVzp9E4oeGweY0TGlg2d1pN9w1wyexJI5pfK7LeLvX8b1rP6nW7j4d/0zzHGloHLJXUAcwG9kXEs9V+k41Xtx1xwnjqG45n49VtVel/wYwWoHSccM/ePk6Z2MiyudNemV+tvuFFWqrYN8A/LjgTKJ0TOBRBg8Qlsye9Mr9WZbnNB/Zf7e2edfZ6Vq/bPevf0zEREZl8AbcAzwIHKH36vxxYAixJlgu4Hvgx0A20pul35syZMVqbN28e9bp5c/Z8OHs+6jV7LecGtsYgf1cz2yOIiEuGWR7AR7N6fzMzS8d3FpuZFZwLgZlZwbkQmJkVnAuBmVnBuRCYmRWcC4GZWcG5EJiZFZwLgZlZwbkQmJkVXJ5jDZmZWQqd23syHZ/KhcDMrIb1PwGt/+E3/U9AA6pWDHxoyMysho3FE9BcCMzMatieCg/UGWr+aLgQmJnVsFMmNo5o/mi4EJiZ1bCxeAKaTxabmdWwsXiqnQuBmVmNWzCjJdNHX/rQkJlZwbkQmJkVnAuBmVnBuRCYmRVcpoVA0jxJOyXtkrS8wvLXS/q2pEckPSjpjCzzmJnZkTIrBJIagOuB84HpwCWSpg9o9r+AhyLiLcCfAtdmlcfMzCrLco9gFrArIp6KiJeADmD+gDbTgbsBIuIJYLKk5gwzmZnZAIqIbDqWFgLzIuKKZHoRMDsilpa1+Qzw2oi4WtIs4PtJm20D+loMLAZobm6e2dHRMapMvb29NDU1jWrdvDl7Ppw9H/WavZZzt7e3b4uI1krLsryhTBXmDaw6K4FrJT0EdAPbgYNHrBSxBlgD0NraGm1tbaMK1NXVxWjXzZuz58PZ81Gv2es1d5aFYDcwqWz6VGBPeYOIeAH4MIAkAT9JvszMbIxkeY5gCzBV0hRJxwIXA+vKG0iamCwDuAK4NykOZmY2RjLbI4iIg5KWAhuABuCmiNghaUmyfDXwe8DXJB0CHgMuzyqPmZlVlumgcxGxHlg/YN7qstc/AKZmmcHMzIbmO4vNzArOhcDMrOBcCMzMCs6FwMys4FwIzMwKzoXAzKzgXAjMzArOhcDMrOBcCMzMCs6FwMys4FwIzMwKzoXAzKzgXAjMzArOhcDMrOBcCMzMCs6FwMys4FwIzMwKzoXAzKzgXAjMzArOhcDMrOAyLQSS5knaKWmXpOUVlp8o6buSHpa0Q9KHs8xjZmZHyqwQSGoArgfOB6YDl0iaPqDZR4HHIuIsoA34rKRjs8pkZmZHynKPYBawKyKeioiXgA5g/oA2AZwgSUAT8CvgYIaZzMxsgGMy7LsFeKZsejcwe0Cb64B1wB7gBOADEfFyhpnM7Ch0bu9h1Yad7NnbxykTG1k2dxoLZrTkHcuOkiIim46li4C5EXFFMr0ImBURV5a1WQjMAa4GTgM2AmdFxAsD+loMLAZobm6e2dHRMapMvb29NDU1jWrdvDl7Ppz9VXv7DtDzH328XPY34zUSLa9vZGLjhKq9D9Tvdq/l3O3t7dsiorXSsiz3CHYDk8qmT6X0yb/ch4GVUapGuyT9BDgdeLC8UUSsAdYAtLa2Rltb26gCdXV1Mdp18+bs+XD2V81ZuYmevQ1HzG+Z2MB9y6v3PlC/271ec2d5jmALMFXSlOQE8MWUDgOVexp4J4CkZmAa8FSGmcxslPbs7RvRfKsfmRWCiDgILAU2AI8D34yIHZKWSFqSNPs0cI6kbuBu4JMR8XxWmcxs9E6Z2Dii+VY/sjw0RESsB9YPmLe67PUe4L9nmcHMqmPZ3GmsWNtN34FDr8xrnNDAsrnTckxl1ZBpITCz8aP/6iBfNTT+uBCYWWoLZrT4D/845LGGzMwKzoXAzKzgXAjMzArOhcDMrOBcCGpc5/Ye5qzcRHfPPuas3ETn9p68I5nZOOOrhmpY5/aeV6/bngQ9e/tYsbYbwFdumFnVpNojkHRS1kHsSKs27Dzs5h2AvgOHWLVhZ06JzGw8Snto6AFJ35J0QfLsABsDHtvFzMZC2kLwZkqjfy6iNEroZyS9ObtYBh7bxczGRqpCECUbI+IS4ArgMuBBSfdI+oNMExbYsrnTaJxw+LC/HtvFzKot1cliSb8NfIjSHsHPgSspDSl9NvAtYEpG+QqtfGwXeJEWj+1iZhlIe9XQD4B/ARZExO6y+VslrR5kHauC/rFdurq6uPLStrzjmNk4NGwhkNQA3B4Rn660PCL+qeqpzMxszAx7jiAiDgFnjUEWMzPLQdpDQw9JWkfpfMD+/pkRsTaTVGZmNmbSXj56EvBL4FzgwuTrPVmFsvHBw2OY1Ye0ewQ3RMR95TMkzckgj40THh7DrH6k3SP4Ysp5ZoCHxzCrJ0PuESQ3i50D/I6kq8sWvQ5oqLyWmYfHMKsnw+0RHAs0USoYJ5R9vQAsHK5zSfMk7ZS0S9LyCsuXSXoo+XpU0iEPcDc+eHgMs/ox5B5BRNwD3CPp5oj4maTjI2L/UOv0S+4/uB44D9gNbJG0LiIeK+t/FbAqaX8h8JcR8atR/ixWQ5bNnfbqOYKEh8cwq01pzxGcIukx4HEASWdJ+tIw68wCdkXEUxHxEtABzB+i/SXALSnzWI1bMKOFa95/Ji3JHkDLxEauef+ZPlFsVoMUEcM3kh6gdChoXUTMSOY9GhFnDLHOQmBeRFyRTC8CZkfE0gptj6O01/C7lfYIJC0GFgM0NzfP7OjoSPOzHaG3t5empqZRrZs3Z8+Hs+ejXrPXcu729vZtEdFaaVnqJ5RFxDMDHkVwaLC2iUrPLRis6lwI3DfYYaGIWENpGGxaW1ujra1tmLeurKuri9Gumzdnz4ez56Nes9dr7rSF4BlJ5wAh6VjgYySHiYawG5hUNn0qsGeQthfjw0JmZrlIe45gCfBRoIXSH/izk+mhbAGmSpqSFI+LKQ1dfRhJJwJ/DHwnZRYzM6uiVHsEEfE8cOlIOo6Ig5KWAhso3XNwU0TskLQkWd4/fPX7gLvSXo1kZmbVlfbBNFMoPYxmcvk6EfHeodaLiPXA+gHzVg+Yvhm4OU0OMzOrvrTnCDqBG4HvAi9nlsbMzMZc2kLw64j4QqZJzMwsF2kLwbWSPgXcBfymf2ZE/DCTVGZmNmbSFoIzKT24/lxePTQUybSZmdWxtIXgfcCbkqEizMxsHEl7H8HDwMQMc5iZWU7S7hE0A09I2sLh5wiGvHzUzMxqX9pC8KlMU5iZWW7S3ll8D4Ck16Vdx8zM6kPaO4sXA58G+ihdNSRKVw29KbtoZmY2FtJ+ul8G/H4y5pCZmY0jaa8a+jHwn1kGMTOzfKTdI1gBfD95Uln5VUMfyySVmZmNmbSF4P8Am4BuPOicmdm4krYQHIyIqzNNYmZmuUh7jmCzpMWS3ijppP6vTJOZmdmYSLtH8MHk+4qyeb581MxsHEh7Q9mUrIOYmVk+Uh0akrRV0p9LmphxHjMzG2NpzxFcDLQAWyV1SJorSRnmMjOzMZKqEETEroj4a+DNwL8CNwFPS/oHnzQ2M6tvafcIkPQW4LPAKuA2YCHwAqX7CwZbZ56knZJ2SVo+SJs2SQ9J2iHpnpHFNzOzo5V20LltwF7gRmB5RPTfXfyApDmDrNMAXA+cB+wGtkhaFxGPlbWZCHwJmBcRT0t6w2h/EDMzG520l49eFBFPVVoQEe8fZJ1ZwK7+9SR1APOBx8rafBBYGxFPJ309lzKPmZlViSJi+EbSVcBXgBeBG4AZlPYM7hpinYWUPulfkUwvAmZHxNKyNp8HJgC/D5wAXBsRX6vQ12JgMUBzc/PMjo6OtD/fYXp7e2lqahrVunlz9nw4ez7qNXst525vb98WEa0VF0bEsF/Aw8n3ucA64Czgh8OscxFwQ9n0IuCLA9pcB9wPHA+