main.cpp 28.5 KB
Newer Older
incardon's avatar
incardon committed
1
/*!
incardon's avatar
incardon committed
2
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break simulation with Dynamic load balacing
incardon's avatar
incardon committed
3 4 5 6 7 8 9 10
 *
 *
 * [TOC]
 *
 *
 * # SPH with Dynamic load Balancing # {#SPH_dlb}
 *
 *
incardon's avatar
incardon committed
11 12 13
 * This example show the classical SPH Dam break simulation with Load Balancing and Dynamic load balancing. With
 * Load balancing and Dynamic load balancing we indicate the possibility of the system to re-adapt the domain
 * decomposition to keep all the processor load and reduce idle time.
incardon's avatar
incardon committed
14 15 16 17
 *
 * ## inclusion ## {#e0_v_inclusion}
 *
 * In order to use distributed vectors in our code we have to include the file Vector/vector_dist.hpp
incardon's avatar
incardon committed
18 19
 * we also include DrawParticles that has nice utilities to draw particles in parallel accordingly
 * to simple shapes
incardon's avatar
incardon committed
20 21 22 23 24 25 26 27
 *
 * \snippet Vector/7_SPH_dlb/main.cpp inclusion
 *
 */

//! \cond [inclusion] \endcond
#include "Vector/vector_dist.hpp"
#include <math.h>
incardon's avatar
incardon committed
28
#include "Draw/DrawParticles.hpp"
incardon's avatar
incardon committed
29 30
//! \cond [inclusion] \endcond

incardon's avatar
incardon committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
/*!
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balacing
 *
 * ## Parameters {#e7_sph_parameters}
 *
 * The SPH formulation used in this example code follow these equations
 *
 * \f$\frac{dv_a}{dt} = - \sum_{b = NN(a) } m_b \left(\frac{P_a + P_b}{\rho_a \rho_b} + \Pi_{ab} \right) \nabla_{a} W_{ab} + g  \tag{1} \f$
 *
 * \f$\frac{d\rho_a}{dt} =  \sum_{b = NN(a) } m_b v_{ab} \cdot \nabla_{a} W_{ab} \tag{2} \f$
 *
 * \f$ P_a = b \left[ \left( \frac{\rho_a}{\rho_{0}} \right)^{\gamma} - 1 \right] \tag{3} \f$
 *
 * with
 *
 * \f$ \Pi_{ab} =  \begin{cases} - \frac {\alpha \bar{c_{ab}} \mu_{ab} }{\bar{\rho_{ab}} } & v_{ab} \cdot r_{ab} > 0 \\ 0 & v_{ab} \cdot r_{ab} < 0 \end{cases} \tag{4}\f$
 *
 * and the constants defined as
 *
 * \f$ b = \frac{c_{s}^{2} \rho_0}{\gamma} \tag{5} \f$
 *
 * \f$ c_s = \sqrt{g \cdot h_{swl}} \tag{6} \f$
 *
 * While the particle kernel support is given by
 *
 * \f$ H = \sqrt{3 \cdot dp} \tag{7} \f$
 *
 * Explain the equations is out of the context of this tutorial. An introduction
 * can be found in the original Monghagan SPH paper. In this example we use the version
 * used by Dual-SPH (http://www.dual.sphysics.org/). A summary of the equation and constants can be founded in
 * their User Manual and the XML user Manual.
 * In the following we define all the constants required by the simulation
 *
 * \snippet Vector/7_SPH_dlb/main.cpp sim parameters
 *
 */

/*! \cond [sim parameters] \endcond */
incardon's avatar
incardon committed
69

incardon's avatar
incardon committed
70
// A constant to indicate boundary particles
incardon's avatar
incardon committed
71 72
#define BOUNDARY 0

incardon's avatar
incardon committed
73 74
// A constant to indicate fluid particles
#define FLUID 1
incardon's avatar
incardon committed
75

incardon's avatar
incardon committed
76
// initial spacing between particles dp in the formulas
incardon's avatar
incardon committed
77
const double dp = 0.0085;
incardon's avatar
incardon committed
78 79
// Maximum height of the fluid water
// is coing to be calculated and filled later on
incardon's avatar
incardon committed
80
double h_swl = 0.0;
incardon's avatar
incardon committed
81 82

// in the formulas indicated with c_s (constant used to calculate the sound speed)
incardon's avatar
incardon committed
83
const double coeff_sound = 20.0;
incardon's avatar
incardon committed
84 85

// gamma in the formulas
incardon's avatar
incardon committed
86
const double gamma_ = 7.0;
incardon's avatar
incardon committed
87 88

// sqrt(3.0*dp*dp) support of the kernel
incardon's avatar
incardon committed
89
const double H = 0.0147224318643;
incardon's avatar
incardon committed
90 91

// Eta in the formulas
incardon's avatar
incardon committed
92
const double Eta2 = 0.01 * H*H;
incardon's avatar
incardon committed
93 94


incardon's avatar
incardon committed
95 96
const double visco = 0.1;
double cbar = 0.0;
incardon's avatar
incardon committed
97 98

// Mass of the fluid particles
incardon's avatar
incardon committed
99
const double MassFluid = 0.000614125;
incardon's avatar
incardon committed
100 101

// Mass of the boundary particles
incardon's avatar
incardon committed
102
const double MassBound = 0.000614125;
incardon's avatar
incardon committed
103 104 105 106 107

// End simulation time
const double t_end = 1.5;

// Gravity acceleration
incardon's avatar
incardon committed
108
const double gravity = 9.81;
incardon's avatar
incardon committed
109 110

