VCluster.hpp 31 KB
Newer Older
incardon's avatar
incardon committed
1 2 3 4 5 6 7 8 9 10
/*
 * Vcluster.hpp
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

#ifndef VCLUSTER_HPP
#define VCLUSTER_HPP

11
#include <signal.h>
incardon's avatar
incardon committed
12

incardon's avatar
incardon committed
13 14
#include "VCluster_base.hpp"
#include "VCluster_meta_function.hpp"
incardon's avatar
incardon committed
15
#include "util/math_util_complex.hpp"
incardon's avatar
incardon committed
16

17
void bt_sighandler(int sig, siginfo_t * info, void * ctx);
incardon's avatar
incardon committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

/*! \brief Implementation of VCluster class
 *
 * This class implement communication functions. Like summation, minimum and maximum across
 * processors, or Dynamic Sparse Data Exchange (DSDE)
 *
 * ## Vcluster Min max sum
 * \snippet VCluster_unit_tests.hpp max min sum
 *
 * ## Vcluster all gather
 * \snippet VCluster_unit_test_util.hpp allGather numbers
 *
 * ## Dynamic sparse data exchange with complex objects
 * \snippet VCluster_semantic_unit_tests.hpp dsde with complex objects1
 *
 * ## Dynamic sparse data exchange with buffers
 * \snippet VCluster_unit_test_util.hpp dsde
 * \snippet VCluster_unit_test_util.hpp message alloc
 *
 */
38 39
template<typename InternalMemory = HeapMemory>
class Vcluster: public Vcluster_base<InternalMemory>
incardon's avatar
incardon committed
40
{
41 42
	typedef Vcluster_base<InternalMemory> self_base;

incardon's avatar
incardon committed
43 44 45 46 47 48 49 50
	template<typename T>
	struct index_gen {};

	//! Process the receive buffer using the specified properties (meta-function)
	template<int ... prp>
	struct index_gen<index_tuple<prp...>>
	{
		//! Process the receive buffer
incardon's avatar
incardon committed
51 52 53 54
		template<typename op,
		         typename T,
				 typename S,
				 template <typename> class layout_base = memory_traits_lin>
incardon's avatar
incardon committed
55 56
		inline static void process_recv(Vcluster & vcl, S & recv, openfpm::vector<size_t> * sz_recv,
				                        openfpm::vector<size_t> * sz_recv_byte, op & op_param,size_t opt)
incardon's avatar
incardon committed
57
		{
58 59 60 61 62 63 64 65
			if (opt == MPI_GPU_DIRECT && !std::is_same<InternalMemory,CudaMemory>::value)
			{
				// In order to have this option activated InternalMemory must be  CudaMemory

				std::cout << __FILE__ << ":" << __LINE__ << " error: in order to have MPI_GPU_DIRECT VCluster must use CudaMemory internally, the most probable" <<
						                                    " cause of this problem is that you are using MPI_GPU_DIRECT option with a non-GPU data-structure" << std::endl;
			}

incardon's avatar
incardon committed
66
			vcl.process_receive_buffer_with_prp<op,T,S,layout_base,prp...>(recv,sz_recv,sz_recv_byte,op_param,opt);
incardon's avatar
incardon committed
67 68 69
		}
	};

70
	/*! \brief Prepare the send buffer and send the message to other processors
incardon's avatar
incardon committed
71 72 73 74 75 76 77 78 79
	 *
	 * \tparam op Operation to execute in merging the receiving data
	 * \tparam T sending object
	 * \tparam S receiving object
	 *
	 * \note T and S must not be the same object but a S.operation(T) must be defined. There the flexibility
	 * of the operation is defined by op
	 *
	 * \param send sending buffer
80
	 * \param recv receiving object
incardon's avatar
incardon committed
81 82 83
	 * \param prc_send each object T in the vector send is sent to one processor specified in this list.
	 *                 This mean that prc_send.size() == send.size()
	 * \param prc_recv list of processor from where we receive (output), in case of RECEIVE_KNOWN muts be filled
84
	 * \param sz_recv size of each receiving message (output), in case of RECEICE_KNOWN must be filled
incardon's avatar
incardon committed
85 86 87
	 * \param opt Options using RECEIVE_KNOWN enable patters with less latencies, in case of RECEIVE_KNOWN
	 *
	 */
incardon's avatar
incardon committed
88
	template<typename op, typename T, typename S, template <typename> class layout_base> void prepare_send_buffer(openfpm::vector<T> & send,
89 90 91 92 93
			                                                               S & recv,
																		   openfpm::vector<size_t> & prc_send,
																		   openfpm::vector<size_t> & prc_recv,
																		   openfpm::vector<size_t> & sz_recv,
																		   size_t opt)
incardon's avatar
incardon committed
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
	{
		openfpm::vector<size_t> sz_recv_byte(sz_recv.size());

