CartDecomposition.hpp 11.7 KB
Newer Older
incardon's avatar
incardon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
/*
 * CartDecomposition.hpp
 *
 *  Created on: Aug 15, 2014
 *      Author: Pietro Incardona
 */

#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP

#include "config.h"
#include "Decomposition.hpp"
#include "map_vector.hpp"
#include <vector>
#include "global_const.hpp"
#include <initializer_list>
#include "map_vector.hpp"
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"

/**
 * \brief This class decompose a space into subspaces
 *
 * This class decompose a space into regular hyper-cube subspaces, and give the possibilities to
 * select one subspace
 *
 * \tparam dim is the dimensionality of the physical domain we are going to decompose.
 * \tparam T type of the space we decompose, Real, Integer, Complex ...
 * \tparam layout to use
 * \tparam Memory Memory factory used to allocate memory
 * \tparam Domain Structure that contain the information of your physical domain
 * \tparam data type of structure that store the sub-domain decomposition can be an openfpm structure like
 *        vector, ...
 *
 * \note if PARALLEL_DECOMPOSITION macro is defined a parallel decomposition algorithm is used, basically
 *       each processor does not recompute the same decomposition
 *
 */

template<unsigned int dim, typename T, template<typename> class device_l=openfpm::device_cpu, typename Memory=HeapMemory, template<unsigned int, typename> class Domain=Box, template<typename, typename, typename, typename> class data_s = openfpm::vector>
class CartDecomposition
{
public:
	//! Type of the domain we are going to decompose
	typedef T domain_type;

	//! It simplify to access the SpaceBox element
	typedef SpaceBox<dim,T> Box;

private:

	//! This is the access_key to data_s, for example in the case of vector
	//! acc_key is size_t
	typedef typename data_s<SpaceBox<dim,T>,device_l<SpaceBox<dim,T>>,Memory,openfpm::vector_grow_policy_default>::access_key acc_key;

	//! Subspace selected
	//! access_key in case of grid is just the set of the index to access the grid
	std::vector<acc_key> id_sub;

	//! the margin of the sub-domain selected
	SpaceBox<dim,T> sub_domain;

	//! the set of all local sub-domain as vector
	data_s<SpaceBox<dim,T>,device_l<SpaceBox<dim,T>>,Memory,openfpm::vector_grow_policy_default> sub_domains;

	//! number of total sub-domain
	size_t N_tot;

	//! number of sub-domain on each dimension
	size_t div[dim];

	//! rectangular domain to decompose
	Domain<dim,T> domain;

	//! Box Spacing
	T spacing[dim];

	//! Runtime virtual cluster machine
	Vcluster & v_cl;

	/*! \brief Create internally the decomposition
	 *
     * \param v_cl Virtual cluster, used internally to handle or pipeline communication
	 *
	 */
	void CreateDecomposition(Vcluster & v_cl)
	{
		// Calculate the total number of box and and the spacing
		// on each direction

		N_tot = 1;

		// Get the box containing the domain
		SpaceBox<dim,T> bs = domain.getBox();

		for (unsigned int i = 0; i < dim ; i++)
		{
			// Calculate the spacing

			spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / div[i];
			N_tot *= div[i];
		}

		// Here we use METIS

		// Create a cartesian grid graph
incardon's avatar
incardon committed
109
		CartesianGraphFactory<dim,Graph_CSR<nm_v,nm_e>> g_factory_part;
incardon's avatar
incardon committed
110 111 112

		// Processor graph

incardon's avatar
incardon committed
113
		Graph_CSR<nm_v,nm_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1,0,1>(div,domain);
incardon's avatar
incardon committed
114 115 116 117 118 119 120 121

		// Get the number of processing units
		size_t Np = v_cl.getProcessingUnits();

		// Get the processor id
		long int p_id = v_cl.getProcessUnitID();

		// Convert the graph to metis
incardon's avatar
incardon committed
122
		Metis<Graph_CSR<nm_v,nm_e>> met(gp,Np);
incardon's avatar
incardon committed
123 124 125

		// decompose

incardon's avatar
incardon committed
126
		met.decompose<nm_v::id>();
incardon's avatar
incardon committed
127 128 129 130

		// Optimize the decomposition creating bigger spaces
		// And reducing Ghost over-stress

incardon's avatar
incardon committed
131
		dec_optimizer<dim,Graph_CSR<nm_v,nm_e>> d_o(gp,div);
incardon's avatar
incardon committed
132 133 134 135

		// set of Boxes produced by the decomposition optimizer
		openfpm::vector<::Box<dim,size_t>> loc_box;

incardon's avatar
incardon committed
136 137 138 139 140 141 142 143 144 145 146 147 148
		// a grig key poiting to the origin
		grid_key_dx<dim> keyZero;
		keyZero.zero();

		// optimize the decomposition
		d_o.template optimize<nm_v::sub_id,nm_v::id>(keyZero,gp,p_id,loc_box);

		//-------------------DEBUG---------
		VTKWriter<decltype(gp)> vtk(gp);
		vtk.write("out_graph.vtk");
		//---------------------------------

		exit(1);
incardon's avatar
incardon committed
149 150 151 152 153 154

		// convert into sub-domain
		for (size_t s = 0 ; s < loc_box.size() ; s++)
		{
			SpaceBox<dim,T> sub_d(loc_box.get(s));

incardon's avatar
incardon committed
155 156
			// re-scale with spacing
			sub_d.spacing(spacing);
incardon's avatar
incardon committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

			// add the sub-domain
			sub_domains.add(sub_d);
		}
	}

	/*! \brief Create the subspaces that decompose your domain
	 *
	 * Create the subspaces that decompose your domain
	 *
	 */

	void CreateSubspaces()
	{
		// Create a grid where each point is a space

		grid<3,void> g(div);

		// create a grid_key_dx iterator

		grid_key_dx_iterator<dim> gk_it(g);

		// Divide the space into subspaces

		while (gk_it.isNext())
		{
			//! iterate through all subspaces
			grid_key_dx<dim> key = gk_it.get();

			//! Create a new subspace

			SpaceBox<dim,T> tmp;

			//! fill with the Margin of the box

			for (int i = 0 ; i < dim ; i++)
			{
				tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
				tmp.setLow(i,key.get(i)*spacing[i]);
			}

			//! add the space box

			sub_domains.add(tmp);

			// add the iterator

			++gk_it;
		}
	}

public:

	/*! \brief Cartesian decomposition copy constructor
	 *
     * \param v_cl Virtual cluster, used internally to handle or pipeline communication
	 *
	 */
	CartDecomposition(CartDecomposition<dim,T,device_l,Memory,Domain,data_s> && cd)
	:sub_domain(cd.sub_domain),N_tot(cd.N_tot),domain(cd.domain),v_cl(cd.v_cl)
	{
		//! Subspace selected
		//! access_key in case of grid is just the set of the index to access the grid
		id_sub.swap(cd.id_sub);

		//! the set of all local sub-domain as vector
		sub_domains.swap(cd.sub_domains);

		for (int i = 0 ; i < dim ; i++)
		{
			this->div[i] = div[dim];

			//! Box Spacing
			this->spacing[i] = spacing[i];
		}
	}

	/*! \brief Cartesian decomposition constructor
	 *
     * \param v_cl Virtual cluster, used internally to handle or pipeline communication
	 *
	 */
	CartDecomposition(Vcluster & v_cl)
	:id_sub(0),N_tot(0),v_cl(v_cl)
	{}

	/*! \brief Cartesian decomposition constructor, it divide the space in boxes
	 *
	 * \param dec is a vector that store how to divide on each dimension
	 * \param domain is the domain to divide
	 * \param v_cl are information of the cluster runtime machine
	 *
	 */
	CartDecomposition(std::vector<size_t> dec, Domain<dim,T> domain, Vcluster & v_cl)
	:id_sub(0),div(dec),domain(domain),v_cl(v_cl)
	{
		// Create the decomposition

		CreateDecomposition(v_cl);
	}

	//! Cartesian decomposition destructor
	~CartDecomposition()
	{}

	/*! \brief Set the parameter of the decomposition
	 *
     * \param div_ std::vector storing into how many domain to decompose on each dimension
     * \param domain_ domain to decompose
	 *
	 */
	void setParameters(std::vector<size_t> div_, Domain<dim,T> domain_)
	{
		// Set the decomposition parameters

		div = div_;
		domain = domain_;

		//! Create the decomposition

		CreateDecomposition(v_cl);
	}

	/*! \brief Set the parameter of the decomposition
	 *
     * \param div_ std::vector storing into how many domain to decompose on each dimension
     * \param domain_ domain to decompose
	 *
	 */
	void setParameters(size_t div_[dim], Domain<dim,T> domain_)
	{
		// Set the decomposition parameters

		for (int i = 0 ; i < dim ; i++)
			div[i] = div_[i];

		domain = domain_;

		//! Create the decomposition

		CreateDecomposition(v_cl);
	}

	/*! \brief Get the number of local local hyper-cubes or sub-domains
	 *
	 * \return the number of sub-domains
	 *
	 */
	size_t getNLocalHyperCube()
	{
		return sub_domains.size();
	}

	/*! The the bulk part of the data set, or the data that
	 * does not depend from the ghosts layers
	 *
	 * \return the bulk of your data
	 *
	 */
	T getBulk()
	{