// Reference densitu 1000Kg/m^3
incardon's avatar
incardon committed
111
const double rho_zero = 1000.0;
incardon's avatar
incardon committed
112 113

// Filled later require h_swl, it is b in the formulas
incardon's avatar
incardon committed
114
double B = 0.0;
incardon's avatar
incardon committed
115 116

// Constant used to define time integration
incardon's avatar
incardon committed
117
const double CFLnumber = 0.2;
incardon's avatar
incardon committed
118 119

// Minimum T
incardon's avatar
incardon committed
120 121
const double DtMin = 0.00001;

incardon's avatar
incardon committed
122 123 124 125 126 127
// Minimum Rho allowed
const double RhoMin = 700.0;

// Maximum Rho allowed
const double RhoMax = 1300.0;

incardon's avatar
incardon committed
128 129 130
// Filled in initialization
double max_fluid_height = 0.0;

incardon's avatar
incardon committed
131 132 133
// Properties

// FLUID or BOUNDARY
incardon's avatar
incardon committed
134
const size_t type = 0;
incardon's avatar
incardon committed
135 136

// Density
incardon's avatar
incardon committed
137
const int rho = 1;
incardon's avatar
incardon committed
138 139

// Density at step n-1
incardon's avatar
incardon committed
140
const int rho_prev = 2;
incardon's avatar
incardon committed
141 142

// Pressure
incardon's avatar
incardon committed
143
const int Pressure = 3;
incardon's avatar
incardon committed
144 145

// Delta rho calculated in the force calculation
incardon's avatar
incardon committed
146
const int drho = 4;
incardon's avatar
incardon committed
147 148

// calculated force
incardon's avatar
incardon committed
149
const int force = 5;
incardon's avatar
incardon committed
150 151

// velocity
incardon's avatar
incardon committed
152
const int velocity = 6;
incardon's avatar
incardon committed
153 154

// velocity at previous step
incardon's avatar
incardon committed
155 156
const int velocity_prev = 7;

incardon's avatar
incardon committed
157 158 159 160 161 162
// Type of the vector containing particles
typedef vector_dist<3,double,aggregate<size_t,double,  double,    double,     double,     double[3], double[3], double[3]>> particles;
//                                       |      |        |          |            |            |         |            |
//                                       |      |        |          |            |            |         |            |
//                                     type   density   density    Pressure    delta       force     velocity    velocity
//                                                      at n-1                 density                           at n - 1
incardon's avatar
incardon committed
163

incardon's avatar
incardon committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200

/*! \cond [sim parameters] \endcond */

/*! \brief Linear model
 *
 * The linear model count each particle as weight one
 *
 */
struct ModelCustom
{
	size_t factor = 1;

	template<typename Decomposition, typename vector> inline void addComputation(Decomposition & dec, const vector & vd, size_t v, size_t p)
	{
		if (vd.template getProp<type>(p) == FLUID)
		{
			dec.addComputationCost(v,3);
		}
		else
		{
			dec.addComputationCost(v,2);
		}

	}

	template<typename Decomposition> inline void applyModel(Decomposition & dec, size_t v)
	{
		dec.setSubSubDomainComputationCost(v, dec.getSubSubDomainComputationCost(v) * dec.getSubSubDomainComputationCost(v));
	}
};

/*! \brief Linear model
 *
 * The linear model count each particle as weight one
 *
 */
struct ModelCustom1
incardon's avatar
incardon committed
201
{
incardon's avatar
incardon committed
202 203 204 205 206 207 208
	size_t factor = 1;

	template<typename Decomposition, typename vector> inline void addComputation(Decomposition & dec, const vector & vd, size_t v, size_t p)
	{

			dec.addComputationCost(v,100);
	}
incardon's avatar
incardon committed
209

incardon's avatar
incardon committed
210 211
	template<typename Decomposition> inline void applyModel(Decomposition & dec, size_t v)
	{
incardon's avatar
incardon committed
212

incardon's avatar
incardon committed
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
	}
};

/*!
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balacing
 *
 * ## Equation of state and SPH Kernels {#e7_sph_equation_state}
 *
 * This function implement the formula 3 in the set of equations. It calculate the
 * pressure of each particle based on the local density of each particle.
 *
 * \snippet Vector/7_SPH_dlb/main.cpp eq_state_and_ker
 *
 */

/*! \cond [eq_state_and_ker] \endcond */


inline void EqState(particles & vd)
{
incardon's avatar
incardon committed
233 234 235 236 237 238 239 240 241 242 243 244 245
	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto a = it.get();

		double rho_a = vd.template getProp<rho>(a);
		double rho_frac = rho_a / rho_zero;

		vd.template getProp<Pressure>(a) = B*( rho_frac*rho_frac*rho_frac*rho_frac*rho_frac*rho_frac*rho_frac - 1.0);

