VCluster_semantic.ipp 17.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10
11
private:

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
	// Structures that do an unpack, depending on the existence of max_prop inside 'send'

	//
	template<bool result, typename T, typename S>
	struct unpack_selector
	{
		template<int ... prp> static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, openfpm::vector<size_t> * sz = NULL)
		{
			std::cout << "Sz.size(): " << sz->size() << std::endl;
			std::cout << "Unp: " << demangle(typeid(T).name()) << std::endl;
			for (size_t i = 0 ; i < recv_buf.size() ; i++)
			{
				std::cout << "Recv_buf.get(i).size(): " << recv_buf.get(i).size() << std::endl;
				
				T unp;
				
				ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
				mem.incRef();
				
				Unpack_stat ps;
				
				Unpacker<T,HeapMemory>::template unpack<prp...>(mem, unp, ps);
				
				// Merge the information
				recv.add(unp);
				
				/*if (sz != NULL)
					sz->get(i) = unp.size();*/
			}
		}
	};

	
	//
	template<typename T, typename S>
	struct unpack_selector<true, T, S>
	{
		template<int ... prp> static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, openfpm::vector<size_t> * sz = NULL)
		{
			for (size_t i = 0 ; i < recv_buf.size() ; i++)
			{
				// calculate the number of received elements
				size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
				
				// add the received particles to the vector
				PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
		
				// create vector representation to a piece of memory already allocated
				openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
		
				v2.setMemory(*ptr1);
		
				// resize with the number of elements
				v2.resize(n_ele);
				
				// Merge the information
				recv.add(v2);
				
				if (sz != NULL)
					sz->get(i) = v2.size();
			}
		}
	};
	
	
	
	

Yaroslav's avatar
Yaroslav committed
80
81
82
83
84
	template<typename T>
	struct call_serialize_variadic {};
	
	template<int ... prp>
	struct call_serialize_variadic<index_tuple<prp...>>
Yaroslav's avatar
Yaroslav committed
85
	{
Yaroslav's avatar
Yaroslav committed
86
		template<typename T> inline static void call_pr(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
87
		{
Yaroslav's avatar
Yaroslav committed
88
			Packer<T,HeapMemory>::template packRequest<prp...>(send,tot_size);
Yaroslav's avatar
Yaroslav committed
89
		}
Yaroslav's avatar
Yaroslav committed
90
		
Yaroslav's avatar
Yaroslav committed
91
		template<typename T> inline static void call_pack(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
Yaroslav's avatar
Yaroslav committed
92
		{
Yaroslav's avatar
Yaroslav committed
93
			Packer<T,HeapMemory>::template pack<prp...>(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
94
95
		}
		
96
		template<typename T, typename S> inline static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
97
		{
98
			const bool result = has_pack_agg<typename T::value_type, prp...>::result::value == false && is_vector<T>::value == true;
Yaroslav's avatar
Yaroslav committed
99
			
100
			unpack_selector<result, T, S>::template call_unpack<prp...>(recv, recv_buf, sz);
Yaroslav's avatar
Yaroslav committed
101
102
103
104
105
106
107
108
109
		}		
	};

	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T, typename S>
	struct pack_unpack_cond
	{
110
		static void packingRequest(T & send, size_t & tot_size, openfpm::vector<size_t> & sz)
Yaroslav's avatar
Yaroslav committed
111
112
113
114
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
//			Packer<T,HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
			call_serialize_variadic<ind_prop_to_pack>::call_pr(send,tot_size);
115
116
			std::cout << "Tot_size: " << tot_size << std::endl;
			sz.add(tot_size);
Yaroslav's avatar
Yaroslav committed
117
118
		}
		
119
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts, openfpm::vector<const void *> & send_buf)
Yaroslav's avatar
Yaroslav committed
120
121
122
123
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			//Packer<T,HeapMemory>::pack< prop_to_pack::data >(mem,send,sts);
			call_serialize_variadic<ind_prop_to_pack>::call_pack(mem,send,sts);
124
			send_buf.add(mem.getPointerBase());
Yaroslav's avatar
Yaroslav committed
125
126
		}
		
127
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
128
129
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
130
			call_serialize_variadic<ind_prop_to_pack>::template call_unpack<T,S>(recv, recv_buf, sz);
Yaroslav's avatar
Yaroslav committed
131
		}	
Yaroslav's avatar
Yaroslav committed
132
133
134
135
	};

	
	//There is no max_prop inside
Yaroslav's avatar
Yaroslav committed
136
137
	template<typename T, typename S>
	struct pack_unpack_cond<false, T, S>
Yaroslav's avatar
Yaroslav committed
138
	{
139
		static void packingRequest(T & send, size_t & tot_size, openfpm::vector<size_t> & sz)
Yaroslav's avatar
Yaroslav committed
140
		{
141
142
143
144
145
146
147
148
149
150
151
152
153
			if (has_pack<typename T::value_type>::type::value == true)
			{
				//tot_size = send.size()*sizeof(typename T::value_type);
				std::cout << "Inside SGather pack request (no prp) " << std::endl;
				Packer<T,HeapMemory>::packRequest(send,tot_size);		
				std::cout << "Tot_size: " << tot_size << std::endl; 
				sz.add(tot_size);
			}
			
			else
			{
				sz.add(send.size()*sizeof(typename T::value_type));
			}
Yaroslav's avatar
Yaroslav committed
154
155
		}
		
