Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
O
openfpm_pdata
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
0
Issues
0
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Environments
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
openfpm
openfpm_pdata
Commits
be2e3215
Commit
be2e3215
authored
Dec 18, 2019
by
foggia
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
testing average in parallel
parent
807a2f80
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
302 additions
and
309 deletions
+302
-309
example/Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp
...le/Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp
+301
-308
openfpm_numerics
openfpm_numerics
+1
-1
No files found.
example/Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp
View file @
be2e3215
...
...
@@ -42,36 +42,37 @@
#include "FiniteDifference/eq.hpp"
#include "Solvers/petsc_solver.hpp"
#include "Solvers/petsc_solver.hpp"
#include "FiniteDifference/operators.hpp"
struct
lid_nn
{
// dimensionaly of the equation (2D problem 3D problem ...)
static
const
unsigned
int
dims
=
2
;
// dimensionaly of the equation (2D problem 3D problem ...)
static
const
unsigned
int
dims
=
2
;
// number of fields in the system v_x, v_y, P so a total of 3
static
const
unsigned
int
nvar
=
3
;
// number of fields in the system v_x, v_y, P so a total of 3
static
const
unsigned
int
nvar
=
3
;
// boundary conditions PERIODIC OR NON_PERIODIC
static
const
bool
boundary
[];
// boundary conditions PERIODIC OR NON_PERIODIC
static
const
bool
boundary
[];
// type of space float, double, ...
typedef
float
stype
;
// type of space float, double, ...
typedef
float
stype
;
// type of base grid, it is the distributed grid that will store the result
// Note the first property is a 2D vector (velocity), the second is a scalar (Pressure)
typedef
grid_dist_id
<
2
,
float
,
aggregate
<
float
[
2
],
float
>
,
CartDecomposition
<
2
,
float
>>
b_grid
;
// type of base grid, it is the distributed grid that will store the result
// Note the first property is a 2D vector (velocity), the second is a scalar (Pressure)
typedef
grid_dist_id
<
2
,
float
,
aggregate
<
float
[
2
],
float
>
,
CartDecomposition
<
2
,
float
>>
b_grid
;
// type of SparseMatrix, for the linear system, this parameter is bounded by the solver
// that you are using, in case of umfpack using <double,int> it is the only possible choice
// Here we choose PETSC implementation
typedef
SparseMatrix
<
double
,
int
,
PETSC_BASE
>
SparseMatrix_type
;
// type of SparseMatrix, for the linear system, this parameter is bounded by the solver
// that you are using, in case of umfpack using <double,int> it is the only possible choice
// Here we choose PETSC implementation
typedef
SparseMatrix
<
double
,
int
,
PETSC_BASE
>
SparseMatrix_type
;
// type of Vector for the linear system, this parameter is bounded by the solver
// that you are using
typedef
Vector
<
double
,
PETSC_BASE
>
Vector_type
;
// type of Vector for the linear system, this parameter is bounded by the solver
// that you are using
typedef
Vector
<
double
,
PETSC_BASE
>
Vector_type
;
// Define that the underline grid where we discretize the system of equation is staggered
static
const
int
grid_type
=
STAGGERED_GRID
;
// Define that the underline grid where we discretize the system of equation is staggered
static
const
int
grid_type
=
STAGGERED_GRID
;
};
const
bool
lid_nn
::
boundary
[]
=
{
NON_PERIODIC
,
NON_PERIODIC
};
...
...
@@ -111,14 +112,6 @@ const bool lid_nn::boundary[] = {NON_PERIODIC,NON_PERIODIC};
//! \cond [def equation] \endcond
// Constant Field
struct
eta
{
typedef
void
const_field
;
static
float
val
()
{
return
1.0
;}
};
// Convenient constants
constexpr
unsigned
int
v
[]
=
{
0
,
1
};
constexpr
unsigned
int
P
=
2
;
...
...
@@ -126,31 +119,6 @@ constexpr unsigned int ic = 2;
constexpr
int
x
=
0
;
constexpr
int
y
=
1
;
// Create field that we have v_x, v_y, P
typedef
Field
<
v
[
x
],
lid_nn
>
v_x
;
// Definition 1 v_x
typedef
Field
<
v
[
y
],
lid_nn
>
v_y
;
// Definition 2 v_y
typedef
Field
<
P
,
lid_nn
>
Prs
;
// Definition 3 Prs
// Eq1 V_x
typedef
mul
<
eta
,
Lap
<
v_x
,
lid_nn
>
,
lid_nn
>
eta_lap_vx
;
// Step 1
typedef
D
<
x
,
Prs
,
lid_nn
>
p_x
;
// Step 2
typedef
minus
<
p_x
,
lid_nn
>
m_p_x
;
// Step 3
typedef
sum
<
eta_lap_vx
,
m_p_x
,
lid_nn
>
vx_eq
;
// Step 4
// Eq2 V_y
typedef
mul
<
eta
,
Lap
<
v_y
,
lid_nn
>
,
lid_nn
>
eta_lap_vy
;
typedef
D
<
y
,
Prs
,
lid_nn
>
p_y
;
typedef
minus
<
p_y
,
lid_nn
>
m_p_y
;
typedef
sum
<
eta_lap_vy
,
m_p_y
,
lid_nn
>
vy_eq
;
// Eq3 Incompressibility
typedef
D
<
x
,
v_x
,
lid_nn
,
FORWARD
>
dx_vx
;
// Step 5
typedef
D
<
y
,
v_y
,
lid_nn
,
FORWARD
>
dy_vy
;
// Step 6
typedef
sum
<
dx_vx
,
dy_vy
,
lid_nn
>
ic_eq
;
// Step 7
//! \cond [def equation] \endcond
/*!
...
...
@@ -160,19 +128,19 @@ typedef sum<dx_vx,dy_vy,lid_nn> ic_eq; // Step 7
* at boundaries. Explain in detail is out of the scope of this example, but to qualitatively
* have an idea consider the following staggered cell
*
\verbatim
\verbatim
+--$--+
| |
# * #
| |
0--$--+
+--$--+
| |
# * #
| |
0--$--+
# = velocity(x)
$ = velocity(y)
* = pressure
# = velocity(x)
$ = velocity(y)
* = pressure
\endverbatim
\endverbatim
*
* As we can see several properties has different position in the cell.
* Consider we want to impose \f$v_y = 0\f$ on \f$x=0\f$. Because there are not
...
...
@@ -187,15 +155,6 @@ typedef sum<dx_vx,dy_vy,lid_nn> ic_eq; // Step 7
//! \cond [bond def eq] \endcond
// Equation for boundary conditions
// Directional Avg
typedef
Avg
<
x
,
v_y
,
lid_nn
>
avg_vy
;
typedef
Avg
<
y
,
v_x
,
lid_nn
>
avg_vx
;
typedef
Avg
<
x
,
v_y
,
lid_nn
,
FORWARD
>
avg_vy_f
;
typedef
Avg
<
y
,
v_x
,
lid_nn
,
FORWARD
>
avg_vx_f
;
// Usefull constants (as MACRO)
#define EQ_1 0
#define EQ_2 1
...
...
@@ -208,241 +167,275 @@ typedef Avg<y,v_x,lid_nn,FORWARD> avg_vx_f;
int
main
(
int
argc
,
char
*
argv
[])
{
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Initialization ## {#num_sk_inc_2D_ps_init}
*
* After model our equation we:
* * Initialize the library
* * Define some useful constants
* * define Ghost size
* * Non-periodic boundary conditions
* * Padding domain expansion
*
* Padding and Ghost differ in the fact the padding extend the domain.
* Ghost is an extension for each sub-domain
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp init
*
*/
//! \cond [init] \endcond
// Initialize
openfpm_init
(
&
argc
,
&
argv
);
// velocity in the grid is the property 0, pressure is the property 1
constexpr
int
velocity
=
0
;
constexpr
int
pressure
=
1
;
// Domain, a rectangle
Box
<
2
,
float
>
domain
({
0.0
,
0.0
},{
12.0
,
4.0
});
// Ghost (Not important in this case but required)
Ghost
<
2
,
float
>
g
(
0.01
);
// Grid points on x=96 and y=32
long
int
sz
[]
=
{
96
,
32
};
size_t
szu
[
2
];
szu
[
0
]
=
(
size_t
)
sz
[
0
];
szu
[
1
]
=
(
size_t
)
sz
[
1
];
// We need one more point on the left and down part of the domain
// This is given by the boundary conditions that we impose.