	}

	/*! \brief This function divide the data set into bulk, border, external and internal part
	 *
	 * \tparam dim dimensionality of the structure storing your data
	 *         (example if they are in 3D grid, has to be 3)
	 * \tparam T type of object we are dividing
	 * \tparam device type of layout selected
	 * \param data 1-dimensional grid of point
	 * \param nb define the neighborhood of all the points
	 * \return a structure with the set of objects divided
	 *
	 */

//	dataDiv<T> CartDecomposition<dim,T,layout>::divide(layout::grid<1,Point<dim,T>> & data, neighborhood & nb);

	/*! The the internal part of the data set, or the data that
	 * are inside the local space
	 *
	 * \return the internal part of your data
	 *
	 */
	T getInternal()
	{

	}

	/*! Get the internal part of the dataset, or the data that
	 * depend from the ghost layers
	 *
	 * \return the ghost part of your data
	 *
	 */

	T getBorder()
	{

	}

	/*! Get the external part of the dataset, or the data that
	 * are outside localSpace including ghost
	 *
	 * \return the external part of your data
	 *
	 */
	T getExternal()
	{

	}

	/*! \brief Get the number of one set of hyper-cube enclosing one particular
	 *         subspace, the hyper-cube enclose your space, even if one box is enough
	 *         can be more that one to increase occupancy
	 *
     * In case of Cartesian decomposition it just return 1, each subspace
	 * has one hyper-cube, and occupancy 1
	 *
	 * \param id of the subspace
	 * \return the number of hyper-cube enclosing your space
	 *
	 */
	size_t getNHyperCube(size_t id)
	{
		return 1;
	}

	/*! \brief Get the hyper-cube margins id_c has to be 0
	 *
	 * Get the hyper-cube margins id_c has to be 0, each subspace
	 * has one hyper-cube
	 *
	 * \param id of the subspace
	 * \param id_c
	 * \return The specified hyper-cube space
	 *
	 */
	SpaceBox<dim,T> & getHyperCubeMargins(size_t id, size_t id_c)
	{
#ifdef DEBUG
		// Check if this subspace exist
		if (id >= N_tot)
		{
			std::cerr << "Error CartDecomposition: id > N_tot";
		}
		else if (id_c > 0)
		{
			// Each subspace is an hyper-cube so return error if id_c > 0
			std::cerr << "Error CartDecomposition: id_c > 0";
		}
#endif

		return sub_domains.get<Object>(id);
	}

	/*! \brief Get the total number of Hyper-cube
	 *
	 * Get the total number of Hyper-cube
	 *
	 * \return The total number of hyper-cube
	 *
	 */

	size_t getNHyperCube()
	{
		return N_tot;
	}

	/*! \brief produce an hyper-cube approximation of the space decomposition
	 *
	 */

	void hyperCube()
	{
	}

	/*! \brief Select the local space
	 *
	 * Select the local space
	 *
	 * \param sub select the sub-space
	 *
	 */
	void setSpace(size_t sub)
	{
		id_sub.push_back(sub);
	}


	/*! \brief Get the local grids
	 *
	 * Get the local grids
	 *
	 * \return the local grids
	 *
	 */

	auto getLocalHyperCubes() -> decltype(sub_domains) &
	{
		return sub_domains;
	}

	/*! \brief Get the local hyper-cubes
	 *
	 * Get the local hyper-cubes
	 *
	 * \param lc is the id of the space
	 * \return the local hyper-cube
	 *
	 */

	SpaceBox<dim,T> getLocalHyperCube(size_t lc)
	{
		// Create a space box
		SpaceBox<dim,T> sp;

		// fill the space box

		for (size_t k = 0 ; k < dim ; k++)
		{
			// create the SpaceBox Low and High
			sp.setLow(k,sub_domains.template get<Box::p1>(lc)[k]);
			sp.setHigh(k,sub_domains.template get<Box::p2>(lc)[k]);
		}

		return sp;
	}

	/*! \brief Return the structure that store the physical domain
	 *
	 * Return the structure that store the physical domain
	 *
	 * \return The physical domain
	 *
	 */

	Domain<dim,T> & getDomain()
	{
		return domain;
	}

	/*! \brief It return a graph that represent the domain decomposed into the cartesian grid
	 *
	 * It return a graph that represent the domain decomposed into the cartesian grid
	 *
	 */

/*	Graph<> createGraphModel()
	{

	}*/

	/*! \brief It return a graph that represent the domain decomposed into the cartesian grid
	 *
	 * It return a graph that represent the domain decomposed into the cartesian grid
	 *
	 *
	 */
/*	Graph<> createLocalGraphMode()
	{

	}*/
};


#endif