CartesianGraphFactory.hpp 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * CartesianGraphFactory.hpp
 *
 *  Created on: Nov 28, 2014
 *      Author: i-bird
 */

#ifndef CARTESIANGRAPHFACTORY_HPP_
#define CARTESIANGRAPHFACTORY_HPP_

incardon's avatar
incardon committed
11 12
#include "Vector/map_vector.hpp"
#include "Graph/map_graph.hpp"
13
#include "Grid/grid_sm.hpp"
14
#include "Space/Shape/Box.hpp"
incardon's avatar
incardon committed
15
#include "Space/Shape/HyperCube.hpp"
16

incardon's avatar
incardon committed
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
template<unsigned int dim, typename G_v, int prp>
struct fill_id
{
	static inline void fill(G_v & g_v , const grid_key_dx<dim> & gk, const grid_sm<dim,void> & gs)
	{
		g_v.template get<prp>() = gs.LinId(gk);
	}
};

template<unsigned int dim, typename G_v>
struct fill_id<dim, G_v, -1>
{
	static inline void fill(G_v & g_v , const grid_key_dx<dim> & gk, const grid_sm<dim,void> & gs)
	{
	}
};

incardon's avatar
incardon committed
34
/*! \brief This class work as a functor
35
 *
incardon's avatar
incardon committed
36 37 38 39 40 41 42 43
 * For each number in the boost::mpl::vector (for example 3 6) set the properties of the vertex at the
 * specified id (3 6) with pos[d] * spacing[d] with d running from 0 to 1, pos[d] the position id of the vertex
 * spacing the grid spacing
 *
 * Example
 *
 * if we give a grid_key of dimension 2 4x4 the expression "pos[d] * spacing[d]"
 * will assume the value
44
 *
incardon's avatar
incardon committed
45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * (0.0 0.0) (0.25 0.0) ...... (1.0 0.0)
 * (0.0 0.25)................. (1.0 0.25)
 * ....................................
 * (0.0 1.0).................. (1.0 1.0)
 *
 * and the properties 3 6 will be filled with the numbers 0.0 0.0    .......  1.0 1.0
 * progressively
 *
 * \tparam dim Dimensionality of the cartesian grid
 * \tparam dT type of the domain
 * \tparam G_v vertex type object
 * \tparam v boost::mpl::vector containing all the index to fill
 * \tparam is_stub when is true, produce a trivial operator(),
 *         to use when v is an empty vector to avoid compilation error
59 60 61
 *
 */

incardon's avatar
incardon committed
62
template<unsigned int dim, int lin_id, typename dT, typename G_v, typename v, bool is_stub>
incardon's avatar
incardon committed
63
class fill_prop
64
{
incardon's avatar
incardon committed
65 66 67 68 69 70 71 72
	//! Reference to an array containing the spacing
	const dT (& szd)[dim];

	//! grid_key_dx Reference containing the actual position
	grid_key_dx<dim> & gk;

	//! Vertex object to fill
	G_v & g_v;
73

incardon's avatar
incardon committed
74 75 76
	//! grid info
	const grid_sm<dim,void> & gs;

77 78
public:

incardon's avatar
incardon committed
79
	//! Fill the object from where to take the properties
incardon's avatar
incardon committed
80 81
	fill_prop(G_v & g_v , const dT (& szd)[dim], grid_key_dx<dim> & gk,const grid_sm<dim,void> & gs)
	:szd(szd),gk(gk),g_v(g_v),gs(gs)
incardon's avatar
incardon committed
82 83 84 85 86 87 88 89 90
	{}