		// Reset the receive buffer
		reset_recv_buf();

	#ifdef SE_CLASS1

		if (send.size() != prc_send.size())
			std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

	#endif

		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;
		openfpm::vector<size_t> send_sz_byte;
incardon's avatar
incardon committed
110
		openfpm::vector<size_t> prc_send_;
incardon's avatar
incardon committed
111 112 113 114 115 116 117 118

		size_t tot_size = 0;

		for (size_t i = 0; i < send.size() ; i++)
		{
			size_t req = 0;

			//Pack requesting
incardon's avatar
incardon committed
119
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op, T, S, layout_base>::packingRequest(send.get(i), req, send_sz_byte);
incardon's avatar
incardon committed
120 121 122
			tot_size += req;
		}

incardon's avatar
incardon committed
123 124
		pack_unpack_cond_with_prp_inte_lin<T>::construct_prc(prc_send,prc_send_);

incardon's avatar
incardon committed
125 126 127 128 129 130 131 132 133 134 135
		HeapMemory pmem;

		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		for (size_t i = 0; i < send.size() ; i++)
		{
			//Packing

			Pack_stat sts;

136
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value, op, T, S, layout_base>::packing(mem, send.get(i), sts, send_buf,opt);
incardon's avatar
incardon committed
137 138
		}

139
		self_base::tags.clear();
incardon's avatar
incardon committed
140

incardon's avatar
incardon committed
141
		// receive information
142
		base_info<InternalMemory> bi(&this->recv_buf,prc_recv,sz_recv_byte,this->tags,opt);
incardon's avatar
incardon committed
143 144 145 146 147 148 149 150 151 152 153 154 155 156

		// Send and recv multiple messages
		if (opt & RECEIVE_KNOWN)
		{
			// We we are passing the number of element but not the byte, calculate the byte
			if (opt & KNOWN_ELEMENT_OR_BYTE)
			{
				// We know the number of element convert to byte (ONLY if it is possible)
				if (has_pack_gen<typename T::value_type>::value == false && is_vector<T>::value == true)
				{
					for (size_t i = 0 ; i < sz_recv.size() ; i++)
						sz_recv_byte.get(i) = sz_recv.get(i) * sizeof(typename T::value_type);
				}
				else
incardon's avatar
incardon committed
157
				{std::cout << __FILE__ << ":" << __LINE__ << " Error " << demangle(typeid(T).name()) << " the type does not work with the option or NO_CHANGE_ELEMENTS" << std::endl;}
incardon's avatar
incardon committed
158

159
				self_base::sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)send_sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),
incardon's avatar
incardon committed
160 161 162 163
											prc_recv.size(),(size_t *)prc_recv.getPointer(),(size_t *)sz_recv_byte.getPointer(),msg_alloc_known,(void *)&bi);
			}
			else
			{
164
				self_base::sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)send_sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),
incardon's avatar
incardon committed
165
											prc_recv.size(),(size_t *)prc_recv.getPointer(),msg_alloc_known,(void *)&bi);
166
				sz_recv_byte = self_base::sz_recv_tmp;
incardon's avatar
incardon committed
167
			}
incardon's avatar
incardon committed
168 169 170 171
		}
		else
		{
			prc_recv.clear();
172
			self_base::sendrecvMultipleMessagesNBX(prc_send_.size(),(size_t *)send_sz_byte.getPointer(),(size_t *)prc_send_.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
incardon's avatar
incardon committed
173 174 175
		}

		// Reorder the buffer
176
		reorder_buffer(prc_recv,self_base::tags,sz_recv_byte);
incardon's avatar
incardon committed
177 178 179 180 181 182 183 184 185 186 187 188

		mem.decRef();
		delete &mem;
	}


	/*! \brief Reset the receive buffer
	 *
	 *
	 */
	void reset_recv_buf()
	{
189 190
		for (size_t i = 0 ; i < self_base::recv_buf.size() ; i++)
		{self_base::recv_buf.get(i).resize(0);}
incardon's avatar
incardon committed
191

192
		self_base::recv_buf.resize(0);
incardon's avatar
incardon committed
193 194 195 196 197 198 199 200 201
	}

	/*! \brief Base info
	 *
	 * \param recv_buf receive buffers
	 * \param prc processors involved
	 * \param size of the received data
	 *
	 */
202
	template<typename Memory>
incardon's avatar
incardon committed
203 204 205
	struct base_info
	{
		//! Receive buffer
206
		openfpm::vector<BMemory<Memory>> * recv_buf;
incardon's avatar
incardon committed
207 208 209 210
		//! receiving processor list
		openfpm::vector<size_t> & prc;
		//! size of each message
		openfpm::vector<size_t> & sz;
incardon's avatar
incardon committed
211 212
		//! tags
		openfpm::vector<size_t> &tags;
incardon's avatar
incardon committed
213

214 215 216
		//! options
		size_t opt;

incardon's avatar
incardon committed
217
		//! constructor
218
		base_info(openfpm::vector<BMemory<Memory>> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, openfpm::vector<size_t> & tags,size_t opt)
219
		:recv_buf(recv_buf),prc(prc),sz(sz),tags(tags),opt(opt)
incardon's avatar
incardon committed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
		{}
	};

	/*! \brief Call-back to allocate buffer to receive data
	 *
	 * \param msg_i size required to receive the message from i
	 * \param total_msg total size to receive from all the processors
	 * \param total_p the total number of processor that want to communicate with you
	 * \param i processor id
	 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
	 *           every time message_alloc is called)
	 * \param ptr a pointer to the vector_dist structure
	 *
	 * \return the pointer where to store the message for the processor i
	 *
	 */
incardon's avatar
incardon committed
236
	static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, size_t tag, void * ptr)
incardon's avatar
incardon committed
237
	{
238
		base_info<InternalMemory> & rinfo = *(base_info<InternalMemory> *)ptr;
incardon's avatar
incardon committed
239 240 241 242 243 244 245 246 247 248 249 250 251 252

		if (rinfo.recv_buf == NULL)
		{
			std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";
			return NULL;
		}

		rinfo.recv_buf->resize(ri+1);

		rinfo.recv_buf->get(ri).resize(msg_i);

		// Receive info
		rinfo.prc.add(i);
		rinfo.sz.add(msg_i);
incardon's avatar
incardon committed
253
		rinfo.tags.add(tag);
incardon's avatar
incardon committed
254 255

		// return the pointer
256 257 258 259 260

		// If we have GPU direct activated use directly the cuda buffer
		if (rinfo.opt & MPI_GPU_DIRECT)
		{
#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT
261
			return rinfo.recv_buf->last().getDevicePointerNoCopy();
262 263 264 265 266
#else
			return rinfo.recv_buf->last().getPointer();
#endif
		}

incardon's avatar
incardon committed
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
		return rinfo.recv_buf->last().getPointer();
	}


	/*! \brief Call-back to allocate buffer to receive data
	 *
	 * \param msg_i size required to receive the message from i
	 * \param total_msg total size to receive from all the processors
	 * \param total_p the total number of processor that want to communicate with you
	 * \param i processor id
	 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
	 *           every time message_alloc is called)
	 * \param ptr a pointer to the vector_dist structure
	 *
	 * \return the pointer where to store the message for the processor i
	 *
	 */
incardon's avatar
incardon committed
284
	static void * msg_alloc_known(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, size_t tag, void * ptr)
incardon's avatar
incardon committed
285
	{
286
		base_info<InternalMemory> & rinfo = *(base_info<InternalMemory> *)ptr;
incardon's avatar
incardon committed
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303

		if (rinfo.recv_buf == NULL)
		{
			std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";
			return NULL;
		}

		rinfo.recv_buf->resize(ri+1);

		rinfo.recv_buf->get(ri).resize(msg_i);

		// return the pointer
		return rinfo.recv_buf->last().getPointer();
	}
	
	/*! \brief Process the receive buffer
	 *
304
	 * \tparam op operation to do in merging the received data
incardon's avatar
incardon committed
305 306 307 308 309
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties to receive
	 *
	 * \param recv receive object
310 311 312
	 * \param sz vector that store how many element has been added per processors on S
	 * \param sz_byte byte received on a per processor base
	 * \param op_param operation to do in merging the received information with recv
incardon's avatar
incardon committed
313 314
	 *
	 */
incardon's avatar
incardon committed
315
	template<typename op, typename T, typename S, template <typename> class layout_base ,unsigned int ... prp >
316 317 318
	void process_receive_buffer_with_prp(S & recv,
			                             openfpm::vector<size_t> * sz,
										 openfpm::vector<size_t> * sz_byte,
incardon's avatar
incardon committed
319 320
										 op & op_param,
										 size_t opt)
incardon's avatar
incardon committed
321 322
	{
		if (sz != NULL)
323
		{sz->resize(self_base::recv_buf.size());}
incardon's avatar
incardon committed
324

325
		pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op, T, S, layout_base, prp... >::unpacking(recv, self_base::recv_buf, sz, sz_byte, op_param,opt);
incardon's avatar
incardon committed
326 327 328 329 330 331 332 333 334 335 336
	}

	public:

	/*! \brief Constructor
	 *
	 * \param argc main number of arguments
	 * \param argv main set of arguments
	 *
	 */
	Vcluster(int *argc, char ***argv)
337
	:Vcluster_base<InternalMemory>(argc,argv)
incardon's avatar
incardon committed
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	{
	}

	/*! \brief Semantic Gather, gather the data from all processors into one node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Gather(T,S,root,op=add);
	 *
	 * "Gather" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
361 362
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
363 364 365 366 367
	 * \param root witch node should collect the information
	 *
	 * \return true if the function completed succefully
	 *
	 */
368
	template<typename T, typename S, template <typename> class layout_base=memory_traits_lin> bool SGather(T & send, S & recv,size_t root)
incardon's avatar
incardon committed
369 370 371 372
	{
		openfpm::vector<size_t> prc;
		openfpm::vector<size_t> sz;

373
		return SGather<T,S,layout_base>(send,recv,prc,sz,root);
incardon's avatar
incardon committed
374 375
	}

376
	//! metafunction
incardon's avatar
incardon committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
	template<size_t index, size_t N> struct MetaFuncOrd {
	   enum { value = index };
	};

	/*! \brief Semantic Gather, gather the data from all processors into one node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Gather(T,S,root,op=add);
	 *
	 * "Gather" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
401 402
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
403 404 405 406 407 408 409
	 * \param root witch node should collect the information
	 * \param prc processors from witch we received the information
	 * \param sz size of the received information for each processor
	 *
	 * \return true if the function completed succefully
	 *
	 */
incardon's avatar
incardon committed
410 411 412 413 414 415 416 417
	template<typename T,
	         typename S,
			 template <typename> class layout_base = memory_traits_lin>
	bool SGather(T & send,
			     S & recv,
				 openfpm::vector<size_t> & prc,
				 openfpm::vector<size_t> & sz,
				 size_t root)
incardon's avatar
incardon committed
418
	{
incardon's avatar
incardon committed
419
#ifdef SE_CLASS1
incardon's avatar
incardon committed
420
		if (&send == (T *)&recv)
incardon's avatar
incardon committed
421 422 423
		{std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " using SGather in general the sending object and the receiving object must be different" << std::endl;}
#endif

incardon's avatar
incardon committed
424 425 426 427
		// Reset the receive buffer
		reset_recv_buf();

		// If we are on master collect the information
428
		if (self_base::getProcessUnitID() == root)
incardon's avatar
incardon committed
429 430 431 432 433
		{
			// send buffer (master does not send anything) so send req and send_buf
			// remain buffer with size 0
			openfpm::vector<size_t> send_req;

434
			self_base::tags.clear();
incardon's avatar
incardon committed
435

incardon's avatar
incardon committed
436
			// receive information
437
			base_info<InternalMemory> bi(&this->recv_buf,prc,sz,this->tags,0);
incardon's avatar
incardon committed
438 439

			// Send and recv multiple messages
440
			self_base::sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);
incardon's avatar
incardon committed
441

442
			// we generate the list of the properties to unpack
incardon's avatar
incardon committed
443 444 445 446 447
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