		++it;
	}
incardon's avatar
incardon committed
246
}
incardon's avatar
incardon committed
247

incardon's avatar
incardon committed
248
/*! \cond [eq_state_and_ker] \endcond */
incardon's avatar
incardon committed
249

incardon's avatar
incardon committed
250 251 252 253 254 255 256 257 258 259 260
/*!
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function define the Cubic kernel or \f$ W_{ab} \f$ in the set of equations. The cubic kernel is
 * defined as
 *
 * \f$ \begin{cases} 1.0 - \frac{3}{2} q^2 + \frac{3}{4} q^3 & 0 < q < 1 \\ (2 - q)^3 & 1 < q < 2 \\ 0 & q > 2 \end{cases} \f$
 *
 * \snippet Vector/7_SPH_dlb/main.cpp kernel_sph
 *
 */
incardon's avatar
incardon committed
261

incardon's avatar
incardon committed
262
/*! \cond [kernel_sph] \endcond */
incardon's avatar
incardon committed
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277

const double a2 = 1.0/M_PI/H/H/H;

inline double Wab(double r)
{
	r /= H;

	if (r < 1.0)
		return (1.0 - 3.0/2.0*r*r + 3.0/4.0*r*r*r)*a2;
	else if (r < 2.0)
		return (1.0/4.0*(2.0 - r*r)*(2.0 - r*r)*(2.0 - r*r))*a2;
	else
		return 0.0;
}

incardon's avatar
incardon committed
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
/*! \cond [kernel_sph] \endcond */

/*!
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function define the derivative of the Cubic kernel function \f$ W_{ab} \f$ in the set of equations.
 *
 * \f$ \nabla W_{ab} = \beta (x,y,z)  \f$
 *
 * \f$ \beta = \begin{cases} (c_1 q + d_1 q^2) & 0 < q < 1 \\ c_2 (2 - q)^2  & 1 < q < 2 \end{cases} \f$
 *
 * \snippet Vector/7_SPH_dlb/main.cpp kernel_sph_der
 *
 */

/*! \cond [kernel_sph_der] \endcond */

const double c1 = -3.0/M_PI/H/H/H/H;
const double d1 = 9.0/4.0/M_PI/H/H/H/H;
const double c2 = -3.0/4.0/M_PI/H/H/H/H;
const double a2_4 = 0.25*a2;
// Filled later
double W_dap = 0.0;
incardon's avatar
incardon committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

inline void DWab(Point<3,double> & dx, Point<3,double> & DW, double r, bool print)
{
	const double qq=r/H;

	if (qq < 1.0)
	{
		double qq2 = qq * qq;
		double fac = (c1*qq + d1*qq2)/r;

		DW.get(0) = fac*dx.get(0);
		DW.get(1) = fac*dx.get(1);
		DW.get(2) = fac*dx.get(2);
	}
	else if (qq < 2.0)
	{
		double wqq = (2.0 - qq);
		double fac = c2 * wqq * wqq / r;

		DW.get(0) = fac * dx.get(0);
		DW.get(1) = fac * dx.get(1);
		DW.get(2) = fac * dx.get(2);
	}
	else
	{
		DW.get(0) = 0.0;
		DW.get(1) = 0.0;
		DW.get(2) = 0.0;
	}
}

incardon's avatar
incardon committed
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
/*! \cond [kernel_sph_der] \endcond */

/*!
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function define the Tensile term. An explanation of the Tensile term is out of the
 * context of this tutorial, but in brief is an additional repulsive term that avoid the particles
 * to get enough near. Can be considered at small scale like a repulsive force that avoid
 * particles to get too close like the Lennard-Jhonned potential at atomistic level. A good
 * reference is the Monaghan paper "SPH without a Tensile Instability"
 *
 * \snippet Vector/7_SPH_dlb/main.cpp tensile_term
 *
 *
 */

/*! \cond [tensile_term] \endcond */

incardon's avatar
incardon committed
350
// Tensile correction
incardon's avatar
incardon committed
351
inline double Tensile(double r, double rhoa, double rhob, double prs1, double prs2)
incardon's avatar
incardon committed
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
{
	const double qq=r/H;
	//-Cubic Spline kernel
	double wab;
	if(r>H)
	{
		double wqq1=2.0f-qq;
		double wqq2=wqq1*wqq1;

		wab=a2_4*(wqq2*wqq1);
	}
	else
	{
	    double wqq2=qq*qq;
	    double wqq3=wqq2*qq;

	    wab=a2*(1.0f-1.5f*wqq2+0.75f*wqq3);
	}

	//-Tensile correction.
	double fab=wab*W_dap;
	fab*=fab; fab*=fab; //fab=fab^4
	const double tensilp1=(prs1/(rhoa*rhoa))*(prs1>0? 0.01: -0.2);
	const double tensilp2=(prs2/(rhob*rhob))*(prs2>0? 0.01: -0.2);

	return (fab*(tensilp1+tensilp2));
}

incardon's avatar
incardon committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
/*! \cond [tensile_term] \endcond */


/*!
 *
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function is the implementation of the viscous term \f$ \Pi_{ab} \f$
 *
 * \snippet Vector/7_SPH_dlb/main.cpp viscous_term
 *
 *
 */

/*! \cond [viscous_term] \endcond */

inline double Pi(const Point<3,double> & dr, double rr2, Point<3,double> & dv, double rhoa, double rhob, double massb, double & visc)
incardon's avatar
incardon committed
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
{
	const double dot = dr.get(0)*dv.get(0) + dr.get(1)*dv.get(1) + dr.get(2)*dv.get(2);
	const double dot_rr2 = dot/(rr2+Eta2);
	visc=std::max(dot_rr2,visc);

	if(dot < 0)
	{
		const float amubar=H*dot_rr2;
		const float robar=(rhoa+rhob)*0.5f;
		const float pi_visc=(-visco*cbar*amubar/robar);

		return pi_visc;
    }
	else
		return 0.0;
}

incardon's avatar
incardon committed
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
/*! \cond [viscous_term] \endcond */

/*!
 *
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * ## Force calculation {#e7_force_calc}
 *
 * Calculate forces. It calculate equation 1 and 2 in the set of formulas
 *
 * \snippet Vector/7_SPH_dlb/main.cpp calc_forces
 *
 *
 */

/*! \cond [calc_forces] \endcond */

incardon's avatar
incardon committed
431 432 433 434 435
template<typename CellList> inline double calc_forces(particles & vd, CellList & NN, double & max_visc)
{
	auto part = vd.getDomainIterator();
	double visc = 0;

incardon's avatar
incardon committed
436
	// Update the cell-list
incardon's avatar
incardon committed
437 438
	vd.updateCellList(NN);

incardon's avatar
incardon committed
439
	// For each particle ...
incardon's avatar
incardon committed
440 441
	while (part.isNext())
	{
incardon's avatar
incardon committed
442
		// ... a
incardon's avatar
incardon committed
443 444 445 446 447
		auto a = part.get();

		// Get the position xp of the particle
		Point<3,double> xa = vd.getPos(a);

incardon's avatar
incardon committed
448
		// Take the mass of the particle dependently if it is FLUID or BOUNDARY
incardon's avatar
incardon committed
449
		double massa = (vd.getProp<type>(a) == FLUID)?MassFluid:MassBound;
incardon's avatar
incardon committed
450 451

		// Get the density of the of the particle a
incardon's avatar
incardon committed
452
		double rhoa = vd.getProp<rho>(a);
incardon's avatar
incardon committed
453 454

		// Get the pressure of the particle a
incardon's avatar
incardon committed
455
		double Pa = vd.getProp<Pressure>(a);
incardon's avatar
incardon committed
456 457

		// Get the Velocity of the particle a
incardon's avatar
incardon committed
458 459
		Point<3,double> va = vd.getProp<velocity>(a);

incardon's avatar
incardon committed
460
		// Reset the force counter (- gravity on zeta direction)
incardon's avatar
incardon committed
461 462 463 464 465
		vd.template getProp<force>(a)[0] = 0.0;
		vd.template getProp<force>(a)[1] = 0.0;
		vd.template getProp<force>(a)[2] = -gravity;
		vd.template getProp<drho>(a) = 0.0;

incardon's avatar
incardon committed
466 467 468 469 470 471
		// We threat FLUID particle differently from BOUNDARY PARTICLES ...
		if (vd.getProp<type>(a) != FLUID)
		{
			// If it is a boundary particle calculate the delta rho based on equation 2
			// This require to run across the neighborhoods particles of a
			auto Np = NN.template getNNIterator<NO_CHECK>(NN.getCell(vd.getPos(a)));
incardon's avatar
incardon committed
472

incardon's avatar
incardon committed
473 474 475 476 477
			// For each neighborhood particle
			while (Np.isNext() == true)
			{
				// ... q
				auto b = Np.get();
incardon's avatar
incardon committed
478

incardon's avatar
incardon committed
479 480
				// Get the position xp of the particle
				Point<3,double> xb = vd.getPos(b);
incardon's avatar
incardon committed
481

incardon's avatar
incardon committed
482 483
				// if (p == q) skip this particle
				if (a.getKey() == b)	{++Np; continue;};
incardon's avatar
incardon committed
484

incardon's avatar
incardon committed
485 486
				// get the mass of the particle
				double massb = (vd.getProp<type>(b) == FLUID)?MassFluid:MassBound;
incardon's avatar
incardon committed
487

incardon's avatar
incardon committed
488 489
				// Get the velocity of the particle b
				Point<3,double> vb = vd.getProp<velocity>(b);
incardon's avatar
incardon committed
490

incardon's avatar
incardon committed
491 492 493
				// Get the pressure and density of particle b
				double Pb = vd.getProp<Pressure>(b);
				double rhob = vd.getProp<rho>(b);
incardon's avatar
incardon committed
494

incardon's avatar
incardon committed
495 496 497 498
				// Get the distance between p and q
				Point<3,double> dr = xa - xb;
				// take the norm of this vector
				double r2 = norm2(dr);
incardon's avatar
incardon committed
499

incardon's avatar
incardon committed
500 501 502 503 504
				// If the particles interact ...
				if (r2 < 4.0*H*H)
				{
					// ... calculate delta rho
					double r = sqrt(r2);
incardon's avatar
incardon committed
505

incardon's avatar
incardon committed
506
					Point<3,double> dv = va - vb;
incardon's avatar
incardon committed
507

incardon's avatar
incardon committed
508 509
					Point<3,double> DW;
					DWab(dr,DW,r,false);
incardon's avatar
incardon committed
510

incardon's avatar
incardon committed
511 512 513
					const double dot = dr.get(0)*dv.get(0) + dr.get(1)*dv.get(1) + dr.get(2)*dv.get(2);
					const double dot_rr2 = dot/(r2+Eta2);
					max_visc=std::max(dot_rr2,max_visc);
incardon's avatar
incardon committed
514

incardon's avatar
incardon committed
515 516
					vd.getProp<drho>(a) += massb*(dv.get(0)*DW.get(0)+dv.get(1)*DW.get(1)+dv.get(2)*DW.get(2));
				}
incardon's avatar
incardon committed
517

incardon's avatar
incardon committed
518
				++Np;
incardon's avatar
incardon committed
519 520
			}
		}
incardon's avatar
incardon committed
521
		else
incardon's avatar
incardon committed
522
		{
incardon's avatar
incardon committed
523
			// If it is a fluid particle calculate based on equation 1 and 2
incardon's avatar
incardon committed
524

incardon's avatar
incardon committed
525 526
			// Get an iterator over the neighborhood particles of p
			auto Np = NN.template getNNIterator<NO_CHECK>(NN.getCell(vd.getPos(a)));
incardon's avatar
incardon committed
527

incardon's avatar
incardon committed
528 529 530 531 532
			// For each neighborhood particle
			while (Np.isNext() == true)
			{
				// ... q
				auto b = Np.get();
incardon's avatar
incardon committed
533

incardon's avatar
incardon committed
534 535
				// Get the position xp of the particle
				Point<3,double> xb = vd.getPos(b);
incardon's avatar
incardon committed
536

incardon's avatar
incardon committed
537 538
				// if (p == q) skip this particle
				if (a.getKey() == b)	{++Np; continue;};
incardon's avatar
incardon committed
539

incardon's avatar
incardon committed
540 541 542 543
				double massb = (vd.getProp<type>(b) == FLUID)?MassFluid:MassBound;
				Point<3,double> vb = vd.getProp<velocity>(b);
				double Pb = vd.getProp<Pressure>(b);
				double rhob = vd.getProp<rho>(b);
incardon's avatar
incardon committed
544

incardon's avatar
incardon committed
545 546 547 548
				// Get the distance between p and q
				Point<3,double> dr = xa - xb;
				// take the norm of this vector
				double r2 = norm2(dr);
incardon's avatar
incardon committed
549

incardon's avatar
incardon committed
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
				// if they interact
				if (r2 < 4.0*H*H)
				{
					double r = sqrt(r2);

					Point<3,double> v_rel = va - vb;

					Point<3,double> DW;
					DWab(dr,DW,r,false);

					double factor = - massb*((vd.getProp<Pressure>(a) + vd.getProp<Pressure>(b)) / (rhoa * rhob) + Tensile(r,rhoa,rhob,Pa,Pb) + Pi(dr,r2,v_rel,rhoa,rhob,massb,visc));

					vd.getProp<force>(a)[0] += factor * DW.get(0);
					vd.getProp<force>(a)[1] += factor * DW.get(1);
					vd.getProp<force>(a)[2] += factor * DW.get(2);

					vd.getProp<drho>(a) += massb*(v_rel.get(0)*DW.get(0)+v_rel.get(1)*DW.get(1)+v_rel.get(2)*DW.get(2));
				}

				++Np;
			}
incardon's avatar
incardon committed
571
		}
incardon's avatar
incardon committed
572 573

		++part;
incardon's avatar
incardon committed
574
	}
incardon's avatar
incardon committed
575
}
incardon's avatar
incardon committed
576

incardon's avatar
incardon committed
577
/*! \cond [calc_forces] \endcond */
incardon's avatar
incardon committed
578

incardon's avatar
incardon committed
579 580 581 582 583 584 585 586 587 588
/*!
 *
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function calculate the Maximum acceleration and velocity across the particles.
 *
 * \snippet Vector/7_SPH_dlb/main.cpp max_acc_vel
 *
 *
 */
incardon's avatar
incardon committed
589

incardon's avatar
incardon committed
590
/*! \cond [max_acc_vel] \endcond */
incardon's avatar
incardon committed
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

void max_acceleration_and_velocity(particles & vd, double & max_acc, double & max_vel)
{
	// Calculate the maximum acceleration
	auto part = vd.getDomainIterator();

	while (part.isNext())
	{
		auto a = part.get();

		Point<3,double> acc(vd.getProp<force>(a));
		double acc2 = norm2(acc);

		Point<3,double> vel(vd.getProp<velocity>(a));
		double vel2 = norm2(vel);

		if (vel2 >= max_vel)
			max_vel = vel2;

		if (acc2 >= max_acc)
			max_acc = acc2;

		++part;
	}
	max_acc = sqrt(max_acc);
	max_vel = sqrt(max_vel);
}

incardon's avatar
incardon committed
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
/*! \cond [max_acc_vel] \endcond */

/*!
 *
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * In this example we are using Dynamic time-stepping. The Dynamic time stepping is
 * calculated with the Courant-Friedrich-Lewy condition. See Monaghan 1992 "Smoothed Particle Hydrodynamic"
 *
 * \f$ \delta t = CFL \cdot min(t_f,t_{cv}) \f$
 *
 * where
 *
 * \f$ \delta t_f = min \sqrt{h/f_a}\f$
 *
 * \f$  \delta t_{cv} = min \frac{h}{c_s + max \left| \frac{hv_{ab} \cdot r_{ab}}{r_{ab}^2} \right|} \f$
 *
 *
 * \snippet Vector/7_SPH_dlb/main.cpp dyn_stepping
 *
 *
 */

/*! \cond [dyn_stepping] \endcond */
incardon's avatar
incardon committed
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

double calc_deltaT(particles & vd, double ViscDtMax)
{
	double Maxacc = 0.0;
	double Maxvel = 0.0;
	max_acceleration_and_velocity(vd,Maxacc,Maxvel);

	//-dt1 depends on force per unit mass.
	const double dt_f = (Maxacc)?sqrt(H/Maxacc):std::numeric_limits<int>::max();

	//-dt2 combines the Courant and the viscous time-step controls.
	const double dt_cv = H/(std::max(cbar,Maxvel*10.) + H*ViscDtMax);

	//-dt new value of time step.
	double dt=double(CFLnumber)*std::min(dt_f,dt_cv);
	if(dt<double(DtMin))
		dt=double(DtMin);

	return dt;
}

incardon's avatar
incardon committed
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
/*! \cond [dyn_stepping] \endcond */

/*!
 *
 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
 *
 * This function perform verlet integration accordingly to the Verlet time stepping scheme
 *
 * \f$ v_a^{n+1} = v_a^{n-1} + 2 \delta t F_a^{n} \f$
 *
 * \f$ r_a^{n+1} = \delta t V_a^n + 0.5 \delta t^2 F_a^n \f$
 *
 * \f$ \rho_a^{n+1} = \rho_a^{n-1} + 2 \delta t D_a^n \f$
 *
 * Every N Verlet steps the euler stepping scheme is choosen to avoid instabilities
 *
 * \f$ v_a^{n+1} = v_a^{n} + \delta t F_a^n \f$
 *
 * \f$ r_a^{n+1} = r_a^{n} + \delta t V_a^n + 0.5 delta t^2 F_a^n \f$
 *
 * \f$ \rho_a^n + \delta t D_a^n \f$
 *
 * More the integration this function also check that no particles go outside the simulation
 * domain or their density go dangerously out of range
 *
 * \snippet Vector/7_SPH_dlb/main.cpp verlet_int
 *
 *
 */

/*! \cond [verlet_int] \endcond */

incardon's avatar
incardon committed
696 697
openfpm::vector<size_t> to_remove;

incardon's avatar
incardon committed
698
size_t cnt = 0;
incardon's avatar
incardon committed
699

incardon's avatar
incardon committed
700
void verlet_int(particles & vd, double dt, bool VerletStep)
incardon's avatar
incardon committed
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
{
	to_remove.clear();

	// Calculate the maximum acceleration
	auto part = vd.getDomainIterator();

	double dt205 = dt*dt*0.5;
	double dt2 = dt*2.0;

	while (part.isNext())
	{
		auto a = part.get();

		if (vd.template getProp<type>(a) == BOUNDARY)
		{
incardon's avatar
incardon committed
716 717
			double rhop = vd.template getProp<rho>(a);

incardon's avatar
incardon committed
718
			// Update only the density
incardon's avatar
incardon committed
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
		    if (VerletStep == true)
		    {
		    	vd.template getProp<velocity>(a)[0] = 0.0;
		    	vd.template getProp<velocity>(a)[1] = 0.0;
		    	vd.template getProp<velocity>(a)[2] = 0.0;
		    	vd.template getProp<rho>(a) = vd.template getProp<rho_prev>(a) + dt2*vd.template getProp<drho>(a);
		    }
		    else
		    {
		    	vd.template getProp<velocity>(a)[0] = 0.0;
		    	vd.template getProp<velocity>(a)[1] = 0.0;
		    	vd.template getProp<velocity>(a)[2] = 0.0;
		    	vd.template getProp<rho>(a) = vd.template getProp<rho>(a) + dt*vd.template getProp<drho>(a);
		    }

		    vd.template getProp<rho_prev>(a) = rhop;

incardon's avatar
incardon committed
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
			++part;
			continue;
		}

		//-Calculate displacement and update position / Calcula desplazamiento y actualiza posicion.
		double dx = vd.template getProp<velocity>(a)[0]*dt + vd.template getProp<force>(a)[0]*dt205;
	    double dy = vd.template getProp<velocity>(a)[1]*dt + vd.template getProp<force>(a)[1]*dt205;
	    double dz = vd.template getProp<velocity>(a)[2]*dt + vd.template getProp<force>(a)[2]*dt205;

	    vd.getPos(a)[0] += dx;
	    vd.getPos(a)[1] += dy;
	    vd.getPos(a)[2] += dz;

	    double velX = vd.template getProp<velocity>(a)[0];
	    double velY = vd.template getProp<velocity>(a)[1];
	    double velZ = vd.template getProp<velocity>(a)[2];
	    double rhop = vd.template getProp<rho>(a);

incardon's avatar
incardon committed
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	    if (VerletStep == true)
	    {
	    	vd.template getProp<velocity>(a)[0] = vd.template getProp<velocity_prev>(a)[0] + vd.template getProp<force>(a)[0]*dt2;
	    	vd.template getProp<velocity>(a)[1] = vd.template getProp<velocity_prev>(a)[1] + vd.template getProp<force>(a)[1]*dt2;
	    	vd.template getProp<velocity>(a)[2] = vd.template getProp<velocity_prev>(a)[2] + vd.template getProp<force>(a)[2]*dt2;
	    	vd.template getProp<rho>(a) = vd.template getProp<rho_prev>(a) + dt2*vd.template getProp<drho>(a);
	    }
	    else
	    {
	    	vd.template getProp<velocity>(a)[0] = vd.template getProp<velocity>(a)[0] + vd.template getProp<force>(a)[0]*dt;
	    	vd.template getProp<velocity>(a)[1] = vd.template getProp<velocity>(a)[1] + vd.template getProp<force>(a)[1]*dt;
	    	vd.template getProp<velocity>(a)[2] = vd.template getProp<velocity>(a)[2] + vd.template getProp<force>(a)[2]*dt;
	    	vd.template getProp<rho>(a) = vd.template getProp<rho>(a) + dt*vd.template getProp<drho>(a);
	    }

	    // Check if there are particles to remove

	    if (vd.getPos(a)[0] <  0.000263878 || vd.getPos(a)[1] < 0.000263878 || vd.getPos(a)[2] < 0.000263878 ||
	        vd.getPos(a)[0] >  0.000263878+1.59947 || vd.getPos(a)[1] > 0.000263878+0.672972 || vd.getPos(a)[2] > 0.000263878+0.903944 ||
			vd.template getProp<rho>(a) < RhoMin || vd.template getProp<rho>(a) > RhoMax)
	    {
	    	std::cout << "Particle_out" << std::endl;
	                   to_remove.add(a.getKey());
	    }
incardon's avatar
incardon committed
778 779 780 781 782 783 784 785 786 787

	    vd.template getProp<velocity_prev>(a)[0] = velX;
	    vd.template getProp<velocity_prev>(a)[1] = velY;
	    vd.template getProp<velocity_prev>(a)[2] = velZ;
	    vd.template getProp<rho_prev>(a) = rhop;