	//! It call the function for each property we want to copy
    template<typename T>
    void operator()(T& t) const
    {
    	typedef typename boost::fusion::result_of::at<v,boost::mpl::int_<T::value>>::type t_val;

    	g_v.template get<t_val::value>() = gk.get(T::value) * szd[T::value];
incardon's avatar
incardon committed
91
    	fill_id<dim, G_v,lin_id>::fill(g_v,gk,gs);
incardon's avatar
incardon committed
92 93 94
    }
};

incardon's avatar
incardon committed
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*! \brief This class work as a functor
 *
 * For each number in the boost::mpl::vector (for example 3 6) set the properties of the vertex at the
 * specified id (3 6) with pos[d] * spacing[d] with d running from 0 to 1, pos[d] the position id of the vertex
 * spacing the grid spacing
 *
 * Example
 *
 * if we give a grid_key of dimension 2 4x4 the expression "pos[d] * spacing[d]"
 * will assume the value
 *
 * (0.0 0.0) (0.25 0.0) ...... (1.0 0.0)
 * (0.0 0.25)................. (1.0 0.25)
 * ....................................
 * (0.0 1.0).................. (1.0 1.0)
 *
 * and the properties 3 6 will be filled with the numbers 0.0 0.0    .......  1.0 1.0
 * progressively
 *
 * \tparam dim Dimensionality of the cartesian grid
 * \tparam dT type of the domain
 * \tparam G_v vertex type object
 * \tparam v boost::mpl::vector containing all the index to fill
 *
 */

template<unsigned int dim, int prp_id, typename dT, typename G_v, typename v>
class fill_prop<dim,prp_id,dT,G_v,v,true>
{

public:

	//! Fill the object from where to take the properties
	fill_prop(G_v & g_v , const dT (& szd)[dim], grid_key_dx<dim> & gk, const grid_sm<dim,void> & gs)
	{}

	//! It call the function for each property we want to copy
    template<typename T>
    void operator()(T& t) const
    {}
};


incardon's avatar
incardon committed
138 139 140 141 142 143 144 145
/*! \brief Graph constructor function specialization
 *
 * On C++ partial function specialization is not allowed, so we need a class to do it
 *
 * \see CartesianGraphFactory method construct
 *
 */

incardon's avatar
incardon committed
146
template<unsigned int dim, int prp_id, typename Graph, int se,typename T, unsigned int dim_c, int... pos>
incardon's avatar
incardon committed
147 148 149 150
class Graph_constructor_impl
{
public:
	//! Construct cartesian graph
incardon's avatar
incardon committed
151
	static Graph construct(const size_t (& sz)[dim], Box<dim,T> dom)
152 153 154 155 156
	{
		// Calculate the size of the hyper-cubes on each dimension

		T szd[dim];

157
		for (size_t i = 0 ; i < dim ; i++)
158 159 160 161 162 163 164 165
		{szd[i] = (dom.getHigh(i) - dom.getLow(i)) / sz[i];}

		//! Construct an hyper-cube of dimension dim

		HyperCube<dim> hc;

		// Construct a grid info

166
		grid_sm<dim,void> g(sz);
167 168 169 170 171 172 173 174 175 176

		// Create a graph with the number of vertices equal to the number of
		// grid point

		//! Graph to construct

		Graph gp(g.size());

		/******************
		 *
incardon's avatar
incardon committed
177 178
		 * Create the edges and fill spatial
		 * information properties
179 180 181 182 183 184 185 186 187
		 *
		 ******************/

		//! Construct a key iterator

		grid_key_dx_iterator<dim> k_it(g);

		//! Iterate through all the elements

incardon's avatar
incardon committed
188
		while (k_it.isNext())
189 190 191
		{
			grid_key_dx<dim> key = k_it.get();

incardon's avatar
incardon committed
192
			// Vertex object
incardon's avatar
incardon committed
193

incardon's avatar
incardon committed
194 195 196
			auto obj = gp.vertex(g.LinId(key));

			// vertex spatial properties functor
incardon's avatar
incardon committed
197 198

			fill_prop<dim, prp_id ,T,decltype(gp.vertex(g.LinId(key))), typename to_boost_vmpl<pos...>::type, sizeof...(pos) == 0 > flp(obj,szd,key,g);
incardon's avatar
incardon committed
199 200 201 202 203

			// fill properties

			boost::mpl::for_each< boost::mpl::range_c<int,0,sizeof...(pos)> >(flp);

204 205
			// Get the combinations of dimension d

206
			for (size_t d = dim-1 ; d >= dim_c ; d--)
207 208 209 210 211 212 213
			{
				// create the edges for that dimension

				std::vector<comb<dim>> c = hc.getCombinations_R(d);

				// for each combination calculate a safe linearization and create an edge

214
				for (size_t j = 0 ; j < c.size() ; j++)
215 216 217 218 219 220 221
				{
					// Calculate the element size

					T ele_sz = 0;

					// for each dimension multiply and reduce

222
					for (size_t s = 0 ; s < dim ; s++)
223
					{
incardon's avatar
incardon committed
224
						ele_sz += szd[s] * abs(c[j][s]);
225 226 227 228 229 230
					}

					// Calculate the end point vertex id
					// Calculate the start point id

					size_t start_v = g.LinId(key);
incardon's avatar
incardon committed
231
					size_t end_v = g.template LinId<CheckExistence>(key,c[j].getComb());
232

incardon's avatar
incardon committed
233
					// Add an edge and set the the edge property to the size of the face (communication weight)
incardon's avatar
incardon committed
234
					gp.template addEdge<CheckExistence>(start_v,end_v).template get<se>() = ele_sz;
235 236 237
				}
			}

incardon's avatar
incardon committed
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
			// Fill vertex properties



			++k_it;
		}

		return gp;
	}
};

/*! \brief Graph constructor function specialization
 *
 * On C++ partial function specialization is not allowed, so we need a class to do it
 * This specialization handle the case when we have NO_EDGE option active
 *
 * \see CartesianGraphFactory method construct
 *
 */

incardon's avatar
incardon committed
258 259
template<unsigned int dim, int prp_id, typename Graph,typename T, unsigned int dim_c, int... pos>
class Graph_constructor_impl<dim, prp_id, Graph, NO_EDGE, T, dim_c, pos...>
incardon's avatar
incardon committed
260 261 262
{
public:
	//! Construct cartesian graph
incardon's avatar
incardon committed
263
	static Graph construct(const size_t ( & sz)[dim], Box<dim,T> dom)
incardon's avatar
incardon committed
264 265 266 267 268
	{
		// Calculate the size of the hyper-cubes on each dimension

		T szd[dim];

269
		for (size_t i = 0 ; i < dim ; i++)
incardon's avatar
incardon committed
270 271 272 273 274 275 276 277
		{szd[i] = (dom.getHigh(i) - dom.getLow(i)) / sz[i];}

		//! Construct an hyper-cube of dimension dim

		HyperCube<dim> hc;

		// Construct a grid info

278
		grid_sm<dim,void> g(sz);
incardon's avatar
incardon committed
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307

		// Create a graph with the number of vertices equal to the number of
		// grid point

		//! Graph to construct

		Graph gp(g.size());

		/******************
		 *
		 * Create the edges and fill spatial
		 * information properties
		 *
		 ******************/

		//! Construct a key iterator

		grid_key_dx_iterator<dim> k_it(g);

		//! Iterate through all the elements

		while (k_it.isNext())
		{
			grid_key_dx<dim> key = k_it.get();

			// Vertex object
			auto obj = gp.vertex(g.LinId(key));

			// vertex spatial properties functor
incardon's avatar
incardon committed
308
			fill_prop<dim, prp_id ,T,decltype(gp.vertex(g.LinId(key))), typename to_boost_vmpl<pos...>::type, sizeof...(pos) == 0 > flp(obj,szd,key,g);
incardon's avatar
incardon committed
309 310 311 312 313 314 315

			// fill properties

			boost::mpl::for_each< boost::mpl::range_c<int,0,sizeof...(pos)> >(flp);

			// Get the combinations of dimension d

316
			for (size_t d = dim-1 ; d >= dim_c ; d--)
incardon's avatar
incardon committed
317 318 319 320 321 322 323
			{
				// create the edges for that dimension

				std::vector<comb<dim>> c = hc.getCombinations_R(d);

				// for each combination calculate a safe linearization and create an edge

324
				for (size_t j = 0 ; j < c.size() ; j++)
incardon's avatar
incardon committed
325 326 327 328 329 330 331
				{
					// Calculate the element size

					T ele_sz = 0;

					// for each dimension multiply and reduce

332
					for (size_t s = 0 ; s < dim ; s++)
incardon's avatar
incardon committed
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
					{
						ele_sz += szd[s] * abs(c[j][s]);
					}