448
			// Reorder the buffer
449
			reorder_buffer(prc,self_base::tags,sz);
450

incardon's avatar
incardon committed
451
			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S,layout_base>(*this,recv,&sz,NULL,opa,0);
incardon's avatar
incardon committed
452 453 454 455 456 457 458 459 460 461

			recv.add(send);
			prc.add(root);
			sz.add(send.size());
		}
		else
		{
			// send buffer (master does not send anything) so send req and send_buf
			// remain buffer with size 0
			openfpm::vector<size_t> send_prc;
462
			openfpm::vector<size_t> send_prc_;
incardon's avatar
incardon committed
463 464 465 466 467 468 469 470 471 472
			send_prc.add(root);

			openfpm::vector<size_t> sz;

			openfpm::vector<const void *> send_buf;
				
			//Pack requesting

			size_t tot_size = 0;

incardon's avatar
incardon committed
473
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op_ssend_recv_add<void>, T, S, layout_base>::packingRequest(send, tot_size, sz);
incardon's avatar
incardon committed
474 475 476 477 478 479 480 481 482 483

			HeapMemory pmem;

			ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
			mem.incRef();

			//Packing

			Pack_stat sts;
			
incardon's avatar
incardon committed
484
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op_ssend_recv_add<void>, T, S, layout_base>::packing(mem, send, sts, send_buf);
incardon's avatar
incardon committed
485

486 487
			pack_unpack_cond_with_prp_inte_lin<T>::construct_prc(send_prc,send_prc_);

488
			self_base::tags.clear();
incardon's avatar
incardon committed
489

incardon's avatar
incardon committed
490
			// receive information
491
			base_info<InternalMemory> bi(NULL,prc,sz,self_base::tags,0);
incardon's avatar
incardon committed
492 493

			// Send and recv multiple messages
494
			self_base::sendrecvMultipleMessagesNBX(send_prc_.size(),(size_t *)sz.getPointer(),(size_t *)send_prc_.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi,NONE);
incardon's avatar
incardon committed
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

			mem.decRef();
			delete &mem;
		}
		
		return true;
	}

	/*! \brief Semantic Scatter, scatter the data from one processor to the other node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Scatter(T,S,...,op=add);
	 *
	 * "Scatter" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
520 521
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
522 523 524 525 526 527 528
	 * \param prc processor involved in the scatter
	 * \param sz size of each chunks
	 * \param root which processor should scatter the information
	 *
	 * \return true if the function completed succefully
	 *
	 */
incardon's avatar
incardon committed
529
	template<typename T, typename S, template <typename> class layout_base=memory_traits_lin> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
incardon's avatar
incardon committed
530 531 532 533 534
	{
		// Reset the receive buffer
		reset_recv_buf();

		// If we are on master scatter the information
535
		if (self_base::getProcessUnitID() == root)
incardon's avatar
incardon committed
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		{
			// Prepare the sending buffer
			openfpm::vector<const void *> send_buf;


			openfpm::vector<size_t> sz_byte;
			sz_byte.resize(sz.size());

			size_t ptr = 0;

			for (size_t i = 0; i < sz.size() ; i++)
			{
				send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
				sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
				ptr += sz.get(i);
			}

553
			self_base::tags.clear();
incardon's avatar
incardon committed
554

incardon's avatar
incardon committed
555
			// receive information
556
			base_info<InternalMemory> bi(&this->recv_buf,prc,sz,this->tags,0);
incardon's avatar
incardon committed
557 558

			// Send and recv multiple messages
559
			self_base::sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
incardon's avatar
incardon committed
560 561 562 563 564 565 566

			// we generate the list of the properties to pack
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

incardon's avatar
incardon committed
567
			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S,layout_base>(*this,recv,NULL,NULL,opa,0);
incardon's avatar
incardon committed
568 569 570 571 572 573
		}
		else
		{
			// The non-root receive
			openfpm::vector<size_t> send_req;

574
			self_base::tags.clear();
incardon's avatar
incardon committed
575

incardon's avatar
incardon committed
576
			// receive information
577
			base_info<InternalMemory> bi(&this->recv_buf,prc,sz,this->tags,0);
incardon's avatar
incardon committed
578 579

			// Send and recv multiple messages
580
			self_base::sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);
incardon's avatar
incardon committed
581 582 583 584 585 586 587

			// we generate the list of the properties to pack
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

incardon's avatar
incardon committed
588
			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S,layout_base>(*this,recv,NULL,NULL,opa,0);
incardon's avatar
incardon committed
589 590 591 592 593 594 595 596
		}

		return true;
	}
	
	/*! \brief reorder the receiving buffer
	 *
	 * \param prc list of the receiving processors
597
	 * \param sz_recv list of size of the receiving messages (in byte)
incardon's avatar
incardon committed
598 599
	 *
	 */
600
	void reorder_buffer(openfpm::vector<size_t> & prc, const openfpm::vector<size_t> & tags, openfpm::vector<size_t> & sz_recv)
incardon's avatar
incardon committed
601 602 603 604 605 606 607
	{

		struct recv_buff_reorder
		{
			//! processor
			size_t proc;

incardon's avatar
incardon committed
608 609
			size_t tag;

incardon's avatar
incardon committed
610 611 612 613 614
			//! position in the receive list
			size_t pos;

			//! default constructor
			recv_buff_reorder()
incardon's avatar
incardon committed
615
			:proc(0),tag(0),pos(0)
incardon's avatar
incardon committed
616 617 618 619 620
			{};

			//! needed to reorder
			bool operator<(const recv_buff_reorder & rd) const
			{
incardon's avatar
incardon committed
621 622 623 624
				if (proc == rd.proc)
				{return tag < rd.tag;}

				return (proc < rd.proc);
incardon's avatar
incardon committed
625 626 627 628 629
			}
		};

		openfpm::vector<recv_buff_reorder> rcv;

630
		rcv.resize(self_base::recv_buf.size());
incardon's avatar
incardon committed
631 632 633 634

		for (size_t i = 0 ; i < rcv.size() ; i++)
		{
			rcv.get(i).proc = prc.get(i);
incardon's avatar
incardon committed
635
			rcv.get(i).tag = tags.get(i);
incardon's avatar
incardon committed
636 637 638 639 640 641
			rcv.get(i).pos = i;
		}

		// we sort based on processor
		rcv.sort();

642
		openfpm::vector<BMemory<InternalMemory>> recv_ord;
incardon's avatar
incardon committed
643 644 645 646 647 648 649 650 651 652 653
		recv_ord.resize(rcv.size());

		openfpm::vector<size_t> prc_ord;
		prc_ord.resize(rcv.size());

		openfpm::vector<size_t> sz_recv_ord;
		sz_recv_ord.resize(rcv.size());

		// Now we reorder rcv
		for (size_t i = 0 ; i < rcv.size() ; i++)
		{
654
			recv_ord.get(i).swap(self_base::recv_buf.get(rcv.get(i).pos));
incardon's avatar
incardon committed
655 656 657 658 659
			prc_ord.get(i) = rcv.get(i).proc;
			sz_recv_ord.get(i) = sz_recv.get(rcv.get(i).pos);
		}

		// move rcv into recv
660
		self_base::recv_buf.swap(recv_ord);
incardon's avatar
incardon committed
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
		prc.swap(prc_ord);
		sz_recv.swap(sz_recv_ord);

		// reorder prc_recv and recv_sz
	}

	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Recv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
679
	 * \snippet VCluster_semantic_unit_tests.hpp dsde with complex objects1
incardon's avatar
incardon committed
680 681 682 683
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
684 685 686 687 688 689
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv list of the receiving processors
	 * \param sz_recv number of elements added
	 * \param opt options
incardon's avatar
incardon committed
690 691 692 693
	 *
	 * \return true if the function completed succefully
	 *
	 */
incardon's avatar
incardon committed
694 695 696
	template<typename T,
	         typename S,
			 template <typename> class layout_base = memory_traits_lin>
incardon's avatar
incardon committed
697 698
	bool SSendRecv(openfpm::vector<T> & send,
			       S & recv,
incardon's avatar
incardon committed
699 700 701 702
				   openfpm::vector<size_t> & prc_send,
				   openfpm::vector<size_t> & prc_recv,
				   openfpm::vector<size_t> & sz_recv,
				   size_t opt = NONE)
incardon's avatar
incardon committed
703
	{
incardon's avatar
incardon committed
704
		prepare_send_buffer<op_ssend_recv_add<void>,T,S,layout_base>(send,recv,prc_send,prc_recv,sz_recv,opt);
incardon's avatar
incardon committed
705 706 707 708 709 710