cDDwJvHmofmfOnBmjtXnz5lGvmzdnz4ez56Nes9dybmBrDPJ3Ne2hof5LRS8AvhIRD6e4fHQ3MKls+lRgT4U2z0fEfmC/pHuTIvOjlLnMzOwopb1qaJukuygVgg2STmD4UUi3AFMlTZF0LKV7EdYNaPMd4A8lHSPpOGA28Hj6+GZmdrTS7hFcDpxN6Xh+K6XDODcPtUJEHJS0FNgANAA3RcQOSUuS5asj4nFJdwKPUCosN0TEo6P5QczMbHTSFoKPAFdROrzzEPB24AfAF4daKSLWA+sHzFs9YHoVpXsTzMwsB2kPDV0FvA34WUS0U7pq6BeZpTIzszGTthD8OiJ+DSDptyLiCWBadrHMzGyspD00tDu5C7gT2CjpPzjyCiAzM6tDaZ9H8L7k5d9L2gycCNyZWSozMxszafcIXhERHhjOzGwcST36qJmZjU8uBGZmBedCYGZWcC4EZmYF50Jgmenc3sOclZvo7tnHnJWb6Nzek3ckM6tgxFcNmaXRub2HFWu76TtwCCZBz94+VqztBmDBjJac05lZOe8RWCZWbdhZKgJl+g4cYtWGnTklMrPBuBBYJvbs7RvRfDPLjwuBZeKUiY0jmm9m+XEhsEwsmzuNxgkNh81rnNDAsrkeq9Cs1vhksWWi/4Rw6ZzAi7RMbGTZ3Gk+UWxWg1wILDMLZrSwYEYLXV1dXHlpW95xzGwQPjRkZlZwLgRmZgXnQmBmVnCZFgJJ8yTtlLRL0vIKy9sk7ZP0UPL1d1nmMTOzI2V2slhSA3A9cB6wG9giaV1EPDag6b9HxHuyymFmZkPLco9gFrArIp6KiJeADmB+hu9nZmajoIjIpmNpITAvIq5IphcBsyNiaVmbNuA2SnsMe4CPR8SOCn0tBhYDNDc3z+zo6BhVpt7eXpqamka1bt6cPR/Ono96zV7Ludvb27dFRGvFhRGRyRdwEXBD2fQi4IsD2rwOaEpeXwA8OVy/M2fOjNHavHnzqNfNm7Pnw9nzUa/Zazk3sDUG+bua5aGh3cCksulTKX3qLy9CL0REb/J6PTBB0skZZjIzswGyLARbgKmSpkg6FrgYWFfeQNJ/kaTk9awkzy8zzGRmZgNkdtVQRByUtBTYADQAN0XEDklLkuWrgYXA/5R0EOgDLk52YczMbIxkOtZQcrhn/YB5q8teXwdcl2UGMzMbmu8sNjMrOBcCM7OCcyEwMys4FwIzs4JzITAzKzgXAjOzgnMhMDMrOBcCM7OCcyEwMys4FwIzs4JzITAzKzgXAjOzgnMhMDMrOBcCM7OCcyEwMys4FwIzs4JzITAzKzgXAjOzgnMhMDMrOBcCM7OCcyEwMyu4TAuBpHmSdkraJWn5EO3eJumQpIVZ5jEzsyNlVggkNQDXA+cD04FLJE0fpN0/ARuyymJmZoPLco9gFrArIp6KiJeADmB+hXZXArcBz2WYxczMBqGIyKbj0mGeeRFxRTK9CJgdEUvL2rQA/wqcC9wI3B4Rt1boazGwGKC5uXlmR0fHqDL19vbS1NQ0qnXz5uz5cPZ81Gv2Ws7d3t6+LSJaKy07JsP3VYV5A6vO54FPRsQhqVLzZKWINcAagNbW1mhraxtVoK6uLka7bt6cPR/Ono96zV6vubMsBLuBSWXTpwJ7BrRpBTqSInAycIGkgxHRmWEuMzMrk2Uh2AJMlTQF6AEuBj5Y3iAipvS/lnQzpUNDnRlmMjOzATIrBBFxUNJSSlcDNQA3RcQOSUuS5auzem8zM0svyz0CImI9sH7AvIoFICL+LMssZmZWme8sNjMrOBcCM7OCcyEwMys4FwKzcaZzew9zVm6iu2cfc1ZuonN7T96RrMZlerLYzMZW5/YeVqztpu/AIZgEPXv7WLG2G4AFM1pyTme1ynsEZuPIqg07S0WgTN+BQ6zasDOnRFYPXAjMxpE9e/tGNN8MXAjMxpVTJjaOaL4ZuBCYjSvL5k6jcULDYfMaJzSwbO60nBJZPfDJYrNxpP+EcOmcwIu0TGxk2dxpPlFsQ3IhMBtnFsxoYcGMFrq6urjy0ra841gdcCGogs7tPazasJM9e/s4xZ/AzKzOuBAcpcOu28bXbZtZ/fHJ4qPk67bNrN65EBwlX7dtZvXOheAo+bptM6t3LgRHyddtm1m988nio1R+3bavGjKzeuRCUAX9122bmdUjHxoyMys4FwIzs4LLtBBImidpp6RdkpZXWD5f0iOSHpK0VdI7ssxjZmZHyuwcgaQG4HrgPGA3sEXSuoh4rKzZ3cC6iAhJbwG+CZyeVSYzMztSlnsEs4BdEfFURLwEdADzyxtERG9ERDJ5PBCYmdmYyvKqoRbgmbLp3cDsgY0kvQ+4BngD8O5KHUlaDCxOJnsljXb8hpOB50e5bt6cPR/Ono96zV7Luf/bYAuyLASqMO+IT/wR8W3g25L+CPg08K4KbdYAa446kLQ1IlqPtp88OHs+nD0f9Zq9XnNneWhoNzCpbPpUYM9gjSPiXuA0SSdnmMnMzAbIshBsAaZKmiLpWOBiYF15A0m/K0nJ67cCxwK/zDCTmZkNkNmhoYg4KGkpsAFoAG6KiB2SliTLVwN/AvyppANAH/CBspPHWTjqw0s5cvZ8OHs+6jV7XeZWtn93zcys1vnOYjOzgnMhMDMruMIUguGGu6hVkiZJ2izpcUk7JF2Vd6aRkNQgabuk2/POMhKSJkq6VdITybb/g7wzpSXpL5P/K49KukXSa/PONBhJN0l6TtKjZfNOkrRR0pPJ99fnmXEwg2RflfyfeUTStyVNzDFiaoUoBGXDXZwPTAcukTQ931SpHQT+KiJ+D3g78NE6yg5wFfB43iFG4Vrgzog4HTiLOvkZJLUAHwNaI+IMShdqXJxvqiHdDMwbMG85cHdETKU0DE2tfnC7mSOzbwTOiIi3AD8CVox1qNEoRCEgxXAXtSoino2IHyavX6T0B6kuHn4g6VRKd4vfkHeWkZD0OuCPgBsBIuKliNiba6iROQZolHQMcBxD3L+Tt+T+oV8NmD0f+Gry+qvAgrHMlFal7BFxV0QcTCbvp3T/VM0rSiGoNNxFXfwxLSdpMjADeCDnKGl9HvgE8HLOOUbqTcAvgK8kh7VukHR83qHSiIge4J+Bp4FngX0RcVe+qUasOSKehdIHIUrDz9SjjwD/N+8QaRSlEKQa7qKWSWoCbgP+IiJeyDvPcCS9B3guIrblnWUUjgHeCnw5ImYA+6ndwxOHSY6nzwemAKcAx0v6UL6pikfSX1M6rPuNvLOkUZRCMKLhLmqNpAmUisA3ImJt3nlSmgO8V9JPKR2KO1fS1/ONlNpuYHdE9O953UqpMNSDdwE/iYhfRMQBYC1wTs6ZRurnkt4IkHx/Luc8IyLpMuA9wKUZ3yBbNUUpBMMOd1GrkiE4bgQej4jP5Z0nrYhYERGnRsRkStt7U0TUxSfTiPh/wDOSpiWz3gk8NsQqteRp4O2Sjkv+77yTOjnRXWYdcFny+jLgOzlmGRFJ84BPAu+NiP/MO09ahSgEycmb/uEuHge+GRE78k2V2hxgEaVP1A8lXxfkHaoArgS+IekR4GzgM/nGSSfZi7kV+CHQTel3vGaHPZB0C/ADYJqk3ZIuB1YC50l6ktKDrVbmmXEwg2S/DjgB2Jj8rq7ONWRKHmLCzKzgCrFHYGZmg3MhMDMrOBcCM7OCcyEwMys4FwIzs4JzIbC6I2ly+YiPY/SeXZKOeCi5pFZJX6jSe/y9pI9Xo68s+7TxJ7NHVZrlTVJDRBzK8j0iYiuwNcv3MMua9wisXh0j6avJuO+3SjoOQNJPJf2dpO8BF0n6H5K2SHpY0m1l7W6W9AVJ35f0lKSF/R1L+oSk7mSd8puZLpL0oKQfSfrDpG1b/7MWkk/fNyV7D09J+lhZn3+bjFO/MXlGwJCf0iWdJulOSdsk/buk0yWdmPx8r0naHCfpGUkTKrWv1oa28c+FwOrVNGBNMu77C8Cfly37dUS8IyI6gLUR8baI6H+mwOVl7d4IvIPSuDArASSdT2nY49nJOv+7rP0xETEL+AvgU4PkOh2YS2no808lf6RbgT+hNHLs+4EjDjFVsAa4MiJmAh8HvhQR+4CHgT9O2lwIbEjGFDqifYr3MAN8aMjq1zMRcV/y+uuUHsbyz8n0v5W1O0PSPwITgSZKw4z064yIl4HHJDUn894FfKV/nJiIKB9vvn/Av23A5EFy3RERvwF+I+k5oJlSsflORPQBSPruUD9YMtLsOcC3SsMFAfBbZT/bB4DNlMZw+tIw7c2G5UJg9Wrg2Cjl0/vLXt8MLIiIhyX9GdBWtuw3Za9V9n2wcVf62x9i8N+d8j7721UaBn0orwH2RsTZFZatA66RdBIwE9gEHD9Ee7Nh+dCQ1av/qlefI3wJ8L1B2p0APJsM5X1pin7vAj5Sdi7hpKNOWsp2oaTXJp/e3z1U4+R5Ez+RdFGSQZLOSpb1Ag9SepTm7RFxaKj2Zmm4EFi9ehy4LBkd9CTgy4O0+1tKT3TbCDwxXKcRcSelT91bJT1E6Xj7UYmILUmfD1M6vLQV2DfMapcCl0t6GNjB4Y9W/TfgQxx+CGyo9mZD8uijZmNAUlNE9CZ7GvcCi/ufRW2WN58jMBsbayRNB14LfNVFwGqJ9wjMzArO5wjMzArOhcDMrOBcCMzMCs6FwMys4FwIzMwK7v8DAH6yQEkjxXMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import analyze_graph as ag\n",
"import networkx as nx\n",
"import matplotlib.pyplot as plt\n",
"# generate a dummy graph for testing\n",
"# put an edge weight distribution on the system, available are random/gradient/bigradient/nested_square\n",
"G=nx.grid_graph((7,7,1))\n",
"G=ag.generate_pattern(G,'random')\n",
"\n",
"weights=[G.edges[e]['weight'] for e in G.edges()]\n",
"pos=nx.get_node_attributes(G,'pos')\n",
"\n",
"# merge all shortest cycles and create merging tree, then calc asymmetry of the tree's branches\n",
"minimum_basis=ag.construct_minimum_basis(G)\n",
"cycle_tree=ag.calc_cycle_coalescence(G,minimum_basis)\n",
"dict_asymmetry=ag.calc_tree_asymmetry(cycle_tree)\n",
"\n",
"# plot branching asymmetry in dependence of branching level\n",
"x,y=[],[]\n",
"for n in dict_asymmetry:\n",
" x.append((cycle_tree.nodes[n]['pos'][1]-6)/2.)\n",
" y.append(dict_asymmetry[n])\n",
"plt.scatter(x,y)\n",
"plt.ylabel('asymmetry')\n",
"plt.xlabel('branching level')\n",
"plt.grid(True)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment