vector_dist_gpu_unit_tests.cu 22.4 KB
Newer Older
incardon's avatar
incardon committed
1 2 3 4 5

#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include "VCluster/VCluster.hpp"
#include <Vector/vector_dist.hpp>
6
#include "Vector/tests/vector_dist_util_unit_tests.hpp"
incardon's avatar
incardon committed
7

incardon's avatar
incardon committed
8 9
#define SUB_UNIT_FACTOR 1024

incardon's avatar
incardon committed
10 11 12 13 14 15 16 17 18 19 20 21
template<unsigned int dim , typename vector_dist_type>
__global__ void move_parts_gpu_test(vector_dist_type vd)
{
	auto p = GET_PARTICLE(vd);

#pragma unroll
	for (int i = 0 ; i < dim ; i++)
	{
		vd.getPos(p)[i] += 0.05;
	}
}

incardon's avatar
incardon committed
22 23 24 25 26 27 28 29
BOOST_AUTO_TEST_SUITE( vector_dist_gpu_test )

void print_test(std::string test, size_t sz)
{
	if (create_vcluster().getProcessUnitID() == 0)
		std::cout << test << " " << sz << "\n";
}

incardon's avatar
incardon committed
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

__global__  void initialize_props(vector_dist_ker<3, float, aggregate<float, float [3], float[3]>> vd)
{
	auto p = GET_PARTICLE(vd);

	vd.template getProp<0>(p) = vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2];

	vd.template getProp<1>(p)[0] = vd.getPos(p)[0] + vd.getPos(p)[1];
	vd.template getProp<1>(p)[1] = vd.getPos(p)[0] + vd.getPos(p)[2];
	vd.template getProp<1>(p)[2] = vd.getPos(p)[1] + vd.getPos(p)[2];
}

template<typename CellList_type>
__global__  void calculate_force(vector_dist_ker<3, float, aggregate<float, float[3], float [3]>> vd,
		                         vector_dist_ker<3, float, aggregate<float, float[3], float [3]>> vd_sort,
		                         CellList_type cl)
{
	auto p = GET_PARTICLE(vd);

	Point<3,float> xp = vd.getPos(p);

    auto it = cl.getNNIterator(cl.getCell(xp));

    Point<3,float> force1({0.0,0.0,0.0});
    Point<3,float> force2({0.0,0.0,0.0});

    while (it.isNext())
    {
incardon's avatar
incardon committed
58 59
    	auto q1 = it.get_sort();
    	auto q2 = it.get();
incardon's avatar
incardon committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    	if (q2 == p) {++it; continue;}

    	Point<3,float> xq_1 = vd_sort.getPos(q1);
    	Point<3,float> xq_2 = vd.getPos(q2);

    	Point<3,float> r1 = xq_1 - xp;
    	Point<3,float> r2 = xq_2 - xp;

    	// Normalize

    	r1 /= r1.norm();
    	r2 /= r2.norm();

    	force1 += vd_sort.template getProp<0>(q1)*r1;
    	force2 += vd.template getProp<0>(q2)*r2;

    	++it;
    }

    vd.template getProp<1>(p)[0] = force1.get(0);
    vd.template getProp<1>(p)[1] = force1.get(1);
    vd.template getProp<1>(p)[2] = force1.get(2);

    vd.template getProp<2>(p)[0] = force2.get(0);
    vd.template getProp<2>(p)[1] = force2.get(1);
    vd.template getProp<2>(p)[2] = force2.get(2);
}

89 90
template<typename CellList_type>
__global__  void calculate_force_full_sort(vector_dist_ker<3, float, aggregate<float, float[3], float [3]>> vd,
incardon's avatar
incardon committed
91
		                         	 	   CellList_type cl, int rank)
92
{
incardon's avatar
incardon committed
93 94
	unsigned int p;
	GET_PARTICLE_SORT(p,cl);
incardon's avatar
incardon committed
95

96 97 98 99 100 101 102 103
	Point<3,float> xp = vd.getPos(p);

    auto it = cl.getNNIterator(cl.getCell(xp));

    Point<3,float> force1({0.0,0.0,0.0});

    while (it.isNext())
    {
incardon's avatar
incardon committed
104
    	auto q1 = it.get_sort();
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

    	if (q1 == p) {++it; continue;}

    	Point<3,float> xq_1 = vd.getPos(q1);

    	Point<3,float> r1 = xq_1 - xp;

    	// Normalize

    	r1 /= r1.norm();

    	force1 += vd.template getProp<0>(q1)*r1;

    	++it;
    }

    vd.template getProp<1>(p)[0] = force1.get(0);
    vd.template getProp<1>(p)[1] = force1.get(1);
    vd.template getProp<1>(p)[2] = force1.get(2);
}

template<typename CellList_type, typename vector_type>
bool check_force(CellList_type & NN_cpu, vector_type & vd)
{
	auto it6 = vd.getDomainIterator();

	bool match = true;

	while (it6.isNext())
	{
		auto p = it6.get();

		Point<3,float> xp = vd.getPos(p);

		// Calculate on CPU

		Point<3,float> force({0.0,0.0,0.0});

		auto NNc = NN_cpu.getNNIterator(NN_cpu.getCell(xp));

		while (NNc.isNext())
		{
			auto q = NNc.get();

	    	if (q == p.getKey()) {++NNc; continue;}

	    	Point<3,float> xq_2 = vd.getPos(q);
	    	Point<3,float> r2 = xq_2 - xp;

	    	// Normalize

incardon's avatar
incardon committed
156 157 158 159 160 161
	    	if (r2.norm() == 0)
	    	{
	    		int debug = 0;
	    		debug++;
	    	}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	    	r2 /= r2.norm();
	    	force += vd.template getProp<0>(q)*r2;

			++NNc;
		}

		match &= fabs(vd.template getProp<1>(p)[0] - vd.template getProp<2>(p)[0]) < 0.0001;
		match &= fabs(vd.template getProp<1>(p)[1] - vd.template getProp<2>(p)[1]) < 0.0001;
		match &= fabs(vd.template getProp<1>(p)[2] - vd.template getProp<2>(p)[2]) < 0.0001;

		match &= fabs(vd.template getProp<1>(p)[0] - force.get(0)) < 0.0001;
		match &= fabs(vd.template getProp<1>(p)[1] - force.get(1)) < 0.0001;
		match &= fabs(vd.template getProp<1>(p)[2] - force.get(2)) < 0.0001;

		++it6;
	}

	return match;
}

BOOST_AUTO_TEST_CASE( vector_dist_gpu_ghost_get )
{
	auto & v_cl = create_vcluster();

	if (v_cl.size() > 16)
	{return;}

	Box<3,float> domain({0.0,0.0,0.0},{1.0,1.0,1.0});

	// set the ghost based on the radius cut off (make just a little bit smaller than the spacing)
	Ghost<3,float> g(0.1);

	// Boundary conditions
	size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};

	vector_dist_gpu<3,float,aggregate<float,float[3],float[3]>> vd(1000,domain,bc,g);

	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto p = it.get();

		vd.getPos(p)[0] = (float)rand() / RAND_MAX;
		vd.getPos(p)[1] = (float)rand() / RAND_MAX;
		vd.getPos(p)[2] = (float)rand() / RAND_MAX;

		vd.template getProp<0>(p) = vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2];

		vd.template getProp<1>(p)[0] = vd.getPos(p)[0] + vd.getPos(p)[1];
		vd.template getProp<1>(p)[1] = vd.getPos(p)[0] + vd.getPos(p)[2];
		vd.template getProp<1>(p)[2] = vd.getPos(p)[1] + vd.getPos(p)[2];

		vd.template getProp<2>(p)[0] = vd.getPos(p)[0] + 3.0*vd.getPos(p)[1];
		vd.template getProp<2>(p)[1] = vd.getPos(p)[0] + 3.0*vd.getPos(p)[2];
		vd.template getProp<2>(p)[2] = vd.getPos(p)[1] + 3.0*vd.getPos(p)[2];


		++it;
	}

	// Ok we redistribute the particles (CPU based)
	vd.map();

	vd.template ghost_get<0,1,2>();

	// Now we check the the ghost contain the correct information

	bool check = true;

	auto itg = vd.getDomainAndGhostIterator();

	while (itg.isNext())
	{
		auto p = itg.get();

		check &= (vd.template getProp<0>(p) == vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2]);

		check &= (vd.template getProp<1>(p)[0] == vd.getPos(p)[0] + vd.getPos(p)[1]);
		check &= (vd.template getProp<1>(p)[1] == vd.getPos(p)[0] + vd.getPos(p)[2]);
		check &= (vd.template getProp<1>(p)[2] == vd.getPos(p)[1] + vd.getPos(p)[2]);

		check &= (vd.template getProp<2>(p)[0] == vd.getPos(p)[0] + 3.0*vd.getPos(p)[1]);
		check &= (vd.template getProp<2>(p)[1] == vd.getPos(p)[0] + 3.0*vd.getPos(p)[2]);
		check &= (vd.template getProp<2>(p)[2] == vd.getPos(p)[1] + 3.0*vd.getPos(p)[2]);

		++itg;
	}

	size_t tot_s = vd.size_local_with_ghost();

	v_cl.sum(tot_s);
	v_cl.execute();

	// We check that we check something
	BOOST_REQUIRE(tot_s > 1000);
}

incardon's avatar
incardon committed
260 261 262 263 264 265 266 267 268 269 270 271
template<typename vector_type, typename CellList_type, typename CellList_type_cpu>
void check_cell_list_cpu_and_gpu(vector_type & vd, CellList_type & NN, CellList_type_cpu & NN_cpu)
{
	auto it5 = vd.getDomainIteratorGPU();

	calculate_force<decltype(NN.toKernel())><<<it5.wthr,it5.thr>>>(vd.toKernel(),vd.toKernel_sorted(),NN.toKernel());

	vd.template deviceToHostProp<1,2>();

	bool test = check_force(NN_cpu,vd);
	BOOST_REQUIRE_EQUAL(test,true);

incardon's avatar
incardon committed
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
	// We reset the property 1 on device

	auto rst = vd.getDomainIterator();

	while (rst.isNext())
	{
		auto p = rst.get();

		vd.template getProp<1>(p)[0] = 0.0;
		vd.template getProp<1>(p)[1] = 0.0;
		vd.template getProp<1>(p)[2] = 0.0;

		++rst;
	}

	vd.template hostToDeviceProp<1>();

incardon's avatar
incardon committed
289 290
	// We do exactly the same test as before, but now we completely use the sorted version

incardon's avatar
incardon committed
291
	calculate_force_full_sort<decltype(NN.toKernel())><<<it5.wthr,it5.thr>>>(vd.toKernel_sorted(),NN.toKernel(),create_vcluster().rank());
incardon's avatar
incardon committed
292

incardon's avatar
incardon committed
293
	vd.template merge_sort<1>(NN);
incardon's avatar
incardon committed
294 295 296 297 298 299
	vd.template deviceToHostProp<1>();

	test = check_force(NN_cpu,vd);
	BOOST_REQUIRE_EQUAL(test,true);
}

incardon's avatar
incardon committed
300 301
BOOST_AUTO_TEST_CASE( vector_dist_gpu_test)
{
incardon's avatar
incardon committed
302 303 304 305 306
	auto & v_cl = create_vcluster();

	if (v_cl.size() > 16)
	{return;}

incardon's avatar
incardon committed
307 308 309
	Box<3,float> domain({0.0,0.0,0.0},{1.0,1.0,1.0});

	// set the ghost based on the radius cut off (make just a little bit smaller than the spacing)
incardon's avatar
incardon committed
310
	Ghost<3,float> g(0.1);
incardon's avatar
incardon committed
311 312 313 314

	// Boundary conditions
	size_t bc[3]={NON_PERIODIC,NON_PERIODIC,NON_PERIODIC};

incardon's avatar
incardon committed
315
	vector_dist_gpu<3,float,aggregate<float,float[3],float[3]>> vd(10000,domain,bc,g);
incardon's avatar
incardon committed
316

incardon's avatar
incardon committed
317 318
	srand(55067*create_vcluster().rank());

incardon's avatar
incardon committed
319 320 321 322 323 324
	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto p = it.get();

incardon's avatar
incardon committed
325 326 327 328 329 330 331 332 333
		int x = rand();
		int y = rand();
		int z = rand();

		vd.getPos(p)[0] = (float)x / RAND_MAX;
		vd.getPos(p)[1] = (float)y / RAND_MAX;
		vd.getPos(p)[2] = (float)z / RAND_MAX;

		Point<3,float> xp = vd.getPos(p);
incardon's avatar
incardon committed
334 335 336 337

		++it;
	}

338
	// Ok we redistribute the particles (CPU based)
incardon's avatar
incardon committed
339
	vd.map();
incardon's avatar
incardon committed
340 341 342 343 344 345

	size_t size_l = vd.size_local();

	v_cl.sum(size_l);
	v_cl.execute();

incardon's avatar
incardon committed
346
	BOOST_REQUIRE_EQUAL(size_l,10000);
incardon's avatar
incardon committed
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370


	auto & ct = vd.getDecomposition();

	bool noOut = true;
	size_t cnt = 0;

	auto it2 = vd.getDomainIterator();

	while (it2.isNext())
	{
		auto p = it2.get();

		noOut &= ct.isLocal(vd.getPos(p));

		cnt++;
		++it2;
	}

	BOOST_REQUIRE_EQUAL(noOut,true);
	BOOST_REQUIRE_EQUAL(cnt,vd.size_local());

	// now we offload all the properties

incardon's avatar
incardon committed
371 372
	auto it3 = vd.getDomainIteratorGPU();

373
	// offload to device
incardon's avatar
incardon committed
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	vd.hostToDevicePos();

	initialize_props<<<it3.wthr,it3.thr>>>(vd.toKernel());

	// now we check what we initialized

	vd.deviceToHostProp<0,1>();

	auto it4 = vd.getDomainIterator();

	while (it4.isNext())
	{
		auto p = it4.get();

		BOOST_REQUIRE_CLOSE(vd.template getProp<0>(p),vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2],0.01);

		BOOST_REQUIRE_CLOSE(vd.template getProp<1>(p)[0],vd.getPos(p)[0] + vd.getPos(p)[1],0.01);
		BOOST_REQUIRE_CLOSE(vd.template getProp<1>(p)[1],vd.getPos(p)[0] + vd.getPos(p)[2],0.01);
		BOOST_REQUIRE_CLOSE(vd.template getProp<1>(p)[2],vd.getPos(p)[1] + vd.getPos(p)[2],0.01);

		++it4;
	}

397 398 399
	// here we do a ghost_get
	vd.ghost_get<0>();

incardon's avatar
incardon committed
400
	// Double ghost get to check crashes
incardon's avatar
incardon committed
401 402
	vd.ghost_get<0>();

403 404 405 406
	// we re-offload what we received
	vd.hostToDevicePos();
	vd.template hostToDeviceProp<0>();

incardon's avatar
incardon committed
407 408
	auto NN = vd.getCellListGPU(0.1);
	auto NN_cpu = vd.getCellList(0.1);
409
	check_cell_list_cpu_and_gpu(vd,NN,NN_cpu);
incardon's avatar
incardon committed
410

incardon's avatar
incardon committed
411 412 413 414
	auto NN_up = vd.getCellListGPU(0.1);
	NN_up.clear();
	vd.updateCellList(NN_up);
	check_cell_list_cpu_and_gpu(vd,NN_up,NN_cpu);
incardon's avatar
incardon committed
415 416
}

incardon's avatar
incardon committed
417 418
template<typename St>
void vdist_calc_gpu_test()
incardon's avatar
Latest  
incardon committed
419 420 421 422 423 424
{
	auto & v_cl = create_vcluster();

	if (v_cl.size() > 16)
	{return;}

incardon's avatar
incardon committed
425 426 427 428 429 430 431 432
	Box<3,St> domain({0.0,0.0,0.0},{1.0,1.0,1.0});

	// set the ghost based on the radius cut off (make just a little bit smaller than the spacing)
	Ghost<3,St> g(0.1);

	// Boundary conditions
	size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};

incardon's avatar
incardon committed
433 434
	//! [Create a gpu vector]

incardon's avatar
incardon committed
435
	vector_dist_gpu<3,St,aggregate<St,St[3],St[3]>> vd(1000,domain,bc,g);
incardon's avatar
incardon committed
436

incardon's avatar
incardon committed
437 438 439 440
	//! [Create a gpu vector]

	//! [Fill gpu vector and move to GPU]

incardon's avatar
incardon committed
441
	srand(v_cl.rank()*10000);
incardon's avatar
incardon committed
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto p = it.get();

		vd.getPos(p)[0] = (St)rand() / RAND_MAX;
		vd.getPos(p)[1] = (St)rand() / RAND_MAX;
		vd.getPos(p)[2] = (St)rand() / RAND_MAX;

		vd.template getProp<0>(p) = vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2];

		vd.template getProp<1>(p)[0] = vd.getPos(p)[0];
		vd.template getProp<1>(p)[1] = vd.getPos(p)[1];
		vd.template getProp<1>(p)[2] = vd.getPos(p)[2];

		vd.template getProp<2>(p)[0] = vd.getPos(p)[0] + vd.getPos(p)[1];
		vd.template getProp<2>(p)[1] = vd.getPos(p)[0] + vd.getPos(p)[2];
		vd.template getProp<2>(p)[2] = vd.getPos(p)[1] + vd.getPos(p)[2];

		++it;
	}

	// move on device
	vd.hostToDevicePos();
	vd.template hostToDeviceProp<0,1,2>();

	// Ok we redistribute the particles (GPU based)
	vd.map(RUN_ON_DEVICE);

incardon's avatar
incardon committed
472 473
	//! [Fill gpu vector and move to GPU]

incardon's avatar
incardon committed
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	vd.deviceToHostPos();
	vd.template deviceToHostProp<0,1,2>();

	// Reset the host part

	auto it3 = vd.getDomainIterator();

	while (it3.isNext())
	{
		auto p = it3.get();

		vd.getPos(p)[0] = 1.0;
		vd.getPos(p)[1] = 1.0;
		vd.getPos(p)[2] = 1.0;

		vd.template getProp<0>(p) = 0.0;

		vd.template getProp<0>(p) = 0.0;
		vd.template getProp<0>(p) = 0.0;
		vd.template getProp<0>(p) = 0.0;

		vd.template getProp<0>(p) = 0.0;
		vd.template getProp<0>(p) = 0.0;
		vd.template getProp<0>(p) = 0.0;

		++it3;
	}

	// we move from Device to CPU

	vd.deviceToHostPos();
	vd.template deviceToHostProp<0,1,2>();

	// Check

	auto it2 = vd.getDomainIterator();

	bool match = true;
	while (it2.isNext())
	{
		auto p = it2.get();

		match &= vd.template getProp<0>(p) == vd.getPos(p)[0] + vd.getPos(p)[1] + vd.getPos(p)[2];

		match &= vd.template getProp<1>(p)[0] == vd.getPos(p)[0];
		match &= vd.template getProp<1>(p)[1] == vd.getPos(p)[1];
		match &= vd.template getProp<1>(p)[2] == vd.getPos(p)[2];

		match &= vd.template getProp<2>(p)[0] == vd.getPos(p)[0] + vd.getPos(p)[1];
		match &= vd.template getProp<2>(p)[1] == vd.getPos(p)[0] + vd.getPos(p)[2];
		match &= vd.template getProp<2>(p)[2] == vd.getPos(p)[1] + vd.getPos(p)[2];

		++it2;
	}

	BOOST_REQUIRE_EQUAL(match,true);

	// count local particles

	size_t l_cnt = 0;
	size_t nl_cnt = 0;
	size_t n_out = 0;

	// Domain + ghost box
	Box<3,St> dom_ext = domain;
	dom_ext.enlarge(g);

	auto it5 = vd.getDomainIterator();
	count_local_n_local<3>(vd,it5,bc,domain,dom_ext,l_cnt,nl_cnt,n_out);

	BOOST_REQUIRE_EQUAL(n_out,0);
	BOOST_REQUIRE_EQUAL(l_cnt,vd.size_local());

	// we do 10 gpu steps (using a cpu vector to check that map and ghost get work as expented)

	for (size_t i = 0 ; i < 10 ; i++)
	{
		vd.map(RUN_ON_DEVICE);

incardon's avatar
incardon committed
553 554
		CUDA_SAFE(cudaGetLastError());

incardon's avatar
incardon committed
555 556 557 558 559
		vd.deviceToHostPos();
		vd.template deviceToHostProp<0,1,2>();

		// To test we copy on a cpu distributed vector and we do a map

incardon's avatar
incardon committed
560
		vector_dist<3,St,aggregate<St,St[3],St[3]>> vd_cpu(vd.getDecomposition().template duplicate_convert<HeapMemory,memory_traits_lin>(),0);
incardon's avatar
incardon committed
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

		auto itc = vd.getDomainIterator();

		while (itc.isNext())
		{
			auto p = itc.get();

			vd_cpu.add();

			vd_cpu.getLastPos()[0] = vd.getPos(p)[0];
			vd_cpu.getLastPos()[1] = vd.getPos(p)[1];
			vd_cpu.getLastPos()[2] = vd.getPos(p)[2];

			vd_cpu.template getLastProp<0>() = vd.template getProp<0>(p);

			vd_cpu.template getLastProp<1>()[0] = vd.template getProp<1>(p)[0];
			vd_cpu.template getLastProp<1>()[1] = vd.template getProp<1>(p)[1];
			vd_cpu.template getLastProp<1>()[2] = vd.template getProp<1>(p)[2];

			vd_cpu.template getLastProp<2>()[0] = vd.template getProp<2>(p)[0];
			vd_cpu.template getLastProp<2>()[1] = vd.template getProp<2>(p)[1];
			vd_cpu.template getLastProp<2>()[2] = vd.template getProp<2>(p)[2];

			++itc;
		}

		vd_cpu.template ghost_get<0,1,2>();
incardon's avatar
incardon committed
588 589 590

		//! [Fill the ghost on GPU]

incardon's avatar
incardon committed
591 592
		vd.template ghost_get<0,1,2>(RUN_ON_DEVICE);

incardon's avatar
incardon committed
593 594
		//! [Fill the ghost on GPU]

incardon's avatar
incardon committed
595 596 597 598 599 600 601 602 603 604 605
		vd.deviceToHostPos();
		vd.template deviceToHostProp<0,1,2>();

		match = true;

		// Particle on the gpu ghost and cpu ghost are not ordered in the same way so we have to reorder

		struct part
		{
			Point<3,St> xp;

incardon's avatar
incardon committed
606 607 608 609

			St prp0;
			St prp1[3];
			St prp2[3];
incardon's avatar
incardon committed
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

			bool operator<(const part & tmp) const
			{
				if (xp.get(0) < tmp.xp.get(0))
				{return true;}
				else if (xp.get(0) > tmp.xp.get(0))
				{return false;}

				if (xp.get(1) < tmp.xp.get(1))
				{return true;}
				else if (xp.get(1) > tmp.xp.get(1))
				{return false;}

				if (xp.get(2) < tmp.xp.get(2))
				{return true;}
				else if (xp.get(2) > tmp.xp.get(2))
				{return false;}

				return false;
			}
		};

		openfpm::vector<part> cpu_sort;
		openfpm::vector<part> gpu_sort;

		cpu_sort.resize(vd_cpu.size_local_with_ghost() - vd_cpu.size_local());
		gpu_sort.resize(vd.size_local_with_ghost() - vd.size_local());

incardon's avatar
incardon committed
638 639
		BOOST_REQUIRE_EQUAL(cpu_sort.size(),gpu_sort.size());

incardon's avatar
incardon committed
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
		size_t cnt = 0;

		auto itc2 = vd.getGhostIterator();
		while (itc2.isNext())
		{
			auto p = itc2.get();

			cpu_sort.get(cnt).xp.get(0) = vd_cpu.getPos(p)[0];
			gpu_sort.get(cnt).xp.get(0) = vd.getPos(p)[0];
			cpu_sort.get(cnt).xp.get(1) = vd_cpu.getPos(p)[1];
			gpu_sort.get(cnt).xp.get(1) = vd.getPos(p)[1];
			cpu_sort.get(cnt).xp.get(2) = vd_cpu.getPos(p)[2];
			gpu_sort.get(cnt).xp.get(2) = vd.getPos(p)[2];

			cpu_sort.get(cnt).prp0 = vd_cpu.template getProp<0>(p);
			gpu_sort.get(cnt).prp0 = vd.template getProp<0>(p);

			cpu_sort.get(cnt).prp1[0] = vd_cpu.template getProp<1>(p)[0];
			gpu_sort.get(cnt).prp1[0] = vd.template getProp<1>(p)[0];
			cpu_sort.get(cnt).prp1[1] = vd_cpu.template getProp<1>(p)[1];
			gpu_sort.get(cnt).prp1[1] = vd.template getProp<1>(p)[1];
			cpu_sort.get(cnt).prp1[2] = vd_cpu.template getProp<1>(p)[2];
			gpu_sort.get(cnt).prp1[2] = vd.template getProp<1>(p)[2];

			cpu_sort.get(cnt).prp2[0] = vd_cpu.template getProp<2>(p)[0];
			gpu_sort.get(cnt).prp2[0] = vd.template getProp<2>(p)[0];
			cpu_sort.get(cnt).prp2[1] = vd_cpu.template getProp<2>(p)[1];
			gpu_sort.get(cnt).prp2[1] = vd.template getProp<2>(p)[1];
			cpu_sort.get(cnt).prp2[2] = vd_cpu.template getProp<2>(p)[2];
			gpu_sort.get(cnt).prp2[2] = vd.template getProp<2>(p)[2];

			++cnt;
			++itc2;
		}

		cpu_sort.sort();
		gpu_sort.sort();

		for (size_t i = 0 ; i < cpu_sort.size() ; i++)
		{
			match &= cpu_sort.get(i).xp.get(0) == gpu_sort.get(i).xp.get(0);
			match &= cpu_sort.get(i).xp.get(1) == gpu_sort.get(i).xp.get(1);
			match &= cpu_sort.get(i).xp.get(2) == gpu_sort.get(i).xp.get(2);

			match &= cpu_sort.get(i).prp0 == gpu_sort.get(i).prp0;
			match &= cpu_sort.get(i).prp1[0] == gpu_sort.get(i).prp1[0];
			match &= cpu_sort.get(i).prp1[1] == gpu_sort.get(i).prp1[1];
			match &= cpu_sort.get(i).prp1[2] == gpu_sort.get(i).prp1[2];

			match &= cpu_sort.get(i).prp2[0] == gpu_sort.get(i).prp2[0];
			match &= cpu_sort.get(i).prp2[1] == gpu_sort.get(i).prp2[1];
			match &= cpu_sort.get(i).prp2[2] == gpu_sort.get(i).prp2[2];
		}

		BOOST_REQUIRE_EQUAL(match,true);

		// move particles on gpu

		auto ite = vd.getDomainIteratorGPU();
		move_parts_gpu_test<3,decltype(vd.toKernel())><<<ite.wthr,ite.thr>>>(vd.toKernel());
	}
}

BOOST_AUTO_TEST_CASE( vector_dist_map_on_gpu_test)
{
	vdist_calc_gpu_test<float>();
	vdist_calc_gpu_test<double>();
707
}
incardon's avatar
incardon committed
708

709 710 711
BOOST_AUTO_TEST_CASE(vector_dist_reduce)
{
	auto & v_cl = create_vcluster();
incardon's avatar
incardon committed
712 713 714 715

	if (v_cl.size() > 16)
	{return;}

incardon's avatar
Latest  
incardon committed
716 717 718 719 720 721
	Box<3,float> domain({0.0,0.0,0.0},{1.0,1.0,1.0});

	// set the ghost based on the radius cut off (make just a little bit smaller than the spacing)
	Ghost<3,float> g(0.1);

	// Boundary conditions
incardon's avatar
incardon committed
722
	size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};
incardon's avatar
Latest  
incardon committed
723

724
	vector_dist_gpu<3,float,aggregate<float,double,int,size_t>> vd(5000*v_cl.size(),domain,bc,g);
incardon's avatar
Latest  
incardon committed
725 726 727

	auto it = vd.getDomainIterator();

728 729 730 731 732 733
	float fc = 1.0;
	double dc = 1.0;
	int ic = 1.0;
	size_t sc = 1.0;

	while(it.isNext())
incardon's avatar
Latest  
incardon committed
734 735 736
	{
		auto p = it.get();

737 738 739 740
		vd.template getProp<0>(p) = fc;
		vd.template getProp<1>(p) = dc;
		vd.template getProp<2>(p) = ic;
		vd.template getProp<3>(p) = sc;
incardon's avatar
Latest  
incardon committed
741

742 743 744 745
		fc += 1.0;
		dc += 1.0;
		ic += 1;
		sc += 1;
746

incardon's avatar
Latest  
incardon committed
747 748 749
		++it;
	}

750
	vd.template hostToDeviceProp<0,1,2,3>();
incardon's avatar
incardon committed
751

752 753 754 755
	float redf = reduce_local<0,_add_>(vd);
	double redd = reduce_local<1,_add_>(vd);
	int redi = reduce_local<2,_add_>(vd);
	size_t reds = reduce_local<3,_add_>(vd);
incardon's avatar
incardon committed
756

757 758 759 760
	BOOST_REQUIRE_EQUAL(redf,(vd.size_local()+1.0)*(vd.size_local())/2.0);
	BOOST_REQUIRE_EQUAL(redd,(vd.size_local()+1.0)*(vd.size_local())/2.0);
	BOOST_REQUIRE_EQUAL(redi,(vd.size_local()+1)*(vd.size_local())/2);
	BOOST_REQUIRE_EQUAL(reds,(vd.size_local()+1)*(vd.size_local())/2);
incardon's avatar
incardon committed
761

762 763 764 765
	float redf2 = reduce_local<0,_max_>(vd);
	double redd2 = reduce_local<1,_max_>(vd);
	int redi2 = reduce_local<2,_max_>(vd);
	size_t reds2 = reduce_local<3,_max_>(vd);
incardon's avatar
incardon committed
766 767 768 769 770

	BOOST_REQUIRE_EQUAL(redf2,vd.size_local());
	BOOST_REQUIRE_EQUAL(redd2,vd.size_local());
	BOOST_REQUIRE_EQUAL(redi2,vd.size_local());
	BOOST_REQUIRE_EQUAL(reds2,vd.size_local());
incardon's avatar
Latest  
incardon committed
771 772
}

incardon's avatar
incardon committed
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
BOOST_AUTO_TEST_CASE(vector_dist_dlb_on_cuda)
{
	typedef vector_dist_gpu<3,double,aggregate<double>> vector_type;

	Vcluster<> & v_cl = create_vcluster();

	if (v_cl.getProcessingUnits() > 8)
		return;

