main.cpp 8.28 KB
Newer Older
1 2 3 4 5
/*
 * ### WIKI 1 ###
 *
 * ## Simple example
 *
Pietro Incardona's avatar
Pietro Incardona committed
6
 * In this example show an agent based simulation
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
 *
 * ### WIKI END ###
 *
 */

#include "Vector/vector_dist.hpp"
#include "Decomposition/CartDecomposition.hpp"
#include "PSE/Kernels.hpp"
#include "Plot/util.hpp"
#include "Plot/GoogleChart.hpp"
#include "data_type/aggregate.hpp"
#include <cmath>

struct animal
{
	typedef boost::fusion::vector<float[2], size_t, size_t, long int> type;

	//! Attributes name
	struct attributes
	{
		static const std::string name[];
	};

	//! type of the positional field
	typedef float s_type;

	//! The data
	type data;

	//! position property id in boost::fusion::vector
	static const unsigned int pos = 0;
	//! genre of animal property id in boost::fusion::vector
	static const unsigned int genre = 1;
	//! state property id in boost::fusion::vector
	static const unsigned int status = 2;
	//! alive time property id in boost::fusion::vector
	static const unsigned int time_a = 3;

	//! total number of properties boost::fusion::vector
	static const unsigned int max_prop = 4;

	animal()
	{
	}

	inline animal(const animal & p)
	{
		boost::fusion::at_c<0>(data)[0] = boost::fusion::at_c<0>(p.data)[0];
		boost::fusion::at_c<0>(data)[1] = boost::fusion::at_c<0>(p.data)[1];
		//boost::fusion::at_c<0>(data)[2] = boost::fusion::at_c<0>(p.data)[2];
		boost::fusion::at_c<1>(data) = boost::fusion::at_c<1>(p.data);
		boost::fusion::at_c<2>(data) = boost::fusion::at_c<2>(p.data);
		boost::fusion::at_c<3>(data) = boost::fusion::at_c<3>(p.data);
	}

	template<unsigned int id> inline auto get() -> decltype(boost::fusion::at_c < id > (data))
	{
		return boost::fusion::at_c<id>(data);
	}

	template<unsigned int id> inline auto get() const -> const decltype(boost::fusion::at_c < id > (data))
	{
		return boost::fusion::at_c<id>(data);
	}

	template<unsigned int dim, typename Mem> inline animal(const encapc<dim, animal, Mem> & p)
	{
		this->operator=(p);
	}

	template<unsigned int dim, typename Mem> inline animal & operator=(const encapc<dim, animal, Mem> & p)
	{
		boost::fusion::at_c<0>(data)[0] = p.template get<0>()[0];
		boost::fusion::at_c<0>(data)[1] = p.template get<0>()[1];
		//boost::fusion::at_c<0>(data)[2] = p.template get<0>()[2];
		boost::fusion::at_c<1>(data) = p.template get<1>();
		boost::fusion::at_c<2>(data) = p.template get<2>();
		boost::fusion::at_c<3>(data) = p.template get<3>();

		return *this;
	}

	static bool noPointers()
	{
		return true;
	}
};

const std::string animal::attributes::name[] = { "pos", "genre", "status", "time_a", "j_repr" };

int main(int argc, char* argv[])
{
	init_global_v_cluster(&argc,&argv);

	Vcluster & v_cl = *global_v_cluster;

	//time the animal stays alive without eating
	size_t PRED_TIME_A = 14;

	size_t PREY_TIME_A = 7;

	size_t PREDATOR = 1, PREY = 0;
	size_t ALIVE = 1, DEAD = 0;

	// Predators reproducing probability
	float PRED_REPR = 0.2;

	// Predators eating probability
	float PRED_EAT = 0.6;

	// Prey reproducing probability
	float PREY_REPR = 0.5;

	// set the seed
	// create the random generator engine
	std::srand(v_cl.getProcessUnitID());
123 124
	unsigned seed = std::chrono::system_clock::now().time_since_epoch().count();
	std::default_random_engine eg(seed);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	std::uniform_real_distribution<float> ud(0.0f, 1.0f);
	std::uniform_real_distribution<float> md(-1.0f, 1.0f);
	std::uniform_real_distribution<float> uc(0.0f, 0.7f);
	std::uniform_real_distribution<float> lc(0.3f, 1.0f);

	size_t k = 100000;

	Box<2, float> box( { 0.0, 0.0 }, { 1.0, 1.0 });

	// Grid info
	grid_sm<2, void> info( { 8, 8 });

	// Boundary conditions
	size_t bc[2] = { PERIODIC, PERIODIC };

	// factor
	float factor = pow(global_v_cluster->getProcessingUnits() / 2.0f, 1.0f / 3.0f);

	// interaction radius
	float r_cut = 0.01 / factor;

	// ghost
	Ghost<2, float> ghost(r_cut);

	// Distributed vector
	vector_dist<2, float, animal, CartDecomposition<2, float, HeapMemory, ParMetisDistribution<2, float>>> vd(k,box,bc,ghost);

	// Init DLB tool
	DLB dlb(v_cl);

	// Set unbalance threshold
	dlb.setHeurisitc(DLB::Heuristic::UNBALANCE_THRLD);
	dlb.setThresholdLevel(DLB::ThresholdLevel::THRLD_MEDIUM);

	auto it = vd.getIterator();

	while (it.isNext())
	{
		auto key = it.get();
		if(ud(eg) < 0.7 )
		{
			vd.template getPos<animal::pos>(key)[0] = lc(eg);
			vd.template getPos<animal::pos>(key)[1] = lc(eg);
			vd.template getProp<animal::genre>(key) = PREY;
			vd.template getProp<animal::status>(key) = ALIVE;
			vd.template getProp<animal::time_a>(key) = PREY_TIME_A;
		}
		else
		{
			vd.template getPos<animal::pos>(key)[0] = uc(eg);
			vd.template getPos<animal::pos>(key)[1] = uc(eg);
			vd.template getProp<animal::genre>(key) = PREDATOR;
			vd.template getProp<animal::status>(key) = ALIVE;
			vd.template getProp<animal::time_a>(key) = PRED_TIME_A;
		}
		++it;
	}

	vd.map();

	vd.addComputationCosts();

	vd.getDecomposition().rebalance(dlb);

	vd.map();

	//vd.getDecomposition().getDistribution().write("parmetis_prey_predators_" + std::to_string(0) + ".vtk");
	//vd.write("particles_", 0, NO_GHOST);

	// 100 step random walk
	for (size_t j = 0; j < 100; j++)
	{
		size_t prey = 0, predators = 0;

		auto it = vd.getDomainIterator();

		while (it.isNext())
		{
			auto key = it.get();

			vd.template getPos<animal::pos>(key)[0] += 0.01 * md(eg);
			vd.template getPos<animal::pos>(key)[1] += 0.01 * md(eg);

			if(vd.template getProp<animal::genre>(key) == PREY)
			prey++;
			else
			predators++;

			++it;
		}

		vd.map();


		/////// Interactions ///
		// get ghosts
221 222

		vd.ghost_get<0>();
223 224 225 226 227 228 229 230 231 232

		// vector of dead animals
		openfpm::vector<size_t> deads;
		openfpm::vector<vect_dist_key_dx> reps_prey;
		openfpm::vector<vect_dist_key_dx> reps_pred;

		// get the cell list with a cutoff radius

		bool error = false;

233
		auto NN = vd.getCellList(0.01/factor);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

		// iterate across the domain particle

		auto it2 = vd.getDomainIterator();

		while (it2.isNext())
		{
			auto p = it2.get();

			Point<2,float> xp = vd.getPos<0>(p);

			size_t gp = vd.getProp<animal::genre>(p);
			size_t sp = vd.getProp<animal::status>(p);

			if(sp == ALIVE)
			{
				if(gp == PREY)
				{
					if( prey < k/1.5 && ud(eg) < PREY_REPR )
						reps_prey.add(p);
254

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
					vd.getProp<animal::time_a>(p)--;

					if(vd.getProp<animal::time_a>(p) <= 0)
					{
						vd.getProp<animal::status>(p) = DEAD;
						prey--;
					}
				}
				else if(gp == PREDATOR)
				{
					vd.getProp<animal::time_a>(p)--;

					if(vd.getProp<animal::time_a>(p) <= 0)
					{
						vd.getProp<animal::status>(p) = DEAD;
					}
					else
					{
273
						auto Np = NN.getIterator(NN.getCell(xp));
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

						while (Np.isNext())
						{
							auto q = Np.get();

							size_t gq = vd.getProp<animal::genre>(q);
							size_t sq = vd.getProp<animal::status>(q);

							Point<2,float> xq = vd.getPos<0>(q);
							Point<2,float> f = (xp - xq);

							float distance = f.norm();

							if (distance < 2*r_cut*sqrt(2) && gq == PREY && sq == ALIVE)
							{
								if( ud(eg) < PRED_EAT )
								{
									vd.getProp<animal::status>(q) = DEAD;
									vd.getProp<animal::time_a>(p) = PRED_TIME_A;

									if( ud(eg) < PRED_REPR )
										reps_pred.add(p);
								}
							}
							++Np;
						}
					}
				}

			}

			++it2;
		}

		vd.deleteGhost();

		// Replicate

		for (size_t i = 0 ; i < reps_prey.size() ; i++)
		{
			vd.add();
			vd.getLastPos<animal::pos>()[0] = vd.getPos<0>(reps_prey.get(i))[0];
			vd.getLastPos<animal::pos>()[1] = vd.getPos<0>(reps_prey.get(i))[1];
			vd.getLastProp<animal::genre>() = PREY;
			vd.getLastProp<animal::status>() = ALIVE;
			vd.getLastProp<animal::time_a>() = PREY_TIME_A;
		}

		for (size_t i = 0 ; i < reps_pred.size() ; i++)
		{
			vd.add();
			vd.getLastPos<animal::pos>()[0] = vd.getPos<0>(reps_pred.get(i))[0];
			vd.getLastPos<animal::pos>()[1] = vd.getPos<0>(reps_pred.get(i))[1];
			vd.getLastProp<animal::genre>() = PREDATOR;
			vd.getLastProp<animal::status>() = ALIVE;
			vd.getLastProp<animal::time_a>() = PRED_TIME_A;
		}

		auto it3 = vd.getDomainIterator();
		while (it3.isNext())
		{
			auto key = it3.get();
			if(vd.getProp<animal::status>(key.getKey()) == DEAD)
			{
				deads.add(key.getKey());
			}
			++it3;
		}

		deads.sort();
		vd.remove(deads, 0);

		deads.resize(0);

		vd.deleteGhost();

		////////////////////////

		vd.addComputationCosts();

354
		vd.getDecomposition().rebalance(dlb);
355 356 357 358 359 360 361 362 363 364 365

		vd.map();
	}

	//
	// ### WIKI 10 ###
	//
	// Deinitialize the library
	//
	delete_global_v_cluster();
}