main.cpp 33.8 KB
Newer Older
incardon's avatar
incardon committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*!
 * \page Vector_7_sph_dlb_opt Vector 7 SPH Dam break simulation with Dynamic load balacing (Optimized version)
 *
 *
 * [TOC]
 *
 *
 * # SPH with Dynamic load Balancing # {#SPH_dlb}
 *
 * This is just a rework of the SPH Dam break simulation optimized to get better performance we will focus on the
 * optimization and differences with the previous example
 *
 * \see \ref Vector_7_sph_dlb
 *
 * \htmlonly
 * <a href="#" onclick="hide_show('vector-video-3')" >Simulation video 1</a><br>
 * <div style="display:none" id="vector-video-3">
 * <video id="vid3" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_speed.mp4" type="video/mp4"></video>
 * </div>
 * <a href="#" onclick="hide_show('vector-video-4')" >Simulation video 2</a><br>
 * <div style="display:none" id="vector-video-4">
 * <video id="vid4" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_speed2.mp4" type="video/mp4"></video>
 * </div>
 * <a href="#" onclick="hide_show('vector-video-15')" >Simulation dynamic load balancing video 1</a><br>
 * <div style="display:none" id="vector-video-15">
 * <video id="vid15" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_dlb.mp4" type="video/mp4"></video>
 * </div>
 * <a href="#" onclick="hide_show('vector-video-16')" >Simulation dynamic load balancing video 2</a><br>
 * <div style="display:none" id="vector-video-16">
 * <video id="vid16" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_dlb2.mp4" type="video/mp4"></video>
 * </div>
 * \endhtmlonly
 *
 * \htmlonly
 * <img src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/dam_break_all.jpg"/>
 * \endhtmlonly
 *
 *
 */

//#define SE_CLASS1
//#define STOP_ON_ERROR

#include "Vector/vector_dist.hpp"
#include <math.h>
#include "Draw/DrawParticles.hpp"

/*!
 * \page Vector_7_sph_dlb_opt Vector 7 SPH Dam break simulation with Dynamic load balacing (Optimized version)
 *
 * ## Using verlet list with skin{#e7_sph_dlb_opt}
 *
 * The first optimization that we operate is the usage of verlet list. The verlet are reconstructed only when
 * the maximum displacement is bigger than the half skin. Because we have to calculate
 * the maximum displacement the verlet and euler integration has been modified to do this.
 * The function accept a reference to max_disp that is filled with the maximum displacement calculated
 * from these functions.
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp verlet_new_arg
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp euler_new_arg
 *
 *
 * The variable is reset inside verlet and euler time integration function
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp reset_max_disp
 *
 * while iteration across particle the maximum displacement is saved inside the variable
 * max_disp
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp calc_max_disp
 *
 * We also have to be careful that if we are removing particles we have to reconstruct the verlet list,
 *  so we set it to a really big number
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp big_number_set
 *
 * Because the maximum displacement has to be calculated across processors, we use the
 * function max in Vcluster to calculate the maximum displacement across processors.
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp max_across_proc
 *
 * We also calculate the skin part and ghost plus skin. Consider also that the ghost
 * must be extended to ghost + skin so r_gskin
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp skin_calc
 *
 * As we explained before, we update the verlet only if particles move more than the skin.
 * In case they move more than the skin we do first a map to redistribute the particles and in the
 * meanwhile we check if it is a good moment to rebalance. We decided to combine these two steps
 * because in case we rebalance we have anyway to reconstruct the Verler-list. Than we calculate
 *  the pressure for all the particles, refresh the ghost, update the Verlet-list and reset the
 *  total displacement. In case the the total displacement does not overshoot the skin we just
 * calculate the pressure for all the particles and refresh the ghost. We must use the option
 * **SKIP_LABELLING**
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp update_verlet
 *
 * We pass the max_displacement variable to verlet_int and euler_int function. We also add
 * the maximum displacement per iteration to the total maximum displacement
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp pass_ver_eu
 *
 *
 *
 * ## Symmetric interaction (Crossing scheme){#e7_sph_dlb_sym}
 *
 * Symmetric interaction give the possibility to reduce the computation by half and speed-up
 * your simulation. To do this we have to do some changes into the function calc forces.
 * Symmetric interaction require to write on the ghost area. So at the beginning of the function
 * we reset the ghost part. In the meanwhile because we have the external force gravity that
 * operate per particles, we set this force at the beginning.
 *
 * \warning The requirement to set per particle external forces outside the particle loop
 *          come from the symmetric scheme. Suppose to have in pseudocode this
 *          \code{.unparsed}
 1          for each particles p
 2             reset the force for p
 3             for each neighborhood particle q of p
 4                 calculate the force p-q
 5                 add the contribution to p
 6                 add the contribution to q


 *          \endcode
 *			suppose we are on particle p=0 and calculate the force with q=10 we add the
 *			contribution to p and q. Unfortunately accordingly to this cycle when we reach
 *			particle q = 10 we reset what we previously calculated. So we have to write
 *          \code{.unparsed}
 *
 1          for each particles p
 2              reset the force for p

 3          for each particles p
 4             for each neighborhood particle q of p
 5                 calculate the force p-q
 6                 add the contribution to p
 7                 add the contribution to q


           \endcode
 *
 * With this code we set the per particle external force to gravity and reset the derivative of the
 * density for the domain particles
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp reset_particles
 *
 * With this code we reset the force and derivative of the density of the particles on the ghost part
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp reset_particles2
 *
 * Small changes must be done to iterate over the neighborhood particles
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp nn_part
 *
 * skip the self interaction
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp skip_self
 *
 * This is instead an important change (and honestly it took quite some hour of debuging to
 * discover the problem). In case we are on boundary particle (p = boundary particle) and
 * calculating an interaction with a particle q = fluid particle we have to remeber that we have
 * also to calculate the force for q (not only drho)
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp symmetry
 *
 * for a fluid particle instead we calculate p-q interaction and we add the contribution
 * to p and q. Because we do not integrate over the boundary particles we can also avoid to
 * check that q is a boundary particle
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp symmetry2
 *
 * After the calculation cycle we have to merge the forces and delta density calculated on
 * the ghost with the real particles.
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp ghost_put
 *
 * It is important when we construct our vector of particles to pass the option **BIND_DEC_TO_GHOST**.
 * To use symmetric calculation in parallel environment the decomposition must be consistent with the
 * cell decomposition of the space.
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp important_option
 *
 * To construct a Verlet-list using the CRS scheme we use the following function
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp get_verlet_crs
 *
 * while to update the verlet list we use the following
 *
 * \snippet Vector/7_SPH_dlb_opt/main.cpp update_verlet_crs
 *
 * ## Using re-decompose instead of decompose {#e7_sph_dlb_opt_red}
 *
 * Using redecompose instead of decompose produce less jumping decomposition during the simulation
 *
 * \htmlonly
 * <a href="#" onclick="hide_show('vector-video-1')" >Video 1</a>
 * <div style="display:none" id="vector-video-1">
 * <video id="vid1" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_dlb.mp4" type="video/mp4"></video>
 * <script>video_anim('vid1',100,230)</script>
 * </div>
 * <a href="#" onclick="hide_show('vector-video-2')" >Video 2</a>
 * <div style="display:none" id="vector-video-2">
 * <video id="vid2" width="1200" height="576" controls> <source src="http://openfpm.mpi-cbg.de/web/images/examples/7_SPH_dlb/sph_dlb2.mp4" type="video/mp4"></video>
 * <script>video_anim('vid2',21,1590)</script>
 * </div>
 * \endhtmlonly
 *
 */

// A constant to indicate boundary particles
212
#define BOUNDARY 1
incardon's avatar
incardon committed
213 214

// A constant to indicate fluid particles
215
#define FLUID 0
incardon's avatar
incardon committed
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

// initial spacing between particles dp in the formulas
const double dp = 0.0085;
// Maximum height of the fluid water
// is going to be calculated and filled later on
double h_swl = 0.0;

// c_s in the formulas (constant used to calculate the sound speed)
const double coeff_sound = 20.0;

// gamma in the formulas
const double gamma_ = 7.0;

// sqrt(3.0*dp*dp) support of the kernel
const double H = 0.0147224318643;

232 233
const double FourH2 = 4.0 * H*H;

incardon's avatar
incardon committed
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
// Eta in the formulas
const double Eta2 = 0.01 * H*H;

// alpha in the formula
const double visco = 0.1;

// cbar in the formula (calculated later)
double cbar = 0.0;

// Mass of the fluid particles
const double MassFluid = 0.000614125;

// Mass of the boundary particles
const double MassBound = 0.000614125;

// End simulation time
250
#ifndef TEST_RUN
incardon's avatar
incardon committed
251
const double t_end = 1.5;
252 253 254
#else
const double t_end = 0.001;
#endif
incardon's avatar
incardon committed
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

// Gravity acceleration
const double gravity = 9.81;

// Reference densitu 1000Kg/m^3
const double rho_zero = 1000.0;

// Filled later require h_swl, it is b in the formulas
double B = 0.0;

// Constant used to define time integration
const double CFLnumber = 0.2;

// Minimum T
const double DtMin = 0.00001;

// Minimum Rho allowed
const double RhoMin = 700.0;

// Maximum Rho allowed
const double RhoMax = 1300.0;

// Filled in initialization
double max_fluid_height = 0.0;

// Properties

// FLUID or BOUNDARY
const size_t type = 0;

285 286 287
// FLUID or BOUNDARY
const size_t nn_num = 1;

incardon's avatar
incardon committed
288
// Density
289
const int rho = 2;
incardon's avatar
incardon committed
290 291

// Density at step n-1
292
const int rho_prev = 3;
incardon's avatar
incardon committed
293 294

// Pressure
295
const int Pressure = 4;
incardon's avatar
incardon committed
296 297

// Delta rho calculated in the force calculation
298
const int drho = 5;
incardon's avatar
incardon committed
299 300

// calculated force
301
const int force = 6;
incardon's avatar
incardon committed
302 303

// velocity
304
const int velocity = 7;
incardon's avatar
incardon committed
305 306

// velocity at previous step
307
const int velocity_prev = 8;
incardon's avatar
incardon committed
308 309 310 311 312 313

/*! \cond [sim parameters] \endcond */

/*! \cond [vector_dist_def] \endcond */

// Type of the vector containing particles
314
typedef vector_dist<3,double,aggregate<int, int,double,  double,    double,     double,     double[3], double[3], double[3]> > particles;
incardon's avatar
incardon committed
315 316 317 318 319 320 321
//                                       |      |        |          |            |            |         |            |
//                                       |      |        |          |            |            |         |            |
//                                     type   density   density    Pressure    delta       force     velocity    velocity
//                                                      at n-1                 density                           at n - 1

struct ModelCustom
{
322
	template<typename Decomposition, typename vector> inline void addComputation(Decomposition & dec, vector & vd, size_t v, size_t p)
incardon's avatar
incardon committed
323
	{
324 325 326 327
                if (vd.template getProp<type>(p) == FLUID )
                        dec.addComputationCost(v,4);
                else
                        dec.addComputationCost(v,3);
incardon's avatar
incardon committed
328 329 330 331 332 333 334
	}

	template<typename Decomposition> inline void applyModel(Decomposition & dec, size_t v)
	{
		dec.setSubSubDomainComputationCost(v, dec.getSubSubDomainComputationCost(v) * dec.getSubSubDomainComputationCost(v));
	}

335
        float distributionTol()
incardon's avatar
incardon committed
336 337 338 339 340 341
	{
		return 1.01;
	}
};


342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
struct ModelCustom2
{
        template<typename Decomposition, typename vector> inline void addComputation(Decomposition & dec, vector & vd, size_t v, size_t p)
        {
            dec.addComputationCost(v,vd.template getProp<nn_num>(p) + 4);
        }

        template<typename Decomposition> inline void applyModel(Decomposition & dec, size_t v)
        {
        }

        float distributionTol()
        {
                return 1.01;
        }
};

incardon's avatar
incardon committed
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
inline void EqState(particles & vd)
{
	auto it = vd.getDomainIterator();

	while (it.isNext())
	{
		auto a = it.get();

		double rho_a = vd.template getProp<rho>(a);
		double rho_frac = rho_a / rho_zero;

		vd.template getProp<Pressure>(a) = B*( rho_frac*rho_frac*rho_frac*rho_frac*rho_frac*rho_frac*rho_frac - 1.0);

		++it;
	}
}

const double a2 = 1.0/M_PI/H/H/H;

inline double Wab(double r)
{
	r /= H;

	if (r < 1.0)
		return (1.0 - 3.0/2.0*r*r + 3.0/4.0*r*r*r)*a2;
	else if (r < 2.0)
		return (1.0/4.0*(2.0 - r*r)*(2.0 - r*r)*(2.0 - r*r))*a2;
	else
		return 0.0;
}

const double c1 = -3.0/M_PI/H/H/H/H;
const double d1 = 9.0/4.0/M_PI/H/H/H/H;
const double c2 = -3.0/4.0/M_PI/H/H/H/H;
const double a2_4 = 0.25*a2;
// Filled later
double W_dap = 0.0;

397
inline void DWab(Point<3,double> & dx, Point<3,double> & DW, double r)
incardon's avatar
incardon committed
398 399 400
{
	const double qq=r/H;

401 402 403
    double qq2 = qq * qq;
    double fac1 = (c1*qq + d1*qq2)/r;
    double b1 = (qq < 1.0)?1.0f:0.0f;
incardon's avatar
incardon committed
404

405 406 407
    double wqq = (2.0 - qq);
    double fac2 = c2 * wqq * wqq / r;
    double b2 = (qq >= 1.0 && qq < 2.0)?1.0f:0.0f;
incardon's avatar
incardon committed
408

409 410 411 412 413
    double factor = (b1*fac1 + b2*fac2);

    DW.get(0) = factor * dx.get(0);
    DW.get(1) = factor * dx.get(1);
    DW.get(2) = factor * dx.get(2);
incardon's avatar
incardon committed
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
}

inline double Tensile(double r, double rhoa, double rhob, double prs1, double prs2)
{
	const double qq=r/H;
	//-Cubic Spline kernel
	double wab;
	if(r>H)
	{
		double wqq1=2.0f-qq;
		double wqq2=wqq1*wqq1;

		wab=a2_4*(wqq2*wqq1);
	}
	else
	{
	    double wqq2=qq*qq;
	    double wqq3=wqq2*qq;

	    wab=a2*(1.0f-1.5f*wqq2+0.75f*wqq3);
	}

	//-Tensile correction.
	double fab=wab*W_dap;
	fab*=fab; fab*=fab; //fab=fab^4
	const double tensilp1=(prs1/(rhoa*rhoa))*(prs1>0? 0.01: -0.2);
	const double tensilp2=(prs2/(rhob*rhob))*(prs2>0? 0.01: -0.2);

	return (fab*(tensilp1+tensilp2));
}


inline double Pi(const Point<3,double> & dr, double rr2, Point<3,double> & dv, double rhoa, double rhob, double massb, double & visc)
{
	const double dot = dr.get(0)*dv.get(0) + dr.get(1)*dv.get(1) + dr.get(2)*dv.get(2);
	const double dot_rr2 = dot/(rr2+Eta2);
	visc=std::max(dot_rr2,visc);

	if(dot < 0)
	{
		const float amubar=H*dot_rr2;
		const float robar=(rhoa+rhob)*0.5f;
		const float pi_visc=(-visco*cbar*amubar/robar);

		return pi_visc;
    }
	else
		return 0.0;
}


template<typename VerletList> inline double calc_forces(particles & vd, VerletList & NN, double & max_visc)
{
	/*! \cond [reset_particles] \endcond */

	// Reset the ghost
    auto itg = vd.getDomainIterator();
    while (itg.isNext())
    {
        auto p = itg.get();
        // Reset force

		// Reset the force counter (- gravity on zeta direction)
		vd.template getProp<force>(p)[0] = 0.0;
		vd.template getProp<force>(p)[1] = 0.0;
		vd.template getProp<force>(p)[2] = -gravity;
		vd.template getProp<drho>(p) = 0.0;


        ++itg;
    }

    /*! \cond [reset_particles] \endcond */

    /*! \cond [reset_particles2] \endcond */

    auto itg2 = vd.getGhostIterator();
    while (itg2.isNext())
    {
        auto p = itg2.get();
        // Reset force

		// Reset the force counter (- gravity on zeta direction)
		vd.template getProp<force>(p)[0] = 0.0;
		vd.template getProp<force>(p)[1] = 0.0;
		vd.template getProp<force>(p)[2] = 0.0;
		vd.template getProp<drho>(p) = 0.0;

        ++itg2;
    }

    /*! \cond [reset_particles2] \endcond */

    // Get an iterator over particles
508
    auto part = vd.getParticleIteratorCRS(NN);
incardon's avatar
incardon committed
509 510 511 512 513 514 515 516 517 518 519 520

	double visc = 0;

	// For each particle ...
	while (part.isNext())
	{
		// ... a
		auto a = part.get();

		// Get the position xp of the particle
		Point<3,double> xa = vd.getPos(a);

521 522 523
		// Type of the particle
		size_t typea = vd.getProp<type>(a);

incardon's avatar
incardon committed
524 525 526 527 528 529 530 531 532 533 534 535
		// Take the mass of the particle dependently if it is FLUID or BOUNDARY
		double massa = (vd.getProp<type>(a) == FLUID)?MassFluid:MassBound;

		// Get the density of the of the particle a
		double rhoa = vd.getProp<rho>(a);

		// Get the pressure of the particle a
		double Pa = vd.getProp<Pressure>(a);

		// Get the Velocity of the particle a
		Point<3,double> va = vd.getProp<velocity>(a);

536 537
        // Get an iterator over the neighborhood particles of p
        auto Np = NN.template getNNIterator<NO_CHECK>(a);
incardon's avatar
incardon committed
538

539
        size_t nn = 0;
incardon's avatar
incardon committed
540

541 542 543 544 545
        // For each neighborhood particle
        while (Np.isNext() == true)
        {
                // ... q
                auto b = Np.get();
incardon's avatar
incardon committed
546

547 548
                // Get the position xp of the particle
                Point<3,double> xb = vd.getPos(b);
incardon's avatar
incardon committed
549

550 551 552 553
                // Get the distance between p and q
                Point<3,double> dr = xa - xb;
                // take the norm of this vector
                float r2 = norm2(dr);
incardon's avatar
incardon committed
554

555 556 557 558
                // if they interact
                if (r2 < FourH2 && r2 > 1e-18)
                {
                        double r = sqrt(r2);
incardon's avatar
incardon committed
559

560
                        unsigned int typeb = vd.getProp<type>(b);
incardon's avatar
incardon committed
561

562 563 564 565
                        double massb = (typeb == FLUID)?MassFluid:MassBound;
                        Point<3,double> vb = vd.getProp<velocity>(b);
                        double Pb = vd.getProp<Pressure>(b);
                        double rhob = vd.getProp<rho>(b);
incardon's avatar
incardon committed
566

567
                        Point<3,double> v_rel = va - vb;
incardon's avatar
incardon committed
568

569 570
                        Point<3,double> DW;
                        DWab(dr,DW,r);
incardon's avatar
incardon committed
571

572
                        //! \cond [symmetry2] \endcond
incardon's avatar
incardon committed
573

574
                        double factor = - ((Pa + Pb) / (rhoa * rhob) + Tensile(r,rhoa,rhob,Pa,Pb) + Pi(dr,r2,v_rel,rhoa,rhob,massb,visc));
incardon's avatar
incardon committed
575

576 577
                        // Bound - Bound does not produce any change
                        factor = (typea == BOUNDARY && typeb == BOUNDARY)?0.0f:factor;
incardon's avatar
incardon committed
578

579 580 581
                        vd.getProp<force>(a)[0] += massb * factor * DW.get(0);
                        vd.getProp<force>(a)[1] += massb * factor * DW.get(1);
                        vd.getProp<force>(a)[2] += massb * factor * DW.get(2);
incardon's avatar
incardon committed
582

583 584 585
                        vd.getProp<force>(b)[0] -= massa * factor * DW.get(0);
                        vd.getProp<force>(b)[1] -= massa * factor * DW.get(1);
                        vd.getProp<force>(b)[2] -= massa * factor * DW.get(2);
incardon's avatar
incardon committed
586

587
                        double scal = (v_rel.get(0)*DW.get(0)+v_rel.get(1)*DW.get(1)+v_rel.get(2)*DW.get(2));
incardon's avatar
incardon committed
588

589 590
                        // Bound - Bound does not produce any change
                        scal = (typea == BOUNDARY && typeb == BOUNDARY)?0.0f:scal;
incardon's avatar
incardon committed
591

592 593
                        vd.getProp<drho>(a) += massb*scal;
                        vd.getProp<drho>(b) += massa*scal;
incardon's avatar
incardon committed
594

595 596
                        //! \cond [symmetry2] \endcond
                }
incardon's avatar
incardon committed
597

598 599 600
                nn++;
                ++Np;
        }
incardon's avatar
incardon committed
601

602 603
        // Number of particles here
        vd.getProp<nn_num>(a) = nn;
incardon's avatar
incardon committed
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

		++part;
	}

	//! \cond [ghost_put] \endcond

	vd.template ghost_put<add_,drho,force>();

	//! \cond [ghost_put] \endcond
}

void max_acceleration_and_velocity(particles & vd, double & max_acc, double & max_vel)
{
	// Calculate the maximum acceleration
	auto part = vd.getDomainIterator();

	while (part.isNext())
	{
		auto a = part.get();

		Point<3,double> acc(vd.getProp<force>(a));
		double acc2 = norm2(acc);

		Point<3,double> vel(vd.getProp<velocity>(a));
		double vel2 = norm2(vel);

		if (vel2 >= max_vel)
			max_vel = vel2;

		if (acc2 >= max_acc)
			max_acc = acc2;

		++part;
	}
	max_acc = sqrt(max_acc);
	max_vel = sqrt(max_vel);

	Vcluster & v_cl = create_vcluster();
	v_cl.max(max_acc);
	v_cl.max(max_vel);
	v_cl.execute();
}

double calc_deltaT(particles & vd, double ViscDtMax)
{
	double Maxacc = 0.0;
	double Maxvel = 0.0;
	max_acceleration_and_velocity(vd,Maxacc,Maxvel);

	//-dt1 depends on force per unit mass.
	const double dt_f = (Maxacc)?sqrt(H/Maxacc):std::numeric_limits<int>::max();

	//-dt2 combines the Courant and the viscous time-step controls.
	const double dt_cv = H/(std::max(cbar,Maxvel*10.) + H*ViscDtMax);

	//-dt new value of time step.
	double dt=double(CFLnumber)*std::min(dt_f,dt_cv);
	if(dt<double(DtMin))
		dt=double(DtMin);

	return dt;
}


openfpm::vector<size_t> to_remove;

size_t cnt = 0;

/*! \cond [verlet_new_arg] \endcond */
void verlet_int(particles & vd, double dt, double & max_disp)
/*! \cond [verlet_new_arg] \endcond */
{
	// list of the particle to remove
	to_remove.clear();

	// particle iterator
	auto part = vd.getDomainIterator();

	double dt205 = dt*dt*0.5;
	double dt2 = dt*2.0;

	/*! \cond [reset_max_disp] \endcond */
	max_disp = 0;
	/*! \cond [reset_max_disp] \endcond */

	// For each particle ...
	while (part.isNext())
	{
		// ... a
		auto a = part.get();

		// if the particle is boundary
		if (vd.template getProp<type>(a) == BOUNDARY)
		{
			// Update rho
			double rhop = vd.template getProp<rho>(a);

			// Update only the density
	    	vd.template getProp<velocity>(a)[0] = 0.0;
	    	vd.template getProp<velocity>(a)[1] = 0.0;
	    	vd.template getProp<velocity>(a)[2] = 0.0;
705 706
            double rhonew = vd.template getProp<rho_prev>(a) + dt2*vd.template getProp<drho>(a);
            vd.template getProp<rho>(a) = (rhonew < rho_zero)?rho_zero:rhonew;
incardon's avatar
incardon committed
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804

		    vd.template getProp<rho_prev>(a) = rhop;

			++part;
			continue;
		}

		//-Calculate displacement and update position / Calcula desplazamiento y actualiza posicion.
		double dx = vd.template getProp<velocity>(a)[0]*dt + vd.template getProp<force>(a)[0]*dt205;
	    double dy = vd.template getProp<velocity>(a)[1]*dt + vd.template getProp<force>(a)[1]*dt205;
	    double dz = vd.template getProp<velocity>(a)[2]*dt + vd.template getProp<force>(a)[2]*dt205;

	    vd.getPos(a)[0] += dx;
	    vd.getPos(a)[1] += dy;
	    vd.getPos(a)[2] += dz;

	    /*! \cond [calc_max_disp] \endcond */
	    double d2 = dx*dx + dy*dy + dz*dz;

	    max_disp = (max_disp > d2)?max_disp:d2;
	    /*! \cond [calc_max_disp] \endcond */

	    double velX = vd.template getProp<velocity>(a)[0];
	    double velY = vd.template getProp<velocity>(a)[1];
	    double velZ = vd.template getProp<velocity>(a)[2];
	    double rhop = vd.template getProp<rho>(a);

    	vd.template getProp<velocity>(a)[0] = vd.template getProp<velocity_prev>(a)[0] + vd.template getProp<force>(a)[0]*dt2;
    	vd.template getProp<velocity>(a)[1] = vd.template getProp<velocity_prev>(a)[1] + vd.template getProp<force>(a)[1]*dt2;
    	vd.template getProp<velocity>(a)[2] = vd.template getProp<velocity_prev>(a)[2] + vd.template getProp<force>(a)[2]*dt2;
    	vd.template getProp<rho>(a) = vd.template getProp<rho_prev>(a) + dt2*vd.template getProp<drho>(a);

	    // Check if the particle go out of range in space and in density
	    if (vd.getPos(a)[0] <  0.000263878 || vd.getPos(a)[1] < 0.000263878 || vd.getPos(a)[2] < 0.000263878 ||
	        vd.getPos(a)[0] >  0.000263878+1.59947 || vd.getPos(a)[1] > 0.000263878+0.672972 || vd.getPos(a)[2] > 0.000263878+0.903944 ||
			vd.template getProp<rho>(a) < RhoMin || vd.template getProp<rho>(a) > RhoMax)
	    {
	                   to_remove.add(a.getKey());


	                   /*! \cond [big_number_set] \endcond */

	                   /*! \cond [big_number_set] \endcond */
	    }

	    vd.template getProp<velocity_prev>(a)[0] = velX;
	    vd.template getProp<velocity_prev>(a)[1] = velY;
	    vd.template getProp<velocity_prev>(a)[2] = velZ;
	    vd.template getProp<rho_prev>(a) = rhop;

		++part;
	}

	/*! \cond [max_across_proc] \endcond */

	Vcluster & v_cl = create_vcluster();
	v_cl.max(max_disp);
	v_cl.execute();

	max_disp = sqrt(max_disp);

	/*! \cond [max_across_proc] \endcond */

	// increment the iteration counter
	cnt++;
}

/*! \cond [euler_new_arg] \endcond */
void euler_int(particles & vd, double dt, double & max_disp)
/*! \cond [euler_new_arg] \endcond */
{
	// list of the particle to remove
	to_remove.clear();

	// particle iterator
	auto part = vd.getDomainIterator();

	double dt205 = dt*dt*0.5;
	double dt2 = dt*2.0;

	max_disp = 0;

	// For each particle ...
	while (part.isNext())
	{
		// ... a
		auto a = part.get();

		// if the particle is boundary
		if (vd.template getProp<type>(a) == BOUNDARY)
		{
			// Update rho
			double rhop = vd.template getProp<rho>(a);

			// Update only the density
	    	vd.template getProp<velocity>(a)[0] = 0.0;
	    	vd.template getProp<velocity>(a)[1] = 0.0;
	    	vd.template getProp<velocity>(a)[2] = 0.0;
805 806
            double rhonew = vd.template getProp<rho>(a) + dt*vd.template getProp<drho>(a);
            vd.template getProp<rho>(a) = (rhonew < rho_zero)?rho_zero:rhonew;
incardon's avatar
incardon committed
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

		    vd.template getProp<rho_prev>(a) = rhop;

			++part;
			continue;
		}

		//-Calculate displacement and update position / Calcula desplazamiento y actualiza posicion.
		double dx = vd.template getProp<velocity>(a)[0]*dt + vd.template getProp<force>(a)[0]*dt205;
	    double dy = vd.template getProp<velocity>(a)[1]*dt + vd.template getProp<force>(a)[1]*dt205;
	    double dz = vd.template getProp<velocity>(a)[2]*dt + vd.template getProp<force>(a)[2]*dt205;

	    vd.getPos(a)[0] += dx;
	    vd.getPos(a)[1] += dy;
	    vd.getPos(a)[2] += dz;

	    double d2 = dx*dx + dy*dy + dz*dz;

	    max_disp = (max_disp > d2)?max_disp:d2;

	    double velX = vd.template getProp<velocity>(a)[0];
	    double velY = vd.template getProp<velocity>(a)[1];
	    double velZ = vd.template getProp<velocity>(a)[2];
	    double rhop = vd.template getProp<rho>(a);

    	vd.template getProp<velocity>(a)[0] = vd.template getProp<velocity>(a)[0] + vd.template getProp<force>(a)[0]*dt;
    	vd.template getProp<velocity>(a)[1] = vd.template getProp<velocity>(a)[1] + vd.template getProp<force>(a)[1]*dt;
	   	vd.template getProp<velocity>(a)[2] = vd.template getProp<velocity>(a)[2] + vd.template getProp<force>(a)[2]*dt;
	   	vd.template getProp<rho>(a) = vd.template getProp<rho>(a) + dt*vd.template getProp<drho>(a);

	    // Check if the particle go out of range in space and in density
	    if (vd.getPos(a)[0] <  0.000263878 || vd.getPos(a)[1] < 0.000263878 || vd.getPos(a)[2] < 0.000263878 ||
	        vd.getPos(a)[0] >  0.000263878+1.59947 || vd.getPos(a)[1] > 0.000263878+0.672972 || vd.getPos(a)[2] > 0.000263878+0.903944 ||
			vd.template getProp<rho>(a) < RhoMin || vd.template getProp<rho>(a) > RhoMax)
	    {
	                   to_remove.add(a.getKey());
	    }

	    vd.template getProp<velocity_prev>(a)[0] = velX;
	    vd.template getProp<velocity_prev>(a)[1] = velY;
	    vd.template getProp<velocity_prev>(a)[2] = velZ;
	    vd.template getProp<rho_prev>(a) = rhop;

		++part;
	}

	Vcluster & v_cl = create_vcluster();
	v_cl.max(max_disp);
	v_cl.execute();

	max_disp = sqrt(max_disp);

	// increment the iteration counter
	cnt++;
}

int main(int argc, char* argv[])
{
    // initialize the library
	openfpm_init(&argc,&argv);

	// Here we define our domain a 2D box with internals from 0 to 1.0 for x and y
	Box<3,double> domain({-0.05,-0.05,-0.05},{1.7010,0.7065,0.5025});
	size_t sz[3] = {207,90,66};

	// Fill W_dap
	W_dap = 1.0/Wab(H/1.5);

	// Here we define the boundary conditions of our problem
    size_t bc[3]={NON_PERIODIC,NON_PERIODIC,NON_PERIODIC};

    /*! \cond [skin_calc] \endcond */

    double skin = 0.25 * 2*H;
    double r_gskin = 2*H + skin;

	// extended boundary around the domain, and the processor domain
    // by the support of the cubic kernel
	Ghost<3,double> g(r_gskin);
	
    /*! \cond [skin_calc] \endcond */

	// Eliminating the lower part of the ghost
	// We are using CRS scheme
	g.setLow(0,0.0);
	g.setLow(1,0.0);
	g.setLow(2,0.0);

	/*! \cond [important_option] \endcond */

	particles vd(0,domain,bc,g,BIND_DEC_TO_GHOST);

	/*! \cond [important_option] \endcond */

	// You can ignore all these dp/2.0 is a trick to reach the same initialization
	// of Dual-SPH that use a different criteria to draw particles
	Box<3,double> fluid_box({dp/2.0,dp/2.0,dp/2.0},{0.4+dp/2.0,0.67-dp/2.0,0.3+dp/2.0});

	// return an iterator to the fluid particles to add to vd
	auto fluid_it = DrawParticles::DrawBox(vd,sz,domain,fluid_box);

	// here we fill some of the constants needed by the simulation
	max_fluid_height = fluid_it.getBoxMargins().getHigh(2);
	h_swl = fluid_it.getBoxMargins().getHigh(2) - fluid_it.getBoxMargins().getLow(2);
	B = (coeff_sound)*(coeff_sound)*gravity*h_swl*rho_zero / gamma_;
	cbar = coeff_sound * sqrt(gravity * h_swl);

	// for each particle inside the fluid box ...
incardon's avatar
incardon committed
915
        while (fluid_it.isNext())
incardon's avatar
incardon committed
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	{
		// ... add a particle ...
		vd.add();

		// ... and set it position ...
		vd.getLastPos()[0] = fluid_it.get().get(0);
		vd.getLastPos()[1] = fluid_it.get().get(1);
		vd.getLastPos()[2] = fluid_it.get().get(2);

		// and its type.
		vd.template getLastProp<type>() = FLUID;

		// We also initialize the density of the particle and the hydro-static pressure given by
		//
		// rho_zero*g*h = P
		//
		// rho_p = (P/B + 1)^(1/Gamma) * rho_zero
		//

		vd.template getLastProp<Pressure>() = rho_zero * gravity *  (max_fluid_height - fluid_it.get().get(2));

		vd.template getLastProp<rho>() = pow(vd.template getLastProp<Pressure>() / B + 1, 1.0/gamma_) * rho_zero;
		vd.template getLastProp<rho_prev>() = vd.template getLastProp<rho>();
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		// next fluid particle
		++fluid_it;
incardon's avatar
incardon committed
949
        }
incardon's avatar
incardon committed
950

incardon's avatar
incardon committed
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
	// Recipient
	Box<3,double> recipient1({0.0,0.0,0.0},{1.6+dp/2.0,0.67+dp/2.0,0.4+dp/2.0});
	Box<3,double> recipient2({dp,dp,dp},{1.6-dp/2.0,0.67-dp/2.0,0.4+dp/2.0});