		// we generate the list of the properties to pack
		typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

		op_ssend_recv_add<void> opa;

incardon's avatar
incardon committed
711
		index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S,layout_base>(*this,recv,&sz_recv,NULL,opa,opt);
incardon's avatar
incardon committed
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

		return true;
	}


	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
735 736 737 738 739 740
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv processors from which we received
	 * \param sz_recv number of elements added per processor
	 * \param sz_recv_byte message received from each processor in byte
incardon's avatar
incardon committed
741
	 *
742
	 * \return true if the function completed successful
incardon's avatar
incardon committed
743 744
	 *
	 */
incardon's avatar
incardon committed
745
	template<typename T, typename S, template <typename> class layout_base, int ... prp> bool SSendRecvP(openfpm::vector<T> & send,
746 747 748 749
			                                                      S & recv,
																  openfpm::vector<size_t> & prc_send,
																  openfpm::vector<size_t> & prc_recv,
																  openfpm::vector<size_t> & sz_recv,
incardon's avatar
incardon committed
750 751
																  openfpm::vector<size_t> & sz_recv_byte,
																  size_t opt = NONE)
incardon's avatar
incardon committed
752
	{
incardon's avatar
incardon committed
753
		prepare_send_buffer<op_ssend_recv_add<void>,T,S,layout_base>(send,recv,prc_send,prc_recv,sz_recv,opt);
incardon's avatar
incardon committed
754 755 756 757 758

		// operation object
		op_ssend_recv_add<void> opa;

		// process the received information
759
		process_receive_buffer_with_prp<op_ssend_recv_add<void>,T,S,layout_base,prp...>(recv,&sz_recv,&sz_recv_byte,opa,opt);
incardon's avatar
incardon committed
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782

		return true;
	}


	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
783 784 785 786 787
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv list of the processors from which we receive
	 * \param sz_recv number of elements added per processors
incardon's avatar
incardon committed
788 789 790 791
	 *
	 * \return true if the function completed succefully
	 *
	 */
incardon's avatar
incardon committed
792 793 794 795 796
	template<typename T, typename S, template <typename> class layout_base, int ... prp>
	bool SSendRecvP(openfpm::vector<T> & send,
			        S & recv,
					openfpm::vector<size_t> & prc_send,
			    	openfpm::vector<size_t> & prc_recv,
incardon's avatar
incardon committed
797 798
					openfpm::vector<size_t> & sz_recv,
					size_t opt = NONE)
incardon's avatar
incardon committed
799
	{
incardon's avatar
incardon committed
800
		prepare_send_buffer<op_ssend_recv_add<void>,T,S,layout_base>(send,recv,prc_send,prc_recv,sz_recv,opt);
incardon's avatar
incardon committed
801 802 803 804 805

		// operation object
		op_ssend_recv_add<void> opa;

		// process the received information
incardon's avatar
incardon committed
806
		process_receive_buffer_with_prp<op_ssend_recv_add<void>,T,S,layout_base,prp...>(recv,&sz_recv,NULL,opa,opt);
incardon's avatar
incardon committed
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

		return true;
	}

	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam op type of operation
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
830 831 832 833 834
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param op_param operation object (operation to do im merging the information)
	 * \param recv_sz size of each receiving buffer. This parameters are output
incardon's avatar
incardon committed
835 836 837 838 839 840 841 842 843
	 *        with RECEIVE_KNOWN you must feed this parameter
	 * \param prc_recv from which processor we receive messages
	 *        with RECEIVE_KNOWN you must feed this parameter
	 * \param opt options default is NONE, another is RECEIVE_KNOWN. In this case each
	 *        processor is assumed to know from which processor receive, and the size of
	 *        the message. in such case prc_recv and sz_recv are not anymore parameters
	 *        but must be input.
	 *
	 *
844
	 * \return true if the function completed successful
incardon's avatar
incardon committed
845 846
	 *
	 */
incardon's avatar
incardon committed
847 848 849 850 851 852 853 854 855 856 857 858
	template<typename op,
	         typename T,
			 typename S,
			 template <typename> class layout_base,
			 int ... prp>
	bool SSendRecvP_op(openfpm::vector<T> & send,
			           S & recv,
					   openfpm::vector<size_t> & prc_send,
					   op & op_param,
					   openfpm::vector<size_t> & prc_recv,
					   openfpm::vector<size_t> & recv_sz,
				 	   size_t opt = NONE)
incardon's avatar
incardon committed
859
	{
incardon's avatar
incardon committed
860
		prepare_send_buffer<op,T,S,layout_base>(send,recv,prc_send,prc_recv,recv_sz,opt);
incardon's avatar
incardon committed
861 862