//
Padding
<
2
>
pd
({
1
,
1
},{
0
,
0
});
//! \cond [init] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* Distributed grid that store the solution
*
* \see \ref e0_s_grid_inst
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp grid inst
*
*/
//! \cond [grid inst] \endcond
grid_dist_id
<
2
,
float
,
aggregate
<
float
[
2
],
float
>>
g_dist
(
szu
,
domain
,
g
);
//! \cond [grid inst] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* Solving the system above require the solution of a system like that
*
* \f$ Ax = b \quad x = A^{-1}b\f$
*
* where A is the system the discretize the left hand side of the equations + boundary conditions
* and b discretize the right hand size + boundary conditions
*
* FDScheme is the object that we use to produce the Matrix A and the vector b.
* Such object require the maximum extension of the stencil
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp fd scheme
*
*/
//! \cond [fd scheme] \endcond
// It is the maximum extension of the stencil (order 2 laplacian stencil has extension 1)
Ghost
<
2
,
long
int
>
stencil_max
(
1
);
// Finite difference scheme
FDScheme
<
lid_nn
>
fd
(
pd
,
stencil_max
,
domain
,
g_dist
);
//! \cond [fd scheme] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Impose the equation on the domain ## {#num_sk_inc_2D_ps_ied}
*
* Here we impose the system of equation, we start from the incompressibility Eq imposed in the bulk with the
* exception of the first point {0,0} and than we set P = 0 in {0,0}, why we are doing this is again
* mathematical to have a well defined system, an intuitive explanation is that P and P + c are both
* solution for the incompressibility equation, this produce an ill-posed problem to make it well posed
* we set one point in this case {0,0} the pressure to a fixed constant for convenience P = 0
*
* The best way to understand what we are doing is to draw a smaller example like 8x8.
* Considering that we have one additional point on the left for padding we have a grid
* 9x9. If on each point we have v_x v_y and P unknown we have
* 9x9x3 = 243 unknown. In order to fully determine and unique solution we have to
* impose 243 condition. The code under impose (in the case of 9x9) between domain
* and bulk 243 conditions.
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp impose eq dom
*
*
*/
//! \cond [impose eq dom] \endcond
fd
.
impose
(
ic_eq
(),
0.0
,
EQ_3
,
{
0
,
0
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
},
true
);
fd
.
impose
(
Prs
(),
0.0
,
EQ_3
,
{
0
,
0
},{
0
,
0
});
// Here we impose the Eq1 and Eq2
fd
.
impose
(
vx_eq
(),
0.0
,
EQ_1
,
{
1
,
0
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
});
fd
.
impose
(
vy_eq
(),
0.0
,
EQ_2
,
{
0
,
1
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
});
// v_x and v_y
// Imposing B1
fd
.
impose
(
v_x
(),
0.0
,
EQ_1
,
{
0
,
0
},{
0
,
sz
[
1
]
-
2
});
fd
.
impose
(
avg_vy_f
(),
0.0
,
EQ_2
,
{
-
1
,
0
},{
-
1
,
sz
[
1
]
-
1
});
// Imposing B2
fd
.
impose
(
v_x
(),
0.0
,
EQ_1
,
{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
2
});
fd
.
impose
(
avg_vy
(),
1.0
,
EQ_2
,
{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
});
// Imposing B3
fd
.
impose
(
avg_vx_f
(),
0.0
,
EQ_1
,
{
0
,
-
1
},{
sz
[
0
]
-
1
,
-
1
});
fd
.
impose
(
v_y
(),
0.0
,
EQ_2
,
{
0
,
0
},{
sz
[
0
]
-
2
,
0
});
// Imposing B4
fd
.
impose
(
avg_vx
(),
0.0
,
EQ_1
,
{
0
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
});
fd
.
impose
(
v_y
(),
0.0
,
EQ_2
,
{
0
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
1
});
// When we pad the grid, there are points of the grid that are not
// touched by the previous condition. Mathematically this lead
// to have too many variables for the conditions that we are imposing.
