VCluster_semantic.ipp 15.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10
11
private:

Yaroslav's avatar
Yaroslav committed
12
13
14
15
16
	template<typename T>
	struct call_serialize_variadic {};
	
	template<int ... prp>
	struct call_serialize_variadic<index_tuple<prp...>>
Yaroslav's avatar
Yaroslav committed
17
	{
Yaroslav's avatar
Yaroslav committed
18
		template<typename T> inline static void call_pr(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
19
		{
Yaroslav's avatar
Yaroslav committed
20
			Packer<T,HeapMemory>::template packRequest<prp...>(send,tot_size);
Yaroslav's avatar
Yaroslav committed
21
		}
Yaroslav's avatar
Yaroslav committed
22
		
Yaroslav's avatar
Yaroslav committed
23
		template<typename T> inline static void call_pack(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
Yaroslav's avatar
Yaroslav committed
24
		{
Yaroslav's avatar
Yaroslav committed
25
			Packer<T,HeapMemory>::template pack<prp...>(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
26
27
		}
		
Yaroslav's avatar
Yaroslav committed
28
		template<typename T, typename S> inline static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
29
		{
Yaroslav's avatar
Yaroslav committed
30
			if (has_pack_agg<typename T::value_type, prp...>::result::value == true)
Yaroslav's avatar
Yaroslav committed
31
32
33
34
35
36
37
38
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
Yaroslav's avatar
Yaroslav committed
39
					Unpacker<T,HeapMemory>::template unpack<prp...>(mem, unp, ps);
Yaroslav's avatar
Yaroslav committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
		}		
	};

	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T, typename S>
	struct pack_unpack_cond
	{
		static void packingRequest(T & send, size_t & tot_size)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
//			Packer<T,HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
			call_serialize_variadic<ind_prop_to_pack>::call_pr(send,tot_size);
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			//Packer<T,HeapMemory>::pack< prop_to_pack::data >(mem,send,sts);
			call_serialize_variadic<ind_prop_to_pack>::call_pack(mem,send,sts);
		}
		
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			call_serialize_variadic<ind_prop_to_pack>::template call_unpack<T,S>(recv, recv_buf, ps, sz);
Yaroslav's avatar
Yaroslav committed
98
		}	
Yaroslav's avatar
Yaroslav committed
99
100
101
102
	};

	
	//There is no max_prop inside
Yaroslav's avatar
Yaroslav committed
103
104
	template<typename T, typename S>
	struct pack_unpack_cond<false, T, S>
Yaroslav's avatar
Yaroslav committed
105
	{
Yaroslav's avatar
Yaroslav committed
106
		static void packingRequest(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
107
		{
Yaroslav's avatar
Yaroslav committed
108
109
			//tot_size = send.size()*sizeof(typename T::value_type);
			Packer<T,HeapMemory>::packRequest(send,tot_size);
Yaroslav's avatar
Yaroslav committed
110
			std::cout << "Inside SGather pack request (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
111
112
113
114
115
116
			std::cout << "Tot_size: " << tot_size << std::endl; 
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			Packer<T,HeapMemory>::pack(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
117
			std::cout << "Inside SGather pack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
118
119
120
121
		}

		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
Yaroslav's avatar
Yaroslav committed
122
			std::cout << "Inside SGather unpack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
			if (has_pack<typename T::value_type>::type::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
					Unpacker<T,HeapMemory>::unpack(mem, unp, ps);
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
164
165
166
167
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
168
169
170
171
172
173
174
175
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
176
177

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
178
179
}

Pietro Incardona's avatar
Pietro Incardona committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
214
	base_info & rinfo = *(base_info *)ptr;
215

Pietro Incardona's avatar
Pietro Incardona committed
216
	if (rinfo.recv_buf == NULL)
217
218
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
219
	rinfo.recv_buf->resize(ri+1);
220

Pietro Incardona's avatar
Pietro Incardona committed
221
222
223
224
225
	rinfo.recv_buf->get(ri).resize(msg_i);

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
226
227

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
228
	return rinfo.recv_buf->last().getPointer();
229
230
}

Pietro Incardona's avatar
Pietro Incardona committed
231
232
233
234
235
236
237
238
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
239
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
240
{
Pietro Incardona's avatar
Pietro Incardona committed
241
242
	if (sz != NULL)
		sz->resize(recv_buf.size());
Yaroslav's avatar
Yaroslav committed
243
244
	
	Unpack_stat ps;
Pietro Incardona's avatar
Pietro Incardona committed
245

Yaroslav's avatar
Yaroslav committed
246
	pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::unpacking(recv, recv_buf, ps, sz);
Pietro Incardona's avatar
Pietro Incardona committed
247
248
249
250
}

public:

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
268
269
270
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
271
272
273
274
275
276
277
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
278
279
280
281
282
283
284
285
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
286
287
288
289
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
320
{
Pietro Incardona's avatar
Pietro Incardona committed
321
322
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
323
	
324
325
326
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
Yaroslav's avatar
Yaroslav committed
327
		std::cout << "Inside root " << root << std::endl;
328
329
330
331
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
332
333
334
		// receive information
		base_info bi(&recv_buf,prc,sz);

335
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
336
337
338
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
Yaroslav's avatar
Yaroslav committed
339
340
		/*for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);*/
Pietro Incardona's avatar
Pietro Incardona committed
341
342

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
343
		process_receive_buffer<T,S>(recv,&sz);
344

Pietro Incardona's avatar
Pietro Incardona committed
345
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
346
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
347
		sz.add(send.size());
348
349
350
	}
	else
	{
Yaroslav's avatar
Yaroslav committed
351
		std::cout << "Inside slave " << std::endl;
352
353
354
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
355
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
356
				
Yaroslav's avatar
Yaroslav committed
357
358
359
360
		size_t tot_size = 0;
			
		//Pack requesting
		
Yaroslav's avatar
Yaroslav committed
361
362
363
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packingRequest(send, tot_size);
		
		HeapMemory pmem;
Yaroslav's avatar
Yaroslav committed
364
		
Yaroslav's avatar
Yaroslav committed
365
366
367
368
369
370
371
372
		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		//Packing

		Pack_stat sts;

		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packing(mem, send, sts);	
Yaroslav's avatar
Yaroslav committed
373
		
Pietro Incardona's avatar
Pietro Incardona committed
374
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
375
376
377
378
		send_buf.add(mem.getPointer());
		
		openfpm::vector<size_t> sz;	
		sz.add(send.size());
379

Pietro Incardona's avatar
Pietro Incardona committed
380
381
382
		// receive information
		base_info bi(NULL,prc,sz);

383
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
384
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
385
386
387
388
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
447
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
448
449
450
451
452
453
454
455
456
457
458
459
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
460
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
461
462
463
464
465
466
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}