					// Calculate the end point vertex id
					// Calculate the start point id

					size_t start_v = g.LinId(key);
					size_t end_v = g.template LinId<CheckExistence>(key,c[j].getComb());

					// Add an edge and set the the edge property to the size of the face (communication weight)
					gp.template addEdge<CheckExistence>(start_v,end_v);
				}
			}

			// Fill vertex properties

350 351 352
			++k_it;
		}

incardon's avatar
incardon committed
353
		return gp;
incardon's avatar
incardon committed
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
	}
};


/*! \brief This class construct a cartesian graph
 *
 * This class construct a cartesian graph
 *
 * \param dim dimensionality of the cartesian grid
 *
 */

template<unsigned int dim, typename Graph>
class CartesianGraphFactory
{

public:
371

incardon's avatar
incardon committed
372 373 374 375 376 377 378 379
	/*!
	 *
	 * \brief Construct a cartesian graph, with V and E edge properties
	 *
	 * Construct a cartesian graph, with V and E edge properties
	 *
	 * Each vertex is a subspace (Hyper-cube) of dimension dim, each vertex is
	 * connected with an edge if two vertex (Hyper-cube) share a element of dimension grater than
incardon's avatar
incardon committed
380 381
	 * dim_c. One property can be used to store the contact size or the d-dimensional
	 * surface in common between two connected hyper-cube.
incardon's avatar
incardon committed
382 383 384 385
	 *
	 * \param sz Vector that store the size of the grid on each dimension
	 * \param dom Box enclosing the physical domain
	 *
incardon's avatar
incardon committed
386 387 388
	 * \tparam se Indicate which properties fill with the contact size. The
	 *           contact size is the point, line , surface, d-dimensional object size
	 *           in contact (in common) between two hyper-cube. NO_EDGE indicate
incardon's avatar
incardon committed
389 390 391
	 *           no property will store this information
	 * \tparam T type of the domain like (int real complex ... )
	 * \tparam dim_c Connectivity dimension
incardon's avatar
incardon committed
392
	 * \tparam pos... (optional)one or more integer indicating the spatial properties
incardon's avatar
incardon committed
393 394
	 *
	 */
incardon's avatar
incardon committed
395
	template <int se,typename T, unsigned int dim_c, int... pos>
incardon's avatar
incardon committed
396
	static Graph construct(const size_t (& sz)[dim], Box<dim,T> dom)
incardon's avatar
incardon committed
397
	{
incardon's avatar
incardon committed
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return Graph_constructor_impl<dim,-1,Graph,se,T,dim_c,pos...>::construct(sz,dom);
	}

	/*!
	 *
	 * \brief Construct a cartesian graph, with V and E edge properties
	 *
	 * Construct a cartesian graph, with V and E edge properties
	 *
	 * Each vertex is a subspace (Hyper-cube) of dimension dim, each vertex is
	 * connected with an edge if two vertex (Hyper-cube) share a element of dimension grater than
	 * dim_c. One property can be used to store the contact size or the d-dimensional
	 * surface in common between two connected hyper-cube.
	 *
	 * \param sz Vector that store the size of the grid on each dimension
	 * \param dom Box enclosing the physical domain
	 *
	 * \tparam se Indicate which properties fill with the contact size. The
	 *           contact size is the point, line , surface, d-dimensional object size
	 *           in contact (in common) between two hyper-cube. NO_EDGE indicate
	 *           no property will store this information
	 * \tparam id_prp Id property of the vertex, used to initialize with the sequence of id
	 * \tparam T type of the domain like (int real complex ... )
	 * \tparam dim_c Connectivity dimension
	 * \tparam pos... (optional)one or more integer indicating the spatial properties
	 *
	 */
	template <int se,int id_prp,typename T, unsigned int dim_c, int... pos>
	static Graph construct(const size_t (& sz)[dim], Box<dim,T> dom)
	{
		return Graph_constructor_impl<dim,id_prp,Graph,se,T,dim_c,pos...>::construct(sz,dom);
429 430 431 432
	}
};

#endif /* CARTESIANGRAPHFACTORY_HPP_ */