// Here we are imposing variables that we do not touch to zero
//
// Padding pressure
fd
.
impose
(
Prs
(),
0.0
,
EQ_3
,
{
-
1
,
-
1
},{
sz
[
0
]
-
1
,
-
1
});
fd
.
impose
(
Prs
(),
0.0
,
EQ_3
,
{
-
1
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
});
fd
.
impose
(
Prs
(),
0.0
,
EQ_3
,
{
-
1
,
0
},{
-
1
,
sz
[
1
]
-
2
});
fd
.
impose
(
Prs
(),
0.0
,
EQ_3
,
{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
2
});
// Impose v_x Padding Impose v_y padding
fd
.
impose
(
v_x
(),
0.0
,
EQ_1
,
{
-
1
,
-
1
},{
-
1
,
sz
[
1
]
-
1
});
fd
.
impose
(
v_y
(),
0.0
,
EQ_2
,
{
-
1
,
-
1
},{
sz
[
0
]
-
1
,
-
1
});
//! \cond [impose eq dom] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Solve the system of equation ## {#num_sk_inc_2D_sse}
*
* Once we imposed all the equations we can retrieve the Matrix A and the vector b
* and pass these two element to the solver. In this example we are using PETSC solvers
* direct/Iterative solvers. While Umfpack
* has only one solver, PETSC wrap several solvers. The function best_solve set the solver in
* the modality to try multiple solvers to solve your system. The subsequent call to solve produce a report
* of all the solvers tried comparing them in error-convergence and speed. If you do not use
* best_solve try to solve your system with the default solver GMRES (That is the most robust iterative solver
* method)
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp solver
*
*/
//! \cond [solver] \endcond
// Create a PETSC solver
petsc_solver
<
double
>
solver
;
// Set the maxumum nunber if iterations
solver
.
setMaxIter
(
1000
);
solver
.
setRestart
(
200
);
// Give to the solver A and b, return x, the solution
auto
x
=
solver
.
try_solve
(
fd
.
getA
(),
fd
.
getB
());
//! \cond [solver] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Copy the solution on the grid and write on VTK ## {#num_sk_inc_2D_ps_csg}
*
* Once we have the solution we copy it on the grid
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp copy write
*
*/
//! \cond [copy write] \endcond
fd
.
template
copy
<
velocity
,
pressure
>(
x
,{
0
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
},
g_dist
);
g_dist
.
write
(
"lid_driven_cavity_p_petsc"
);
//! \cond [cony write] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Finalize ## {#num_sk_inc_2D_ps_fin}
*
* At the very end of the program we have always to de-initialize the library
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp fin lib
*
*/
//! \cond [fin lib] \endcond
openfpm_finalize
();
//! \cond [fin lib] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* # Full code # {#num_sk_inc_2D_ps_code}
*
* \include Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp
*
*/
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Initialization ## {#num_sk_inc_2D_ps_init}
*
* After model our equation we:
* * Initialize the library
* * Define some useful constants
* * define Ghost size
* * Non-periodic boundary conditions
* * Padding domain expansion
*
* Padding and Ghost differ in the fact the padding extend the domain.