156
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts, openfpm::vector<const void *> & send_buf)
Yaroslav's avatar
Yaroslav committed
157
		{
Yaroslav's avatar
Yaroslav committed
158
			std::cout << "Inside SGather pack (no prp) " << std::endl;
159
160
161
162
163
164
165
166
167
168
169
			if (has_pack<typename T::value_type>::type::value == true)
			{
				Packer<T,HeapMemory>::pack(mem,send,sts);
				send_buf.add(mem.getPointer());
			}
			
			else
			{
				std::cout << "Inside SGather pack (no prp) (no pack inside) " << std::endl;
				send_buf.add(send.getPointer());
			}
Yaroslav's avatar
Yaroslav committed
170
171
		}

172
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
173
		{
Yaroslav's avatar
Yaroslav committed
174
			std::cout << "Inside SGather unpack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
175
176
177
178
179
180
181
182
183
			if (has_pack<typename T::value_type>::type::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
184
185
					Unpack_stat ps;
					
Yaroslav's avatar
Yaroslav committed
186
187
188
					Unpacker<T,HeapMemory>::unpack(mem, unp, ps);
					
					// Merge the information
189
					
Yaroslav's avatar
Yaroslav committed
190
191
192
193
194
195
					recv.add(unp);
				}
			}
			
			else
			{
196
				std::cout << "Inside SGather unpack (no prp) (no pack inside) " << std::endl;
Yaroslav's avatar
Yaroslav committed
197
198
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
Yaroslav's avatar
Yaroslav committed
199
200
					
					//std::cout << "I: " << i << ", Rec_buf.get(i).size(): " << recv_buf.get(i).size() << std::endl;
Yaroslav's avatar
Yaroslav committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
222
223
224
225
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
226
227
228
229
230
231
232
233
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
234
235

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
236
237
}

Pietro Incardona's avatar
Pietro Incardona committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
272
	base_info & rinfo = *(base_info *)ptr;
273

Pietro Incardona's avatar
Pietro Incardona committed
274
	if (rinfo.recv_buf == NULL)
275
276
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
277
	rinfo.recv_buf->resize(ri+1);
278

Pietro Incardona's avatar
Pietro Incardona committed
279
	rinfo.recv_buf->get(ri).resize(msg_i);
Yaroslav's avatar
Yaroslav committed
280
281
	
	std::cout << "Recv_but.get(ri).size(): " << rinfo.recv_buf->get(ri).size() << std::endl;
Pietro Incardona's avatar
Pietro Incardona committed
282
283
284
285

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
286
287

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
288
	return rinfo.recv_buf->last().getPointer();
289
290
}

Pietro Incardona's avatar
Pietro Incardona committed
291
292
293
294
295
296
297
298
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
299
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
300
{
Pietro Incardona's avatar
Pietro Incardona committed
301
302
303
	if (sz != NULL)
		sz->resize(recv_buf.size());

304
	pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::unpacking(recv, recv_buf, sz);
Pietro Incardona's avatar
Pietro Incardona committed
305
306
307
308
}

public:

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
326
327
328
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
329
330
331
332
333
334
335
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
336
337
338
339
340
341
342
343
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
344
345
346
347
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
378
{
Pietro Incardona's avatar
Pietro Incardona committed
379
380
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
381
	
382
383
384
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
Yaroslav's avatar
Yaroslav committed
385
		std::cout << "Inside root " << root << std::endl;
386
387
388
389
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
390
391
392
		// receive information
		base_info bi(&recv_buf,prc,sz);

393
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
394
395
396
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
397
		process_receive_buffer<T,S>(recv,&sz);
398

Pietro Incardona's avatar
Pietro Incardona committed
399
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
400
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
401
		sz.add(send.size());
402
403
404
	}
	else
	{
Yaroslav's avatar
Yaroslav committed
405
		std::cout << "Inside slave " << std::endl;
406
407
408
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
409
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
410
				
Yaroslav's avatar
Yaroslav committed
411
412
413
414
		size_t tot_size = 0;
			
		//Pack requesting
		
415
416
417
		openfpm::vector<size_t> sz;
		
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packingRequest(send, tot_size, sz);
Yaroslav's avatar
Yaroslav committed
418
419
		
		HeapMemory pmem;
Yaroslav's avatar
Yaroslav committed
420
		
Yaroslav's avatar
Yaroslav committed
421
422
423
424
425
426
		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		//Packing

		Pack_stat sts;
Pietro Incardona's avatar
Pietro Incardona committed
427
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
428
		
429
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packing(mem, send, sts, send_buf);
430

Pietro Incardona's avatar
Pietro Incardona committed
431
432
433
		// receive information
		base_info bi(NULL,prc,sz);

434
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
435
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
436
437
438
439
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
498
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
499
500
501
502
503
504
505
506
507
508
509
510
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
511
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
512
513
514
515
516
517
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}