VCluster.hpp 27.5 KB
Newer Older
incardon's avatar
incardon committed
1 2 3 4 5 6 7 8 9 10
/*
 * Vcluster.hpp
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

#ifndef VCLUSTER_HPP
#define VCLUSTER_HPP

11
#include <signal.h>
incardon's avatar
incardon committed
12

incardon's avatar
incardon committed
13 14
#include "VCluster_base.hpp"
#include "VCluster_meta_function.hpp"
incardon's avatar
incardon committed
15
#include "util/math_util_complex.hpp"
incardon's avatar
incardon committed
16

17
void bt_sighandler(int sig, siginfo_t * info, void * ctx);
incardon's avatar
incardon committed
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

/*! \brief Implementation of VCluster class
 *
 * This class implement communication functions. Like summation, minimum and maximum across
 * processors, or Dynamic Sparse Data Exchange (DSDE)
 *
 * ## Vcluster Min max sum
 * \snippet VCluster_unit_tests.hpp max min sum
 *
 * ## Vcluster all gather
 * \snippet VCluster_unit_test_util.hpp allGather numbers
 *
 * ## Dynamic sparse data exchange with complex objects
 * \snippet VCluster_semantic_unit_tests.hpp dsde with complex objects1
 *
 * ## Dynamic sparse data exchange with buffers
 * \snippet VCluster_unit_test_util.hpp dsde
 * \snippet VCluster_unit_test_util.hpp message alloc
 *
 */
class Vcluster: public Vcluster_base
{
	template<typename T>
	struct index_gen {};

	//! Process the receive buffer using the specified properties (meta-function)
	template<int ... prp>
	struct index_gen<index_tuple<prp...>>
	{
		//! Process the receive buffer
		template<typename op, typename T, typename S> inline static void process_recv(Vcluster & vcl, S & recv, openfpm::vector<size_t> * sz_recv, openfpm::vector<size_t> * sz_recv_byte, op & op_param)
		{
			vcl.process_receive_buffer_with_prp<op,T,S,prp...>(recv,sz_recv,sz_recv_byte,op_param);
		}
	};

54
	/*! \brief Prepare the send buffer and send the message to other processors
incardon's avatar
incardon committed
55 56 57 58 59 60 61 62 63
	 *
	 * \tparam op Operation to execute in merging the receiving data
	 * \tparam T sending object
	 * \tparam S receiving object
	 *
	 * \note T and S must not be the same object but a S.operation(T) must be defined. There the flexibility
	 * of the operation is defined by op
	 *
	 * \param send sending buffer
64
	 * \param recv receiving object
incardon's avatar
incardon committed
65 66 67
	 * \param prc_send each object T in the vector send is sent to one processor specified in this list.
	 *                 This mean that prc_send.size() == send.size()
	 * \param prc_recv list of processor from where we receive (output), in case of RECEIVE_KNOWN muts be filled
68
	 * \param sz_recv size of each receiving message (output), in case of RECEICE_KNOWN must be filled
incardon's avatar
incardon committed
69 70 71
	 * \param opt Options using RECEIVE_KNOWN enable patters with less latencies, in case of RECEIVE_KNOWN
	 *
	 */
72 73 74 75 76 77
	template<typename op, typename T, typename S> void prepare_send_buffer(openfpm::vector<T> & send,
			                                                               S & recv,
																		   openfpm::vector<size_t> & prc_send,
																		   openfpm::vector<size_t> & prc_recv,
																		   openfpm::vector<size_t> & sz_recv,
																		   size_t opt)
incardon's avatar
incardon committed
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
	{
		openfpm::vector<size_t> sz_recv_byte(sz_recv.size());

		// Reset the receive buffer
		reset_recv_buf();

	#ifdef SE_CLASS1

		if (send.size() != prc_send.size())
			std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

	#endif

		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;
		openfpm::vector<size_t> send_sz_byte;

		size_t tot_size = 0;

		for (size_t i = 0; i < send.size() ; i++)
		{
			size_t req = 0;

			//Pack requesting
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op, T, S>::packingRequest(send.get(i), req, send_sz_byte);
			tot_size += req;
		}

		HeapMemory pmem;

		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		for (size_t i = 0; i < send.size() ; i++)
		{
			//Packing

			Pack_stat sts;

			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value, op, T, S>::packing(mem, send.get(i), sts, send_buf);
		}