* Ghost is an extension for each sub-domain
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp init
*
*/
//! \cond [init] \endcond
// Initialize
openfpm_init
(
&
argc
,
&
argv
);
// Names for the positions in cell
std
::
initializer_list
<
char
>
cc
=
{
0
,
0
};
std
::
initializer_list
<
char
>
ll
=
{
0
,
-
1
};
std
::
initializer_list
<
char
>
bl
=
{
-
1
,
-
1
};
std
::
initializer_list
<
char
>
bb
=
{
-
1
,
0
};
//! \cond [def equation] \endcond
// Create field that we have v_x, v_y, P
Field
<
v
[
x
],
lid_nn
>
v_x
{
ll
};
// Definition 1 v_x
Field
<
v
[
y
],
lid_nn
>
v_y
{
bb
};
// Definition 2 v_y
Field
<
P
,
lid_nn
>
Prs
{
cc
};
// Definition 3 Prs
coeff
<
double
,
lid_nn
>
eta
{
1.0
,
bl
};
// Coefficient
// Create the derivatives and Laplacians that are needed
Laplacian
<
lid_nn
,
CENTRAL
>
lap
;
Der
<
x
,
lid_nn
,
CENTRAL
>
dx
;
Der
<
y
,
lid_nn
,
CENTRAL
>
dy
;
Der
<
x
,
lid_nn
,
FORWARD
>
dx_f
;
Der
<
y
,
lid_nn
,
FORWARD
>
dy_f
;
// Equations
auto
vx_eq
=
eta
*
lap
(
v_x
)
-
dx
(
Prs
);
// Eq1 V_x
auto
vy_eq
=
eta
*
lap
(
v_y
)
-
dy
(
Prs
);
// Eq2 V_y
auto
ic_eq
=
dx_f
(
v_x
)
+
dy_f
(
v_y
);
// Eq3 Incom
Avg
<
x
,
decltype
(
v_y
)
>
avg_vy
{
v_y
};
Avg
<
y
,
decltype
(
v_x
)
>
avg_vx
{
v_x
};
Avg
<
x
,
decltype
(
v_y
),
FORWARD
>
avg_vy_f
{
v_y
};
Avg
<
y
,
decltype
(
v_x
),
FORWARD
>
avg_vx_f
{
v_x
};
//! \cond [def equation] \endcond
// velocity in the grid is the property 0, pressure is the property 1
constexpr
int
velocity
=
0
;
constexpr
int
pressure
=
1
;
// Domain, a rectangle
Box
<
2
,
float
>
domain
({
0.0
,
0.0
},{
12.0
,
4.0
});
// Ghost (Not important in this case but required)
Ghost
<
2
,
float
>
g
(
0.01
);
// Grid points on x=96 and y=32
long
int
sz
[]
=
{
96
,
32
};
size_t
szu
[
2
];
szu
[
0
]
=
(
size_t
)
sz
[
0
];
szu
[
1
]
=
(
size_t
)
sz
[
1
];
// We need one more point on the left and down part of the domain
// This is given by the boundary conditions that we impose.
//
Padding
<
2
>
pd
({
1
,
1
},{
0
,
0
});
//! \cond [init] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* Distributed grid that store the solution
*
* \see \ref e0_s_grid_inst
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp grid inst
*
*/
//! \cond [grid inst] \endcond
grid_dist_id
<
2
,
float
,
aggregate
<
float
[
2
],
float
>>
g_dist
(
szu
,
domain
,
g
);
//! \cond [grid inst] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* Solving the system above require the solution of a system like that
*
* \f$ Ax = b \quad x = A^{-1}b\f$
*
* where A is the system the discretize the left hand side of the equations + boundary conditions
* and b discretize the right hand size + boundary conditions
*
* FDScheme is the object that we use to produce the Matrix A and the vector b.
* Such object require the maximum extension of the stencil
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp fd scheme
*
*/
//! \cond [fd scheme] \endcond
// It is the maximum extension of the stencil (order 2 laplacian stencil has extension 1)
Ghost
<
2
,
long
int
>
stencil_max
(
1
);
// Finite difference scheme
FDScheme
<
lid_nn
>
fd
(
pd
,
stencil_max
,
domain
,
g_dist
);
//! \cond [fd scheme] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Impose the equation on the domain ## {#num_sk_inc_2D_ps_ied}
*
* Here we impose the system of equation, we start from the incompressibility Eq imposed in the bulk with the
* exception of the first point {0,0} and than we set P = 0 in {0,0}, why we are doing this is again
* mathematical to have a well defined system, an intuitive explanation is that P and P + c are both
* solution for the incompressibility equation, this produce an ill-posed problem to make it well posed
* we set one point in this case {0,0} the pressure to a fixed constant for convenience P = 0
*
* The best way to understand what we are doing is to draw a smaller example like 8x8.
* Considering that we have one additional point on the left for padding we have a grid
* 9x9. If on each point we have v_x v_y and P unknown we have
* 9x9x3 = 243 unknown. In order to fully determine and unique solution we have to
* impose 243 condition. The code under impose (in the case of 9x9) between domain
* and bulk 243 conditions.
