VCluster_semantic.ipp 11.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10
11
private:

Yaroslav's avatar
Yaroslav committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T>
	struct packRequest_cond
	{
		void packingRequest(T & send, size_t & tot_size)
		{
			typedef typename ::generate_array_constexpr<unsigned int,T::max_prop, MetaFuncOrd>::result prop_to_pack;
			Packer<decltype(send),HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
		}
	};

	
	//There is no max_prop inside
	template<typename T>
	struct packRequest_cond<false, T>
	{
		void packingRequest(T & send, size_t & tot_size)
		{
			Packer<decltype(send),HeapMemory>::packRequest(send,tot_size);
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
37
38
39
40
41
42
43
44
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
45
46

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
47
48
}

Pietro Incardona's avatar
Pietro Incardona committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
83
	base_info & rinfo = *(base_info *)ptr;
84

Pietro Incardona's avatar
Pietro Incardona committed
85
	if (rinfo.recv_buf == NULL)
86
87
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
88
	rinfo.recv_buf->resize(ri+1);
89

Pietro Incardona's avatar
Pietro Incardona committed
90
91
92
93
94
	rinfo.recv_buf->get(ri).resize(msg_i);

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
95
96

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
97
	return rinfo.recv_buf->last().getPointer();
98
99
}

Pietro Incardona's avatar
Pietro Incardona committed
100
101
102
103
104
105
106
107
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
108
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
109
{
Pietro Incardona's avatar
Pietro Incardona committed
110
111
112
	if (sz != NULL)
		sz->resize(recv_buf.size());

Pietro Incardona's avatar
Pietro Incardona committed
113
114
115
116
117
118
119
120
121
122
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
	{
		// for each received buffer create a memory reppresentation
		// calculate the number of received elements
		size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);

		// add the received particles to the vector
		PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());

		// create vector representation to a piece of memory already allocated
Pietro Incardona's avatar
Pietro Incardona committed
123
		openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
Pietro Incardona's avatar
Pietro Incardona committed
124
125
126
127
128
129
130
131

		v2.setMemory(*ptr1);

		// resize with the number of elements
		v2.resize(n_ele);

		// Merge the information
		recv.add(v2);
Pietro Incardona's avatar
Pietro Incardona committed
132
133
134

		if (sz != NULL)
			sz->get(i) = v2.size();
Pietro Incardona's avatar
Pietro Incardona committed
135
136
137
138
139
	}
}

public:

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
157
158
159
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
160
161
162
163
164
165
166
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
167
168
169
170
171
172
173
174
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
175
176
177
178
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
209
{
Pietro Incardona's avatar
Pietro Incardona committed
210
211
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
212

213
214
215
216
217
218
219
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
220
221
222
		// receive information
		base_info bi(&recv_buf,prc,sz);

223
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
224
225
226
227
228
229
230
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
		for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
231
		process_receive_buffer<T,S>(recv,&sz);
232

Pietro Incardona's avatar
Pietro Incardona committed
233
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
234
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
235
		sz.add(send.size()*sizeof(typename T::value_type));
236
237
238
239
240
241
	}
	else
	{
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
242
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
243
244
245
246
247
248
249
250
251
252
		
		
		size_t tot_size = 0;
			
		//Pack requesting
		
		packRequest_cond<has_max_prop<T>::value, T> pr;
		pr.packingRequest(send, tot_size);
		
		
Pietro Incardona's avatar
Pietro Incardona committed
253
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
254
			
255
256
		send_buf.add(send.getPointer());
		openfpm::vector<size_t> sz;
Yaroslav's avatar
Yaroslav committed
257
258
		//sz.add(send.size()*sizeof(typename T::value_type));
		sz.add(tot_size);
259

Pietro Incardona's avatar
Pietro Incardona committed
260
261
262
		// receive information
		base_info bi(NULL,prc,sz);

263
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
264
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
265
266
267
268
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
327
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
328
329
330
331
332
333
334
335
336
337
338
339
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
340
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
341
342
343
344
345
346
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}