		// receive information
		base_info bi(&recv_buf,prc_recv,sz_recv_byte);

		// Send and recv multiple messages
		if (opt & RECEIVE_KNOWN)
		{
			// We we are passing the number of element but not the byte, calculate the byte
			if (opt & KNOWN_ELEMENT_OR_BYTE)
			{
				// We know the number of element convert to byte (ONLY if it is possible)
				if (has_pack_gen<typename T::value_type>::value == false && is_vector<T>::value == true)
				{
					for (size_t i = 0 ; i < sz_recv.size() ; i++)
						sz_recv_byte.get(i) = sz_recv.get(i) * sizeof(typename T::value_type);
				}
				else
					std::cout << __FILE__ << ":" << __LINE__ << " Error " << demangle(typeid(T).name()) << " the type does not work with the option RECEIVE_KNOWN or NO_CHANGE_ELEMENTS" << std::endl;
			}

			Vcluster_base::sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)send_sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),
										prc_recv.size(),(size_t *)prc_recv.getPointer(),(size_t *)sz_recv_byte.getPointer(),msg_alloc_known,(void *)&bi);
		}
		else
		{
			prc_recv.clear();
			sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)send_sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
		}

		// Reorder the buffer
		reorder_buffer(prc_recv,sz_recv_byte);

		mem.decRef();
		delete &mem;
	}


	/*! \brief Reset the receive buffer
	 *
	 *
	 */
	void reset_recv_buf()
	{
		for (size_t i = 0 ; i < recv_buf.size() ; i++)
			recv_buf.get(i).resize(0);

		recv_buf.resize(0);
	}

	/*! \brief Base info
	 *
	 * \param recv_buf receive buffers
	 * \param prc processors involved
	 * \param size of the received data
	 *
	 */
	struct base_info
	{
		//! Receive buffer
		openfpm::vector<BHeapMemory> * recv_buf;
		//! receiving processor list
		openfpm::vector<size_t> & prc;
		//! size of each message
		openfpm::vector<size_t> & sz;

		//! constructor
		base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
		:recv_buf(recv_buf),prc(prc),sz(sz)
		{}
	};

	/*! \brief Call-back to allocate buffer to receive data
	 *
	 * \param msg_i size required to receive the message from i
	 * \param total_msg total size to receive from all the processors
	 * \param total_p the total number of processor that want to communicate with you
	 * \param i processor id
	 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
	 *           every time message_alloc is called)
	 * \param ptr a pointer to the vector_dist structure
	 *
	 * \return the pointer where to store the message for the processor i
	 *
	 */
	static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
	{
		base_info & rinfo = *(base_info *)ptr;

		if (rinfo.recv_buf == NULL)
		{
			std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";
			return NULL;
		}

		rinfo.recv_buf->resize(ri+1);

		rinfo.recv_buf->get(ri).resize(msg_i);

		// Receive info
		rinfo.prc.add(i);
		rinfo.sz.add(msg_i);

		// return the pointer
		return rinfo.recv_buf->last().getPointer();
	}


	/*! \brief Call-back to allocate buffer to receive data
	 *
	 * \param msg_i size required to receive the message from i
	 * \param total_msg total size to receive from all the processors
	 * \param total_p the total number of processor that want to communicate with you
	 * \param i processor id
	 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
	 *           every time message_alloc is called)
	 * \param ptr a pointer to the vector_dist structure
	 *
	 * \return the pointer where to store the message for the processor i
	 *
	 */
	static void * msg_alloc_known(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
	{
		base_info & rinfo = *(base_info *)ptr;

		if (rinfo.recv_buf == NULL)
		{
			std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";
			return NULL;
		}

		rinfo.recv_buf->resize(ri+1);

		rinfo.recv_buf->get(ri).resize(msg_i);

		// return the pointer
		return rinfo.recv_buf->last().getPointer();
	}
	
	/*! \brief Process the receive buffer
	 *
259
	 * \tparam op operation to do in merging the received data
incardon's avatar
incardon committed
260 261 262 263 264
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties to receive
	 *
	 * \param recv receive object
265 266 267
	 * \param sz vector that store how many element has been added per processors on S
	 * \param sz_byte byte received on a per processor base
	 * \param op_param operation to do in merging the received information with recv
incardon's avatar
incardon committed
268 269
	 *
	 */
270 271 272 273 274
	template<typename op, typename T, typename S, unsigned int ... prp >
	void process_receive_buffer_with_prp(S & recv,
			                             openfpm::vector<size_t> * sz,
										 openfpm::vector<size_t> * sz_byte,
										 op & op_param)
incardon's avatar
incardon committed
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	{
		if (sz != NULL)
			sz->resize(recv_buf.size());

		pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op, T, S, prp... >::unpacking(recv, recv_buf, sz, sz_byte, op_param);
	}

	public:

	/*! \brief Constructor
	 *
	 * \param argc main number of arguments
	 * \param argv main set of arguments
	 *
	 */
	Vcluster(int *argc, char ***argv)
	:Vcluster_base(argc,argv)
	{
	}

	/*! \brief Semantic Gather, gather the data from all processors into one node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Gather(T,S,root,op=add);
	 *
	 * "Gather" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
315 316
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
317 318 319 320 321 322 323 324 325 326 327 328 329
	 * \param root witch node should collect the information
	 *
	 * \return true if the function completed succefully
	 *
	 */
	template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
	{
		openfpm::vector<size_t> prc;
		openfpm::vector<size_t> sz;

		return SGather(send,recv,prc,sz,root);
	}

330
	//! metafunction
incardon's avatar
incardon committed
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	template<size_t index, size_t N> struct MetaFuncOrd {
	   enum { value = index };
	};

	/*! \brief Semantic Gather, gather the data from all processors into one node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Gather(T,S,root,op=add);
	 *
	 * "Gather" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
	 *
	 * ### Example send a vector of structures, and merge all together in one vector
	 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
355 356
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
357 358 359 360 361 362 363
	 * \param root witch node should collect the information
	 * \param prc processors from witch we received the information
	 * \param sz size of the received information for each processor
	 *
	 * \return true if the function completed succefully
	 *
	 */
364 365 366 367 368
	template<typename T, typename S> bool SGather(T & send,
			                                      S & recv,
												  openfpm::vector<size_t> & prc,
												  openfpm::vector<size_t> & sz,
												  size_t root)
incardon's avatar
incardon committed
369
	{
incardon's avatar
incardon committed
370
#ifdef SE_CLASS1
incardon's avatar
incardon committed
371
		if (&send == (T *)&recv)
incardon's avatar
incardon committed
372 373 374
		{std::cerr << "Error: " << __FILE__ << ":" << __LINE__ << " using SGather in general the sending object and the receiving object must be different" << std::endl;}
#endif

incardon's avatar
incardon committed
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
		// Reset the receive buffer
		reset_recv_buf();

		// If we are on master collect the information
		if (getProcessUnitID() == root)
		{
			// send buffer (master does not send anything) so send req and send_buf
			// remain buffer with size 0
			openfpm::vector<size_t> send_req;

			// receive information
			base_info bi(&recv_buf,prc,sz);

			// Send and recv multiple messages
			sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

			// we generate the list of the properties to pack
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S>(*this,recv,&sz,NULL,opa);

			recv.add(send);
			prc.add(root);
			sz.add(send.size());
		}
		else
		{
			// send buffer (master does not send anything) so send req and send_buf
			// remain buffer with size 0
			openfpm::vector<size_t> send_prc;
			send_prc.add(root);

			openfpm::vector<size_t> sz;

			openfpm::vector<const void *> send_buf;
				
			//Pack requesting

			size_t tot_size = 0;

			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op_ssend_recv_add<void>, T, S>::packingRequest(send, tot_size, sz);

			HeapMemory pmem;

			ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
			mem.incRef();

			//Packing

			Pack_stat sts;
			
			pack_unpack_cond_with_prp<has_max_prop<T, has_value_type<T>::value>::value,op_ssend_recv_add<void>, T, S>::packing(mem, send, sts, send_buf);

			// receive information
			base_info bi(NULL,prc,sz);

			// Send and recv multiple messages
			sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi,NONE);

			mem.decRef();
			delete &mem;
		}
		
		return true;
	}

	/*! \brief Semantic Scatter, scatter the data from one processor to the other node
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Scatter(T,S,...,op=add);
	 *
	 * "Scatter" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
461 462
	 * \param send Object to send
	 * \param recv Object to receive
incardon's avatar
incardon committed
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
	 * \param prc processor involved in the scatter
	 * \param sz size of each chunks
	 * \param root which processor should scatter the information
	 *
	 * \return true if the function completed succefully
	 *
	 */
	template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
	{
		// Reset the receive buffer
		reset_recv_buf();