		++part;
	}

	vd.remove(to_remove,0);
incardon's avatar
incardon committed
788 789

	cnt++;
incardon's avatar
incardon committed
790 791
}

incardon's avatar
incardon committed
792 793
/*! \cond [verlet_int] \endcond */

incardon's avatar
incardon committed
794 795 796 797
int main(int argc, char* argv[])
{
	/*!
	 *
incardon's avatar
incardon committed
798 799 800
	 * \page Vector_7_sph_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
	 *
	 * ## Main function ##
incardon's avatar
incardon committed
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	 *
	 * Here we Initialize the library, we create a Box that define our domain, boundary conditions, ghost
	 *
	 * \see \ref e0_s_init
	 *
	 * \snippet Vector/7_SPH_dlb/main.cpp Initialization and parameters
	 *
	 */

	//! \cond [Initialization and parameters] \endcond

    // initialize the library
	openfpm_init(&argc,&argv);

	// Here we define our domain a 2D box with internals from 0 to 1.0 for x and y
incardon's avatar
incardon committed
816 817
	Box<3,double> domain({-0.05,-0.05,-0.05},{1.7010,0.7065,0.5025});
	size_t sz[3] = {207,90,66};
incardon's avatar
incardon committed
818 819 820 821 822 823 824 825 826 827 828 829 830

	// Fill W_dap
	W_dap = 1.0/Wab(H/1.5);

	// Here we define the boundary conditions of our problem
    size_t bc[3]={NON_PERIODIC,NON_PERIODIC,NON_PERIODIC};

	// extended boundary around the domain, and the processor domain
	Ghost<3,double> g(2*H);
	
	//! \cond [Initialization and parameters] \endcond

	/*!
incardon's avatar
incardon committed
831
	 * \page Vector_7_SPH_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
incardon's avatar
incardon committed
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	 *
	 * ## %Vector create ##
	 *
	 * Here we define a distributed vector in 3D, containing 3 properties, a
	 * scalar double, a vector double[3], and a tensor or rank 2 double[3][3].
	 * In this case the vector contain 0 particles initially
	 *
	 * \see \ref vector_inst
	 *
	 * \snippet Vector/1_celllist/main.cpp vector inst
	 *
	 */

	//! \cond [vector inst] \endcond

incardon's avatar
incardon committed
847
	particles vd(0,domain,bc,g,DEC_GRAN(4096));
incardon's avatar
incardon committed
848 849 850 851 852 853

	//! \cond [vector inst] \endcond

	// the scalar is the element at position 0 in the aggregate
	const int type = 0;

incardon's avatar
incardon committed
854
	Box<3,double> fluid_box({dp/2.0,dp/2.0,dp/2.0},{0.4+dp/2.0,0.67-dp/2.0,0.3+dp/2.0});
incardon's avatar
incardon committed
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958

	// first we create Fluid particles
	// Fluid particles are created

	auto fluid_it = DrawParticles::DrawBox(vd,sz,domain,fluid_box);
	max_fluid_height = fluid_it.getBoxMargins().getHigh(2);
	h_swl = fluid_it.getBoxMargins().getHigh(2) - fluid_it.getBoxMargins().getLow(2);
	B = (coeff_sound)*(coeff_sound)*gravity*h_swl*rho_zero / gamma_;
	cbar = coeff_sound * sqrt(gravity * h_swl);

	while (fluid_it.isNext())
	{
		vd.add();

		vd.getLastPos()[0] = fluid_it.get().get(0);
		vd.getLastPos()[1] = fluid_it.get().get(1);
		vd.getLastPos()[2] = fluid_it.get().get(2);

		vd.template getLastProp<type>() = FLUID;

		// We also initialize the density of the particle and the hydro-static pressure given by
		//
		// rho_zero*g*h = P
		//
		// rho_p = (P/B + 1)^(1/Gamma) * rho_zero
		//

		vd.template getLastProp<Pressure>() = rho_zero * gravity *  (max_fluid_height - fluid_it.get().get(2));

		vd.template getLastProp<rho>() = pow(vd.template getLastProp<Pressure>() / B + 1, 1.0/gamma_) * rho_zero;
		vd.template getLastProp<rho_prev>() = vd.template getLastProp<rho>();
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		++fluid_it;
	}

	// Recipient
	Box<3,double> recipient1({0.0,0.0,0.0},{1.6+dp/2.0,0.67+dp/2.0,0.4+dp/2.0});
	Box<3,double> recipient2({dp,dp,dp},{1.6-dp/2.0,0.67-dp/2.0,0.4+dp/2.0});