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp impose eq dom
*
*
*/
//! \cond [impose eq dom] \endcond
fd
.
impose
<
EQ_3
>
(
ic_eq
,
0.0
,{
0
,
0
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
},
cc
,
true
);
fd
.
impose
<
EQ_3
>
(
Prs
,
0.0
,{
0
,
0
},{
0
,
0
},
cc
);
// Here we impose the Eq1 and Eq2
fd
.
impose
<
EQ_1
>
(
vx_eq
,
0.0
,{
1
,
0
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
},
ll
);
fd
.
impose
<
EQ_2
>
(
vy_eq
,
0.0
,{
0
,
1
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
2
},
bb
);
// v_x and v_y
// Imposing B1
fd
.
impose
<
EQ_1
>
(
v_x
,
0.0
,{
0
,
0
},{
0
,
sz
[
1
]
-
2
},
ll
);
fd
.
impose
<
EQ_2
>
(
avg_vy_f
,
0.0
,{
-
1
,
0
},{
-
1
,
sz
[
1
]
-
1
},
bb
);
// Imposing B2
fd
.
impose
<
EQ_1
>
(
v_x
,
0.0
,{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
2
},
ll
);
fd
.
impose
<
EQ_2
>
(
avg_vy
,
1.0
,{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
},
bb
);
// Imposing B3
fd
.
impose
<
EQ_1
>
(
avg_vx_f
,
0.0
,{
0
,
-
1
},{
sz
[
0
]
-
1
,
-
1
},
ll
);
fd
.
impose
<
EQ_2
>
(
v_y
,
0.0
,{
0
,
0
},{
sz
[
0
]
-
2
,
0
},
bb
);
// Imposing B4
fd
.
impose
<
EQ_1
>
(
avg_vx
,
0.0
,{
0
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
},
ll
);
fd
.
impose
<
EQ_2
>
(
v_y
,
0.0
,{
0
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
2
,
sz
[
1
]
-
1
},
bb
);
// When we pad the grid, there are points of the grid that are not
// touched by the previous condition. Mathematically this lead
// to have too many variables for the conditions that we are imposing.
// Here we are imposing variables that we do not touch to zero
//
// Padding pressure
fd
.
impose
<
EQ_3
>
(
Prs
,
0.0
,{
-
1
,
-
1
},{
sz
[
0
]
-
1
,
-
1
},
cc
);
fd
.
impose
<
EQ_3
>
(
Prs
,
0.0
,{
-
1
,
sz
[
1
]
-
1
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
1
},
cc
);
fd
.
impose
<
EQ_3
>
(
Prs
,
0.0
,{
-
1
,
0
},{
-
1
,
sz
[
1
]
-
2
},
cc
);
fd
.
impose
<
EQ_3
>
(
Prs
,
0.0
,{
sz
[
0
]
-
1
,
0
},{
sz
[
0
]
-
1
,
sz
[
1
]
-
2
},
cc
);
// Impose v_x Padding Impose v_y padding
fd
.
impose
<
EQ_1
>
(
v_x
,
0.0
,{
-
1
,
-
1
},{
-
1
,
sz
[
1
]
-
1
},
cc
);
fd
.
impose
<
EQ_2
>
(
v_y
,
0.0
,{
-
1
,
-
1
},{
sz
[
0
]
-
1
,
-
1
},
cc
);
//! \cond [impose eq dom] \endcond
/*!
* \page Stokes_0_2D_petsc Stokes incompressible 2D petsc
*
* ## Solve the system of equation ## {#num_sk_inc_2D_sse}
*
* Once we imposed all the equations we can retrieve the Matrix A and the vector b
* and pass these two element to the solver. In this example we are using PETSC solvers
* direct/Iterative solvers. While Umfpack
* has only one solver, PETSC wrap several solvers. The function best_solve set the solver in
* the modality to try multiple solvers to solve your system. The subsequent call to solve produce a report
* of all the solvers tried comparing them in error-convergence and speed. If you do not use
* best_solve try to solve your system with the default solver GMRES (That is the most robust iterative solver
* method)
*
* \snippet Numerics/Stoke_flow/0_2D_incompressible/main_petsc.cpp solver
*
*/
//! \cond [solver] \endcond
// Create a PETSC solver
petsc_solver
<
double
>
solver
;
// Set the maxumum nunber if iterations
solver
.
setMaxIter
(
1000
);
solver
.
setRestart
(
200
);
// Give to the solver A and b, return x, the solution
auto
x
=
solver
.
try_solve
(
fd
.
getA
(),
fd
.
getB
());
//! \cond [solver] \endcond
/*!