	Box<3,double> obstacle1({0.9,0.24-dp/2.0,0.0},{1.02+dp/2.0,0.36,0.45+dp/2.0});
	Box<3,double> obstacle2({0.9+dp,0.24+dp/2.0,0.0},{1.02-dp/2.0,0.36-dp,0.45-dp/2.0});
	Box<3,double> obstacle3({0.9+dp,0.24,0.0},{1.02,0.36,0.45});

	openfpm::vector<Box<3,double>> holes;
	holes.add(recipient2);
	holes.add(obstacle1);
	auto bound_box = DrawParticles::DrawSkin(vd,sz,domain,holes,recipient1);

	while (bound_box.isNext())
	{
		vd.add();

		vd.getLastPos()[0] = bound_box.get().get(0);
		vd.getLastPos()[1] = bound_box.get().get(1);
		vd.getLastPos()[2] = bound_box.get().get(2);

		vd.template getLastProp<type>() = BOUNDARY;
		vd.template getLastProp<rho>() = rho_zero;
		vd.template getLastProp<rho_prev>() = rho_zero;
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		++bound_box;
	}

	auto obstacle_box = DrawParticles::DrawSkin(vd,sz,domain,obstacle2,obstacle1);

	while (obstacle_box.isNext())
	{
		vd.add();

		vd.getLastPos()[0] = obstacle_box.get().get(0);
		vd.getLastPos()[1] = obstacle_box.get().get(1);
		vd.getLastPos()[2] = obstacle_box.get().get(2);

		vd.template getLastProp<type>() = BOUNDARY;
		vd.template getLastProp<rho>() = rho_zero;
		vd.template getLastProp<rho_prev>() = rho_zero;
		vd.template getLastProp<velocity>()[0] = 0.0;
		vd.template getLastProp<velocity>()[1] = 0.0;
		vd.template getLastProp<velocity>()[2] = 0.0;

		vd.template getLastProp<velocity_prev>()[0] = 0.0;
		vd.template getLastProp<velocity_prev>()[1] = 0.0;
		vd.template getLastProp<velocity_prev>()[2] = 0.0;

		++obstacle_box;
	}

	vd.map();

	// Now that we fill the vector with particles
	ModelCustom md;

	vd.addComputationCosts(md);
	vd.getDecomposition().decompose();
	vd.map();

	vd.ghost_get<type,rho,Pressure,velocity>();

	/*! \cond [get_verlet_crs] \endcond */
	auto NN = vd.getVerletCrs(r_gskin);
	/*! \cond [get_verlet_crs] \endcond */

	size_t write = 0;
	size_t it = 0;
	size_t it_reb = 0;
	double t = 0.0;
	double tot_disp = 0.0;
	double max_disp;
	while (t <= t_end)
	{
		Vcluster & v_cl = create_vcluster();
		timer it_time;

		/*! \cond [update_verlet] \endcond */

		it_reb++;
		if (2*tot_disp >= skin)
		{
1041 1042
			vd.remove(to_remove);

incardon's avatar
incardon committed
1043 1044 1045 1046
			vd.map();

			if (it_reb > 200)
			{
1047
				ModelCustom2 md;
incardon's avatar
incardon committed
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
				vd.addComputationCosts(md);
				vd.getDecomposition().redecompose(200);

				vd.map();

				it_reb = 0;

				if (v_cl.getProcessUnitID() == 0)
					std::cout << "REBALANCED " << std::endl;

			}

			// Calculate pressure from the density
			EqState(vd);

			vd.ghost_get<type,rho,Pressure,velocity>();

			/*! \cond [update_verlet_crs] \endcond */
			vd.updateVerlet(NN,r_gskin,VL_CRS_SYMMETRIC);
			/*! \cond [update_verlet_crs] \endcond */

			tot_disp = 0.0;

			if (v_cl.getProcessUnitID() == 0)
				std::cout << "RECONSTRUCT Verlet " << std::endl;
		}
		else
		{
			// Calculate pressure from the density
			EqState(vd);

			vd.ghost_get<type,rho,Pressure,velocity>(SKIP_LABELLING);
		}

		/*! \cond [update_verlet] \endcond */

		double max_visc = 0.0;

		// Calc forces
		calc_forces(vd,NN,max_visc);

		// Get the maximum viscosity term across processors
		v_cl.max(max_visc);
		v_cl.execute();

		// Calculate delta t integration
		double dt = calc_deltaT(vd,max_visc);

		/*! \cond [pass_ver_eu] \endcond */

		// VerletStep or euler step
		it++;
		if (it < 40)
			verlet_int(vd,dt,max_disp);
		else
		{
			euler_int(vd,dt,max_disp);
			it = 0;
		}

		tot_disp += max_disp;

		/*! \cond [pass_ver_eu] \endcond */

		t += dt;

		if (write < t*100)
		{
			vd.deleteGhost();
1117
			vd.write("Geometry",write,VTK_WRITER | FORMAT_BINARY);
incardon's avatar
incardon committed
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			vd.ghost_get<type,rho,Pressure,velocity>(SKIP_LABELLING);
			write++;

			if (v_cl.getProcessUnitID() == 0)
				std::cout << "TIME: " << t << "  write " << it_time.getwct() << "   " << v_cl.getProcessUnitID() << "  TOT disp: " << tot_disp << "    " << cnt << std::endl;
		}
		else
		{
			if (v_cl.getProcessUnitID() == 0)
				std::cout << "TIME: " << t << "  " << it_time.getwct() << "   " << v_cl.getProcessUnitID() << "  TOT disp: " << tot_disp << "    " << cnt << std::endl;
		}
	}

	openfpm_finalize();
}