umfpack_solver.hpp 4.25 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * Umfpack_solver.hpp
 *
 *  Created on: Nov 27, 2015
 *      Author: i-bird
 */

#ifndef OPENFPM_NUMERICS_SRC_SOLVERS_UMFPACK_SOLVER_HPP_
#define OPENFPM_NUMERICS_SRC_SOLVERS_UMFPACK_SOLVER_HPP_

11 12 13 14 15 16 17 18 19 20
#define UMFPACK_NONE 0

#define SOLVER_NOOPTION 0
#define SOLVER_PRINT_RESIDUAL_NORM_INFINITY 1
#define SOLVER_PRINT_DETERMINANT 2

#ifdef HAVE_EIGEN

/////// Compiled with EIGEN support

21 22
#include "Vector/Vector.hpp"
#include "Eigen/UmfPackSupport"
23 24
#include <Eigen/SparseLU>

25 26 27 28 29 30

template<typename T>
class umfpack_solver
{
public:

31
	template<unsigned int impl, typename id_type> static Vector<T> solve(const SparseMatrix<T,id_type,impl> & A, const Vector<T> & b)
32
	{
33
		std::cerr << "Error Umfpack only support double precision, and int ad id type" << "/n";
34
	}
35 36 37 38 39

	void best_solve()
	{
		std::cerr << "Error Umfpack only support double precision, and int ad id type" << "/n";
	}
40 41
};

42

43 44 45
template<>
class umfpack_solver<double>
{
46

47 48
public:

49 50 51 52 53
	/*! \brief Here we invert the matrix and solve the system
	 *
	 *  \warning umfpack is not a parallel solver, this function work only with one processor
	 *
	 *  \note if you want to use umfpack in a NON parallel, but on a distributed data, use solve with triplet
Pietro Incardona's avatar
Pietro Incardona committed
54
	 *
55
	 *	\tparam impl Implementation of the SparseMatrix
Pietro Incardona's avatar
Pietro Incardona committed
56 57
	 *
	 */
58 59 60 61
	static Vector<double,EIGEN_BASE> try_solve(SparseMatrix<double,int,EIGEN_BASE> & A, const Vector<double,EIGEN_BASE> & b, size_t opt = UMFPACK_NONE)
	{
		return solve(A,b,opt);
	}
Pietro Incardona's avatar
Pietro Incardona committed
62

63 64 65 66 67 68 69 70 71
	/*! \brief Here we invert the matrix and solve the system
	 *
	 *  \warning umfpack is not a parallel solver, this function work only with one processor
	 *
	 *  \note if you want to use umfpack in a NON parallel, but on a distributed data, use solve with triplet
	 *
	 *	\tparam impl Implementation of the SparseMatrix
	 *
	 */
72
	static Vector<double,EIGEN_BASE> solve(SparseMatrix<double,int,EIGEN_BASE> & A, const Vector<double,EIGEN_BASE> & b, size_t opt = UMFPACK_NONE)
73
	{
74
		Vcluster & vcl = create_vcluster();
75

76
		Vector<double> x;
77

78
		// only master processor solve
79
		Eigen::UmfPackLU<Eigen::SparseMatrix<double,0,int> > solver;
80

81 82 83 84 85 86 87
		// Collect the matrix on master
		auto mat_ei = A.getMat();

		Eigen::Matrix<double, Eigen::Dynamic, 1> x_ei;

		// Collect the vector on master
		auto b_ei = b.getVec();
88

89 90 91 92 93 94
		// Copy b into x, this also copy the information on how to scatter back the information on x
		x = b;

		if (vcl.getProcessUnitID() == 0)
		{
			solver.compute(mat_ei);
95

96 97 98 99
			if(solver.info()!=Eigen::Success)
			{
				// decomposition failed
				std::cout << __FILE__ << ":" << __LINE__ << " solver failed" << "\n";
100 101 102

				x.scatter();

103 104
				return x;
			}
105

106
			x_ei = solver.solve(b_ei);
107

108 109
			if (opt & SOLVER_PRINT_RESIDUAL_NORM_INFINITY)
			{
110 111
				Eigen::Matrix<double, Eigen::Dynamic, 1> res;
				res = mat_ei * x_ei - b_ei;
112

113
				std::cout << "Infinity norm: " << res.lpNorm<Eigen::Infinity>() << "\n";
114
			}
115

116 117 118 119
			if (opt & SOLVER_PRINT_DETERMINANT)
			{
				std::cout << " Determinant: " << solver.determinant() << "\n";
			}
120

121
			x = x_ei;
122
		}
123 124 125 126

		// Vector is only on master, scatter back the information
		x.scatter();

127 128 129 130
		return x;
	}
};

131 132 133 134 135 136
#else

/////// Compiled without EIGEN support

#include "Vector/Vector.hpp"

137
//! stub when library compiled without eigen
138 139 140 141 142
template<typename T>
class umfpack_solver
{
public:

143
	//! stub solve
144 145 146 147
	template<typename impl> static Vector<T> solve(const SparseMatrix<T,impl> & A, const Vector<T> & b)
	{
		std::cerr << __FILE__ << ":" << __LINE__ << " Error Umfpack only support double precision" << "/n";
	}
148

149
	//! stub solve
150 151 152 153
	void best_solve()
	{
		std::cerr << __FILE__ << ":" << __LINE__ << " Error Umfpack only support double precision" << "/n";
	}
154 155
};

156
//! stub when library compiled without eigen
157 158 159 160 161 162
template<>
class umfpack_solver<double>
{

public:

163
	//! stub solve
164
	template<unsigned int impl, typename id_type> static Vector<double> solve(SparseMatrix<double,id_type,impl> & A, const Vector<double> & b, size_t opt = UMFPACK_NONE)
165 166 167 168 169 170 171
	{
		std::cerr << __FILE__ << ":" << __LINE__ << " Error in order to use umfpack you must compile OpenFPM with linear algebra support" << "/n";

		Vector<double> x;

		return x;
	}
172

173
	//! stub solve
174 175 176 177
	void best_solve()
	{
		std::cerr << __FILE__ << ":" << __LINE__ << " Error in order to use umfpack you must compile OpenFPM with linear algebra support" << "/n";
	}
178 179 180
};

#endif
181 182 183


#endif /* OPENFPM_NUMERICS_SRC_SOLVERS_UMFPACK_SOLVER_HPP_ */