From e45a71b58ef1d04d992bbcced0b296570ee02fe0 Mon Sep 17 00:00:00 2001 From: absingh <absingh@mpi-cbg.de> Date: Fri, 14 May 2021 17:34:21 +0200 Subject: [PATCH] Fixing Examples --- example/Numerics/OdeInt/main.cpp | 4 ++-- example/Numerics/OdeInt/main2.cpp | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/example/Numerics/OdeInt/main.cpp b/example/Numerics/OdeInt/main.cpp index 39908317d..5761968dc 100644 --- a/example/Numerics/OdeInt/main.cpp +++ b/example/Numerics/OdeInt/main.cpp @@ -8,7 +8,7 @@ * * We can use the Odeint library from boost with OpenFPM in two ways. The first example will cover a simple case where we control the time stepping ourselves (time loop of the simulation wriiten by us). * The 2nd Example will cover a way of using odeint where the time is forwarded by odeint along with an observer. * - * * In the example links below, we solve the follwing advection-diffusion PDE for two chemicals with concentration \f$\vec{C}(x,y,t)=(C_x(x,y,t),C_y(x,y,t))\f$ with a fixed velocity \f$\vec{V}(x,y)=(-ye^{10(x^2+y^2)},xe^{10(x^2+y^2)})\f$: + * * In the example links below, we solve the follwing advection-diffusion PDE for two chemicals with concentration \f$\vec{C}(x,y,t)=(C_x(x,y,t),C_y(x,y,t))\f$ with a fixed velocity \f$\vec{V}(x,y)=(-ye^{-10(x^2+y^2)},xe^{-10(x^2+y^2)})\f$: * * @f[ \frac{\partial\vec{C}}{dt}=\vec{V}.\nabla_{\{x,y\}} \vec{C} + 0.1\Delta_{\{x,y\}} \vec{C} @f] * in 2d domain [-1,-1]*[1,1] with the boundary conditions on the walls as no-slip for velocity \f$\vec{V}=0\f$ and sink for the chemicals \f$\vec{C}=0\f$ for all time \f$t\f$. @@ -34,7 +34,7 @@ * In this example, we perform time integration in a 2d domain of particles of a following partial differential equation: * * @f[ \frac{\partial\vec{C}}{dt}=\vec{V}.\nabla C + 0.1\Delta C @f] - * in 2d domain [-1,-1]*[1,1] with a fixed velocity \f$\vec{V}(x,y)=(-ye^{10(x^2+y^2)},xe^{10(x^2+y^2)})\f$, and the boundary conditions on the walls as no-slip for velocity \f$\vec{V}=0\f$ and sink for the chemicals \f$\vec{C}=0\f$ for all time \f$t\f$. + * in 2d domain [-1,-1]*[1,1] with a fixed velocity \f$\vec{V}(x,y)=(-ye^{-10(x^2+y^2)},xe^{-10(x^2+y^2)})\f$, and the boundary conditions on the walls as no-slip for velocity \f$\vec{V}=0\f$ and sink for the chemicals \f$\vec{C}=0\f$ for all time \f$t\f$. * * Further, we start with the initial condition for the concentration as * @f[\vec{C}=\begin{cases} * (1,0)\text{ for } x=0,-0.5<y<0\\ diff --git a/example/Numerics/OdeInt/main2.cpp b/example/Numerics/OdeInt/main2.cpp index 235507819..b991e7c52 100644 --- a/example/Numerics/OdeInt/main2.cpp +++ b/example/Numerics/OdeInt/main2.cpp @@ -7,7 +7,7 @@ * In this example, we perform time integration in a 2d domain of particles of a following partial differential equation: * * @f[ \frac{\partial\vec{C}}{dt}=\vec{V}.\nabla_{\{x,y\}} U + 0.1*\Delta_{\{x,y\}} U @f] - * in 2d domain [-1,-1]*[1,1] with a fixed velocity \f$\vec{V}(x,y)=(-ye^{10(x^2+y^2)},xe^{10(x^2+y^2)})\f$, and the boundary conditions on the walls as no-slip for velocity \f$\vec{V}=0\f$ and sink for the chemicals \f$\vec{C}=0\f$ for all time \f$t\f$. + * in 2d domain [-1,-1]*[1,1] with a fixed velocity \f$\vec{V}(x,y)=(-ye^{-10(x^2+y^2)},xe^{-10(x^2+y^2)})\f$, and the boundary conditions on the walls as no-slip for velocity \f$\vec{V}=0\f$ and sink for the chemicals \f$\vec{C}=0\f$ for all time \f$t\f$. * Further, we start with the initial condition for the concentration as * @f[\vec{C}=\begin{cases} * (1,0)\text{ for } x=0,-0.5<y<0\\ -- GitLab