	Box<3,double> domain({0.0,0.0,0.0},{1.0,1.0,1.0});
	Ghost<3,double> g(0.1);
	size_t bc[3] = {PERIODIC,PERIODIC,PERIODIC};

	vector_type vd(0,domain,bc,g,DEC_GRAN(2048));

	// Only processor 0 initialy add particles on a corner of a domain

	if (v_cl.getProcessUnitID() == 0)
	{
		for(size_t i = 0 ; i < 50000 ; i++)
		{
			vd.add();

			vd.getLastPos()[0] = ((double)rand())/RAND_MAX * 0.3;
			vd.getLastPos()[1] = ((double)rand())/RAND_MAX * 0.3;
			vd.getLastPos()[2] = ((double)rand())/RAND_MAX * 0.3;
		}
	}

	// Move to GPU
	vd.hostToDevicePos();
	vd.template hostToDeviceProp<0>();

	vd.map(RUN_ON_DEVICE);
	vd.template ghost_get<>(RUN_ON_DEVICE);

	// now move to CPU

	vd.deviceToHostPos();
	vd.template deviceToHostProp<0>();

	// Get the neighborhood of each particles

	auto VV = vd.getVerlet(0.01);

	// store the number of neighborhood for each particles

	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto p = it.get();

		vd.template getProp<0>(p) = VV.getNNPart(p.getKey());

		++it;
	}

	// Move to GPU
	vd.template hostToDeviceProp<0>();

	ModelSquare md;
	md.factor = 10;
	vd.addComputationCosts(md);
	vd.getDecomposition().decompose();
	vd.map(RUN_ON_DEVICE);

	vd.deviceToHostPos();
	// Move info to CPU for addComputationcosts

	vd.addComputationCosts(md);

	openfpm::vector<size_t> loads;
	size_t load = vd.getDecomposition().getDistribution().getProcessorLoad();
	v_cl.allGather(load,loads);
	v_cl.execute();
849

incardon's avatar
incardon committed
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	for (size_t i = 0 ; i < loads.size() ; i++)
	{
		double load_f = load;
		double load_fc = loads.get(i);

		BOOST_REQUIRE_CLOSE(load_f,load_fc,7.0);
	}

	BOOST_REQUIRE(vd.size_local() != 0);

	Point<3,double> v({1.0,1.0,1.0});

	for (size_t i = 0 ; i < 25 ; i++)
	{
		// move particles to CPU and move the particles by 0.1

		vd.deviceToHostPos();

		auto it = vd.getDomainIterator();

		while (it.isNext())
		{
			auto p = it.get();

			vd.getPos(p)[0] += v.get(0) * 0.09;
			vd.getPos(p)[1] += v.get(1) * 0.09;
			vd.getPos(p)[2] += v.get(2) * 0.09;

			++it;
		}

		//Back to GPU
		vd.hostToDevicePos();
		vd.map(RUN_ON_DEVICE);
		vd.template ghost_get<>(RUN_ON_DEVICE);
		vd.deviceToHostPos();
		vd.template deviceToHostProp<0>();

		auto VV2 = vd.getVerlet(0.01);

		auto it2 = vd.getDomainIterator();

		bool match = true;
		while (it2.isNext())
		{
			auto p = it2.get();

			match &= vd.template getProp<0>(p) == VV2.getNNPart(p.getKey());

			if (match == false)
			{
				std::cout << vd.template getProp<0>(p) << "   " << VV2.getNNPart(p.getKey()) << std::endl;
				break;
			}

			++it2;
		}

		BOOST_REQUIRE_EQUAL(match,true);

		ModelSquare md;
		vd.addComputationCosts(md);
		vd.getDecomposition().redecompose(200);
		vd.map(RUN_ON_DEVICE);
incardon's avatar
incardon committed
914

incardon's avatar
incardon committed
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
		BOOST_REQUIRE(vd.size_local() != 0);

		vd.template ghost_get<0>(RUN_ON_DEVICE);
		vd.deviceToHostPos();
		vd.template deviceToHostProp<0>();

		vd.addComputationCosts(md);

		openfpm::vector<size_t> loads;
		size_t load = vd.getDecomposition().getDistribution().getProcessorLoad();
		v_cl.allGather(load,loads);
		v_cl.execute();

		for (size_t i = 0 ; i < loads.size() ; i++)
		{
			double load_f = load;
			double load_fc = loads.get(i);

			BOOST_REQUIRE_CLOSE(load_f,load_fc,10.0);
		}
	}
}
incardon's avatar
incardon committed
937

incardon's avatar
incardon committed
938
BOOST_AUTO_TEST_SUITE_END()