VCluster_semantic.ipp 14.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10
11
private:

Yaroslav's avatar
Yaroslav committed
12
13
14
	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
Yaroslav's avatar
Yaroslav committed
15
16
	template<bool cond, typename T, typename S>
	struct pack_unpack_cond
Yaroslav's avatar
Yaroslav committed
17
	{
Yaroslav's avatar
Yaroslav committed
18
		static void packingRequest(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
19
20
		{
			typedef typename ::generate_array_constexpr<unsigned int,T::max_prop, MetaFuncOrd>::result prop_to_pack;
Yaroslav's avatar
Yaroslav committed
21
			Packer<T,HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
Yaroslav's avatar
Yaroslav committed
22
		}
Yaroslav's avatar
Yaroslav committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			typedef typename ::generate_array_constexpr<unsigned int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result prop_to_pack;
			Packer<T,HeapMemory>::pack< prop_to_pack::data >(mem,send,sts);
		}
		
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
			typedef typename ::generate_array_constexpr<unsigned int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result prop_to_pack;
			
			if (has_pack_agg<typename T::value_type, prop_to_pack::data >::result::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
					Unpacker<T,HeapMemory>::unpack< prop_to_pack::data >(mem, unp, ps);
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
		}	
Yaroslav's avatar
Yaroslav committed
76
77
78
79
	};

	
	//There is no max_prop inside
Yaroslav's avatar
Yaroslav committed
80
81
	template<typename T, typename S>
	struct pack_unpack_cond<false, T, S>
Yaroslav's avatar
Yaroslav committed
82
	{
Yaroslav's avatar
Yaroslav committed
83
		static void packingRequest(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
84
		{
Yaroslav's avatar
Yaroslav committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
			//tot_size = send.size()*sizeof(typename T::value_type);
			Packer<T,HeapMemory>::packRequest(send,tot_size);
			std::cout << "Tot_size: " << tot_size << std::endl; 
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			Packer<T,HeapMemory>::pack(mem,send,sts);
		}

		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
			if (has_pack<typename T::value_type>::type::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
					Unpacker<T,HeapMemory>::unpack(mem, unp, ps);
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
138
139
140
141
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
142
143
144
145
146
147
148
149
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
150
151

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
152
153
}

Pietro Incardona's avatar
Pietro Incardona committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
188
	base_info & rinfo = *(base_info *)ptr;
189

Pietro Incardona's avatar
Pietro Incardona committed
190
	if (rinfo.recv_buf == NULL)
191
192
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
193
	rinfo.recv_buf->resize(ri+1);
194

Pietro Incardona's avatar
Pietro Incardona committed
195
196
197
198
199
	rinfo.recv_buf->get(ri).resize(msg_i);

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
200
201

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
202
	return rinfo.recv_buf->last().getPointer();
203
204
}

Pietro Incardona's avatar
Pietro Incardona committed
205
206
207
208
209
210
211
212
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
213
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
214
{
Pietro Incardona's avatar
Pietro Incardona committed
215
216
	if (sz != NULL)
		sz->resize(recv_buf.size());
Yaroslav's avatar
Yaroslav committed
217
218
	
	Unpack_stat ps;
Pietro Incardona's avatar
Pietro Incardona committed
219

Yaroslav's avatar
Yaroslav committed
220
	pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::unpacking(recv, recv_buf, ps, sz);
Pietro Incardona's avatar
Pietro Incardona committed
221
222
223
224
}

public:

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
242
243
244
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
245
246
247
248
249
250
251
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
252
253
254
255
256
257
258
259
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
260
261
262
263
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
294
{
Pietro Incardona's avatar
Pietro Incardona committed
295
296
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
297
	
298
299
300
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
Yaroslav's avatar
Yaroslav committed
301
		std::cout << "Inside root " << root << std::endl;
302
303
304
305
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
306
307
308
		// receive information
		base_info bi(&recv_buf,prc,sz);

309
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
310
311
312
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
Yaroslav's avatar
Yaroslav committed
313
314
		/*for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);*/
Pietro Incardona's avatar
Pietro Incardona committed
315
316

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
317
		process_receive_buffer<T,S>(recv,&sz);
318

Pietro Incardona's avatar
Pietro Incardona committed
319
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
320
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
321
		sz.add(send.size());
322
323
324
325
326
327
	}
	else
	{
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
328
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
329
				
Yaroslav's avatar
Yaroslav committed
330
331
332
333
		size_t tot_size = 0;
			
		//Pack requesting
		
Yaroslav's avatar
Yaroslav committed
334
335
336
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packingRequest(send, tot_size);
		
		HeapMemory pmem;
Yaroslav's avatar
Yaroslav committed
337
		
Yaroslav's avatar
Yaroslav committed
338
339
340
341
342
343
344
345
		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		//Packing

		Pack_stat sts;

		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packing(mem, send, sts);	
Yaroslav's avatar
Yaroslav committed
346
		
Pietro Incardona's avatar
Pietro Incardona committed
347
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
348
349
350
351
		send_buf.add(mem.getPointer());
		
		openfpm::vector<size_t> sz;	
		sz.add(send.size());
352

Pietro Incardona's avatar
Pietro Incardona committed
353
354
355
		// receive information
		base_info bi(NULL,prc,sz);

356
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
357
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
358
359
360
361
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
420
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
421
422
423
424
425
426
427
428
429
430
431
432
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
433
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
434
435
436
437
438
439
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}