VCluster_semantic.ipp 16 KB
Newer Older
1
2
3
4
5
6
7
8
9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10
11
private:

Yaroslav's avatar
Yaroslav committed
12
13
14
15
16
	template<typename T>
	struct call_serialize_variadic {};
	
	template<int ... prp>
	struct call_serialize_variadic<index_tuple<prp...>>
Yaroslav's avatar
Yaroslav committed
17
	{
Yaroslav's avatar
Yaroslav committed
18
		template<typename T> inline static void call_pr(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
19
		{
Yaroslav's avatar
Yaroslav committed
20
			Packer<T,HeapMemory>::template packRequest<prp...>(send,tot_size);
Yaroslav's avatar
Yaroslav committed
21
		}
Yaroslav's avatar
Yaroslav committed
22
		
Yaroslav's avatar
Yaroslav committed
23
		template<typename T> inline static void call_pack(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
Yaroslav's avatar
Yaroslav committed
24
		{
Yaroslav's avatar
Yaroslav committed
25
			Packer<T,HeapMemory>::template pack<prp...>(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
26
27
		}
		
Yaroslav's avatar
Yaroslav committed
28
		template<typename T, typename S> inline static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
29
		{
Yaroslav's avatar
Yaroslav committed
30
			if (has_pack_agg<typename T::value_type, prp...>::result::value == true)
Yaroslav's avatar
Yaroslav committed
31
32
33
34
35
36
37
38
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
Yaroslav's avatar
Yaroslav committed
39
					Unpacker<T,HeapMemory>::template unpack<prp...>(mem, unp, ps);
Yaroslav's avatar
Yaroslav committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
		}		
	};

	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T, typename S>
	struct pack_unpack_cond
	{
		static void packingRequest(T & send, size_t & tot_size)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
//			Packer<T,HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
			call_serialize_variadic<ind_prop_to_pack>::call_pr(send,tot_size);
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			//Packer<T,HeapMemory>::pack< prop_to_pack::data >(mem,send,sts);
			call_serialize_variadic<ind_prop_to_pack>::call_pack(mem,send,sts);
		}
		
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			call_serialize_variadic<ind_prop_to_pack>::template call_unpack<T,S>(recv, recv_buf, ps, sz);
Yaroslav's avatar
Yaroslav committed
98
		}	
Yaroslav's avatar
Yaroslav committed
99
100
101
102
	};

	
	//There is no max_prop inside
Yaroslav's avatar
Yaroslav committed
103
104
	template<typename T, typename S>
	struct pack_unpack_cond<false, T, S>
Yaroslav's avatar
Yaroslav committed
105
	{
Yaroslav's avatar
Yaroslav committed
106
		static void packingRequest(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
107
		{
Yaroslav's avatar
Yaroslav committed
108
109
			//tot_size = send.size()*sizeof(typename T::value_type);
			Packer<T,HeapMemory>::packRequest(send,tot_size);
Yaroslav's avatar
Yaroslav committed
110
			std::cout << "Inside SGather pack request (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
111
112
113
114
115
116
			std::cout << "Tot_size: " << tot_size << std::endl; 
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			Packer<T,HeapMemory>::pack(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
117
			std::cout << "Inside SGather pack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
118
119
120
121
		}

		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
Yaroslav's avatar
Yaroslav committed
122
			std::cout << "Inside SGather unpack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
			if (has_pack<typename T::value_type>::type::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
					Unpacker<T,HeapMemory>::unpack(mem, unp, ps);
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
Yaroslav's avatar
Yaroslav committed
143
144
					
					//std::cout << "I: " << i << ", Rec_buf.get(i).size(): " << recv_buf.get(i).size() << std::endl;
Yaroslav's avatar
Yaroslav committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
166
167
168
169
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
170
171
172
173
174
175
176
177
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
178
179

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
180
181
}

Pietro Incardona's avatar
Pietro Incardona committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
216
	base_info & rinfo = *(base_info *)ptr;
217

Pietro Incardona's avatar
Pietro Incardona committed
218
	if (rinfo.recv_buf == NULL)
219
220
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
221
	rinfo.recv_buf->resize(ri+1);
222

Pietro Incardona's avatar
Pietro Incardona committed
223
	rinfo.recv_buf->get(ri).resize(msg_i);
Yaroslav's avatar
Yaroslav committed
224
225
	
	std::cout << "Recv_but.get(ri).size(): " << rinfo.recv_buf->get(ri).size() << std::endl;
Pietro Incardona's avatar
Pietro Incardona committed
226
227
228
229

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
230
231

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
232
	return rinfo.recv_buf->last().getPointer();
233
234
}

Pietro Incardona's avatar
Pietro Incardona committed
235
236
237
238
239
240
241
242
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
243
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
244
{
Pietro Incardona's avatar
Pietro Incardona committed
245
246
	if (sz != NULL)
		sz->resize(recv_buf.size());
Yaroslav's avatar
Yaroslav committed
247
248
	
	Unpack_stat ps;
Pietro Incardona's avatar
Pietro Incardona committed
249

Yaroslav's avatar
Yaroslav committed
250
	pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::unpacking(recv, recv_buf, ps, sz);
Pietro Incardona's avatar
Pietro Incardona committed
251
252
253
254
}

public:

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
272
273
274
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
275
276
277
278
279
280
281
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
282
283
284
285
286
287
288
289
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
290
291
292
293
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
324
{
Pietro Incardona's avatar
Pietro Incardona committed
325
326
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
327
	
328
329
330
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
Yaroslav's avatar
Yaroslav committed
331
		std::cout << "Inside root " << root << std::endl;
332
333
334
335
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
336
337
338
		// receive information
		base_info bi(&recv_buf,prc,sz);

339
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
340
341
342
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
Yaroslav's avatar
Yaroslav committed
343
344
		/*for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);*/
Pietro Incardona's avatar
Pietro Incardona committed
345
346

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
347
		process_receive_buffer<T,S>(recv,&sz);
348

Pietro Incardona's avatar
Pietro Incardona committed
349
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
350
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
351
		sz.add(send.size());
352
353
354
	}
	else
	{
Yaroslav's avatar
Yaroslav committed
355
		std::cout << "Inside slave " << std::endl;
356
357
358
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
359
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
360
				
Yaroslav's avatar
Yaroslav committed
361
362
363
364
		size_t tot_size = 0;
			
		//Pack requesting
		
Yaroslav's avatar
Yaroslav committed
365
366
367
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packingRequest(send, tot_size);
		
		HeapMemory pmem;
Yaroslav's avatar
Yaroslav committed
368
		
Yaroslav's avatar
Yaroslav committed
369
370
371
372
373
374
375
		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		//Packing

		Pack_stat sts;

Yaroslav's avatar
Yaroslav committed
376
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packing(mem, send, sts);
Yaroslav's avatar
Yaroslav committed
377
		
Pietro Incardona's avatar
Pietro Incardona committed
378
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
379
380
		send_buf.add(mem.getPointer());
		
Yaroslav's avatar
Yaroslav committed
381
382
		openfpm::vector<size_t> sz;
		sz.add(send.size()*sizeof(typename T::value_type));
383

Pietro Incardona's avatar
Pietro Incardona committed
384
385
386
		// receive information
		base_info bi(NULL,prc,sz);

387
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
388
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
389
390
391
392
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
451
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
452
453
454
455
456
457
458
459
460
461
462
463
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
464
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
465
466
467
468
469
470
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}