		// If we are on master scatter the information
		if (getProcessUnitID() == root)
		{
			// Prepare the sending buffer
			openfpm::vector<const void *> send_buf;


			openfpm::vector<size_t> sz_byte;
			sz_byte.resize(sz.size());

			size_t ptr = 0;

			for (size_t i = 0; i < sz.size() ; i++)
			{
				send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
				sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
				ptr += sz.get(i);
			}

			// receive information
			base_info bi(&recv_buf,prc,sz);

			// Send and recv multiple messages
			sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

			// we generate the list of the properties to pack
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S>(*this,recv,NULL,NULL,opa);
		}
		else
		{
			// The non-root receive
			openfpm::vector<size_t> send_req;

			// receive information
			base_info bi(&recv_buf,prc,sz);

			// Send and recv multiple messages
			sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

			// we generate the list of the properties to pack
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

			// operation object
			op_ssend_recv_add<void> opa;

			index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S>(*this,recv,NULL,NULL,opa);
		}

		return true;
	}
	
	/*! \brief reorder the receiving buffer
	 *
	 * \param prc list of the receiving processors
534
	 * \param sz_recv list of size of the receiving messages (in byte)
incardon's avatar
incardon committed
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	 *
	 */
	void reorder_buffer(openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz_recv)
	{

		struct recv_buff_reorder
		{
			//! processor
			size_t proc;

			//! position in the receive list
			size_t pos;

			//! default constructor
			recv_buff_reorder()
			:proc(0),pos(0)
			{};

			//! needed to reorder
			bool operator<(const recv_buff_reorder & rd) const
			{
				return proc < rd.proc;
			}
		};

		openfpm::vector<recv_buff_reorder> rcv;

		rcv.resize(recv_buf.size());

		for (size_t i = 0 ; i < rcv.size() ; i++)
		{
			rcv.get(i).proc = prc.get(i);
			rcv.get(i).pos = i;
		}

		// we sort based on processor
		rcv.sort();

		openfpm::vector<BHeapMemory> recv_ord;
		recv_ord.resize(rcv.size());

		openfpm::vector<size_t> prc_ord;
		prc_ord.resize(rcv.size());

		openfpm::vector<size_t> sz_recv_ord;
		sz_recv_ord.resize(rcv.size());

		// Now we reorder rcv
		for (size_t i = 0 ; i < rcv.size() ; i++)
		{
			recv_ord.get(i).swap(recv_buf.get(rcv.get(i).pos));
			prc_ord.get(i) = rcv.get(i).proc;
			sz_recv_ord.get(i) = sz_recv.get(rcv.get(i).pos);
		}

		// move rcv into recv
		recv_buf.swap(recv_ord);
		prc.swap(prc_ord);
		sz_recv.swap(sz_recv_ord);

		// reorder prc_recv and recv_sz
	}

	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * Recv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
610
	 * \snippet VCluster_semantic_unit_tests.hpp dsde with complex objects1
incardon's avatar
incardon committed
611 612 613 614
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 *
615 616 617 618 619 620
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv list of the receiving processors
	 * \param sz_recv number of elements added
	 * \param opt options
incardon's avatar
incardon committed
621 622 623 624
	 *
	 * \return true if the function completed succefully
	 *
	 */
625 626 627 628 629 630
	template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send,
			                                        S & recv,
													openfpm::vector<size_t> & prc_send,
													openfpm::vector<size_t> & prc_recv,
													openfpm::vector<size_t> & sz_recv,
													size_t opt = NONE)
incardon's avatar
incardon committed
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
	{
		prepare_send_buffer<op_ssend_recv_add<void>,T,S>(send,recv,prc_send,prc_recv,sz_recv,opt);