	Box<3,double> obstacle1({0.9,0.24-dp/2.0,0.0},{1.02+dp/2.0,0.36,0.45+dp/2.0});
	Box<3,double> obstacle2({0.9+dp,0.24+dp/2.0,0.0},{1.02-dp/2.0,0.36-dp,0.45-dp/2.0});
	Box<3,double> obstacle3({0.9+dp,0.24,0.0},{1.02,0.36,0.45});

	openfpm::vector<Box<3,double>> holes;
	holes.add(recipient2);
	holes.add(obstacle1);
	auto bound_box = DrawParticles::DrawSkin(vd,sz,domain,holes,recipient1);

	while (bound_box.isNext())
	{
		vd.add();

		vd.getLastPos()[0] = bound_box.get().get(0);
		vd.getLastPos()[1] = bound_box.get().get(1);
		vd.getLastPos()[2] = bound_box.get().get(2);

		vd.template getLastProp<type>() = BOUNDARY;
		vd.template getLastProp<rho>() = rho_zero;
		vd.template getLastProp<rho_prev>() = rho_zero;
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		++bound_box;
	}

	// Obstacle

	auto obstacle_box = DrawParticles::DrawSkin(vd,sz,domain,obstacle2,obstacle1);

	while (obstacle_box.isNext())
	{
		vd.add();

		vd.getLastPos()[0] = obstacle_box.get().get(0);
		vd.getLastPos()[1] = obstacle_box.get().get(1);
		vd.getLastPos()[2] = obstacle_box.get().get(2);

		vd.template getLastProp<type>() = BOUNDARY;
		vd.template getLastProp<rho>() = rho_zero;
		vd.template getLastProp<rho_prev>() = rho_zero;
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		++obstacle_box;
	}

	vd.map();
incardon's avatar
incardon committed
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	vd.getDecomposition().write("Decomposition_before_load_bal");

	// Now that we fill the vector with particles
	ModelCustom md;

	vd.addComputationCosts(md);
	vd.getDecomposition().getDistribution().write("BEFORE_DECOMPOSE");
	vd.getDecomposition().decompose();
	vd.map();

	vd.addComputationCosts(md);
	vd.getDecomposition().getDistribution().write("AFTER_DECOMPOSE1");

	vd.getDecomposition().rebalance(1);

	vd.map();
	vd.getDecomposition().getDistribution().write("AFTER_DECOMPOSE2");

	std::cout << "N particles: " << vd.size_local()  << "    " << create_vcluster().getProcessUnitID() << "      " << "Get processor Load " << vd.getDecomposition().getDistribution().getProcessorLoad() << std::endl;

	vd.write("Geometry");
	vd.getDecomposition().write("Decomposition_after_load_bal");
	vd.getDecomposition().getDistribution().write("Distribution_load_bal");

	vd.ghost_get<type,rho,Pressure,velocity>();
incardon's avatar
incardon committed
984 985 986 987 988 989 990 991

	auto NN = vd.getCellList(2*H);

	// Evolve


	size_t write = 0;
	size_t it = 0;
incardon's avatar
incardon committed
992
	size_t it_reb = 0;
incardon's avatar
incardon committed
993 994 995
	double t = 0.0;
	while (t <= t_end)
	{
incardon's avatar
incardon committed
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		timer it_time;

		////// Do rebalancing every 200 timesteps
		it_reb++;
		if (it_reb == 10)
		{
			vd.map();

			it_reb = 0;
			ModelCustom md;
			vd.addComputationCosts(md);
			vd.getDecomposition().rebalance(1);

			std::cout << "REBALANCED " << std::endl;
		}
incardon's avatar
incardon committed
1011 1012

		vd.map();
incardon's avatar
incardon committed
1013
		vd.ghost_get<type,rho,Pressure,velocity>();
incardon's avatar
incardon committed
1014 1015 1016 1017 1018 1019

		// Calculate pressure from the density
		EqState(vd);

		double max_visc = 0.0;

incardon's avatar
incardon committed
1020 1021
		it_time.start();

incardon's avatar
incardon committed
1022 1023
		// Calc forces
		calc_forces(vd,NN,max_visc);
incardon's avatar
incardon committed
1024 1025 1026 1027 1028 1029
		it_time.stop();

		// Get the maximum viscosity term across processors
		Vcluster & v_cl = create_vcluster();
		v_cl.max(max_visc);
		v_cl.execute();
incardon's avatar
incardon committed
1030 1031 1032 1033 1034 1035 1036

		// Calculate delta t integration
		double dt = calc_deltaT(vd,max_visc);

//		std::cout << "Calculate deltaT: " << dt << "   " << DtMin << std::endl;

		// VerletStep
incardon's avatar
incardon committed
1037 1038 1039 1040 1041 1042 1043 1044
		it++;
		if (it < 40)
			verlet_int(vd,dt,true);
		else
		{
			verlet_int(vd,dt,false);
			it = 0;
		}
incardon's avatar
incardon committed
1045 1046 1047 1048 1049 1050 1051 1052

		t += dt;

		if (write < t*100)
		{

			vd.write("Geometry",write);
			write++;
incardon's avatar
incardon committed
1053 1054 1055 1056 1057 1058

			std::cout << "TIME: " << t << "  write " << it_time.getwct() << "   " << v_cl.getProcessUnitID() << "   " << cnt << std::endl;
		}
		else
		{
			std::cout << "TIME: " << t << "  " << it_time.getwct() << "   " << v_cl.getProcessUnitID() << "   " << cnt << std::endl;
incardon's avatar
incardon committed
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
		}
	}

	//! \cond [finalize] \endcond

	openfpm_finalize();

	//! \cond [finalize] \endcond

	/*!
incardon's avatar
incardon committed
1069
	 * \page Vector_7_SPH_dlb Vector 7 SPH Dam break  simulation with Dynamic load balancing
incardon's avatar
incardon committed
1070 1071 1072 1073 1074 1075 1076 1077
	 *
	 * ## Full code ## {#code_e0_sim}
	 *
	 * \include Vector/0_simple/main.cpp
	 *
	 */
}