		// process the received information
863
		process_receive_buffer_with_prp<op,T,S,layout_base,prp...>(recv,NULL,NULL,op_param,opt);
incardon's avatar
incardon committed
864 865 866 867 868 869 870 871 872 873

		return true;
	}

};



// Function to initialize the global VCluster //

874 875
extern Vcluster<> * global_v_cluster_private_heap;
extern Vcluster<CudaMemory> * global_v_cluster_private_cuda;
incardon's avatar
incardon committed
876 877 878 879 880 881 882 883 884

/*! \brief Initialize a global instance of Runtime Virtual Cluster Machine
 *
 * Initialize a global instance of Runtime Virtual Cluster Machine
 *
 */

static inline void init_global_v_cluster_private(int *argc, char ***argv)
{
885 886 887 888 889
	if (global_v_cluster_private_heap == NULL)
	{global_v_cluster_private_heap = new Vcluster<>(argc,argv);}

	if (global_v_cluster_private_cuda == NULL)
	{global_v_cluster_private_cuda = new Vcluster<CudaMemory>(argc,argv);}
incardon's avatar
incardon committed
890 891 892 893
}

static inline void delete_global_v_cluster_private()
{
894 895
	delete global_v_cluster_private_heap;
	delete global_v_cluster_private_cuda;
incardon's avatar
incardon committed
896 897
}

898 899
template<typename Memory>
struct get_vcl
incardon's avatar
incardon committed
900
{
901 902 903 904 905
	static Vcluster<Memory> & get()
	{
		return *global_v_cluster_private_heap;
	}
};
incardon's avatar
incardon committed
906

907 908 909 910 911 912 913 914
template<>
struct get_vcl<CudaMemory>
{
	static Vcluster<CudaMemory> & get()
	{
		return *global_v_cluster_private_cuda;
	}
};
incardon's avatar
incardon committed
915

916 917 918 919 920
template<typename Memory = HeapMemory>
static inline Vcluster<Memory> & create_vcluster()
{
	if (global_v_cluster_private_heap == NULL)
	{std::cerr << __FILE__ << ":" << __LINE__ << " Error you must call openfpm_init before using any distributed data structures";}
incardon's avatar
incardon committed
921

922
	return get_vcl<Memory>::get();
incardon's avatar
incardon committed
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
}



/*! \brief Check if the library has been initialized
 *
 * \return true if the library has been initialized
 *
 */
static inline bool is_openfpm_init()
{
	return ofp_initialized;
}

/*! \brief Initialize the library
 *
 * This function MUST be called before any other function
 *
 */
static inline void openfpm_init(int *argc, char ***argv)
{
#ifdef HAVE_PETSC

	PetscInitialize(argc,argv,NULL,NULL);

#endif

	init_global_v_cluster_private(argc,argv);

#ifdef SE_CLASS1
	std::cout << "OpenFPM is compiled with debug mode LEVEL:1. Remember to remove SE_CLASS1 when you go in production" << std::endl;
#endif

#ifdef SE_CLASS2
	std::cout << "OpenFPM is compiled with debug mode LEVEL:2. Remember to remove SE_CLASS2 when you go in production" << std::endl;
958
#endif
incardon's avatar
incardon committed
959

960 961
#ifdef SE_CLASS3
	std::cout << "OpenFPM is compiled with debug mode LEVEL:3. Remember to remove SE_CLASS3 when you go in production" << std::endl;
incardon's avatar
incardon committed
962 963
#endif

964 965 966 967 968 969 970 971 972 973 974 975 976
	// install segmentation fault signal handler

	struct sigaction sa;

	sa.sa_sigaction = bt_sighandler;
	sigemptyset(&sa.sa_mask);
	sa.sa_flags = SA_RESTART;

	sigaction(SIGSEGV, &sa, NULL);

	if (*argc != 0)
		program_name = std::string(*argv[0]);

incardon's avatar
incardon committed
977 978 979
	// Initialize math pre-computation tables
	openfpm::math::init_getFactorization();

incardon's avatar
incardon committed
980 981 982
	ofp_initialized = true;
}

983

incardon's avatar
incardon committed
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
/*! \brief Finalize the library
 *
 * This function MUST be called at the end of the program
 *
 */
static inline void openfpm_finalize()
{
#ifdef HAVE_PETSC

	PetscFinalize();

#endif

	delete_global_v_cluster_private();
	ofp_initialized = false;
}


#endif