		// we generate the list of the properties to pack
		typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;

		op_ssend_recv_add<void> opa;

		index_gen<ind_prop_to_pack>::template process_recv<op_ssend_recv_add<void>,T,S>(*this,recv,&sz_recv,NULL,opa);

		return true;
	}


	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
663 664 665 666 667 668
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv processors from which we received
	 * \param sz_recv number of elements added per processor
	 * \param sz_recv_byte message received from each processor in byte
incardon's avatar
incardon committed
669
	 *
670
	 * \return true if the function completed successful
incardon's avatar
incardon committed
671 672
	 *
	 */
673 674 675 676 677 678
	template<typename T, typename S, int ... prp> bool SSendRecvP(openfpm::vector<T> & send,
			                                                      S & recv,
																  openfpm::vector<size_t> & prc_send,
																  openfpm::vector<size_t> & prc_recv,
																  openfpm::vector<size_t> & sz_recv,
																  openfpm::vector<size_t> & sz_recv_byte)
incardon's avatar
incardon committed
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	{
		prepare_send_buffer<op_ssend_recv_add<void>,T,S>(send,recv,prc_send,prc_recv,sz_recv,NONE);

		// operation object
		op_ssend_recv_add<void> opa;

		// process the received information
		process_receive_buffer_with_prp<op_ssend_recv_add<void>,T,S,prp...>(recv,&sz_recv,&sz_recv_byte,opa);

		return true;
	}


	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
710 711 712 713 714
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param prc_recv list of the processors from which we receive
	 * \param sz_recv number of elements added per processors
incardon's avatar
incardon committed
715 716 717 718
	 *
	 * \return true if the function completed succefully
	 *
	 */
719 720 721 722 723
	template<typename T, typename S, int ... prp> bool SSendRecvP(openfpm::vector<T> & send,
			                                                      S & recv,
																  openfpm::vector<size_t> & prc_send,
																  openfpm::vector<size_t> & prc_recv,
																  openfpm::vector<size_t> & sz_recv)
incardon's avatar
incardon committed
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
	{
		prepare_send_buffer<op_ssend_recv_add<void>,T,S>(send,recv,prc_send,prc_recv,sz_recv,NONE);

		// operation object
		op_ssend_recv_add<void> opa;

		// process the received information
		process_receive_buffer_with_prp<op_ssend_recv_add<void>,T,S,prp...>(recv,&sz_recv,NULL,opa);

		return true;
	}

	/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
	 *
	 * Semantic communication differ from the normal one. They in general
	 * follow the following model.
	 *
	 * SSendRecv(T,S,...,op=add);
	 *
	 * "SendRecv" indicate the communication pattern, or how the information flow
	 * T is the object to send, S is the object that will receive the data.
	 * In order to work S must implement the interface S.add<prp...>(T).
	 *
	 * ### Example scatter a vector of structures, to other processors
	 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
	 *
	 * \tparam op type of operation
	 * \tparam T type of sending object
	 * \tparam S type of receiving object
	 * \tparam prp properties for merging
	 *
755 756 757 758 759
	 * \param send Object to send
	 * \param recv Object to receive
	 * \param prc_send destination processors
	 * \param op_param operation object (operation to do im merging the information)
	 * \param recv_sz size of each receiving buffer. This parameters are output
incardon's avatar
incardon committed
760 761 762 763 764 765 766 767 768
	 *        with RECEIVE_KNOWN you must feed this parameter
	 * \param prc_recv from which processor we receive messages
	 *        with RECEIVE_KNOWN you must feed this parameter
	 * \param opt options default is NONE, another is RECEIVE_KNOWN. In this case each
	 *        processor is assumed to know from which processor receive, and the size of
	 *        the message. in such case prc_recv and sz_recv are not anymore parameters
	 *        but must be input.
	 *
	 *
769
	 * \return true if the function completed successful
incardon's avatar
incardon committed
770 771
	 *
	 */
772 773 774 775 776 777 778
	template<typename op, typename T, typename S, int ... prp> bool SSendRecvP_op(openfpm::vector<T> & send,
			                                                                      S & recv,
																				  openfpm::vector<size_t> & prc_send,
																				  op & op_param,
																				  openfpm::vector<size_t> & prc_recv,
																				  openfpm::vector<size_t> & recv_sz,
																				  size_t opt = NONE)
incardon's avatar
incardon committed
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	{
		prepare_send_buffer<op,T,S>(send,recv,prc_send,prc_recv,recv_sz,opt);

		// process the received information
		process_receive_buffer_with_prp<op,T,S,prp...>(recv,NULL,NULL,op_param);

		return true;
	}

};



// Function to initialize the global VCluster //

extern Vcluster * global_v_cluster_private;

/*! \brief Initialize a global instance of Runtime Virtual Cluster Machine
 *
 * Initialize a global instance of Runtime Virtual Cluster Machine
 *
 */

static inline void init_global_v_cluster_private(int *argc, char ***argv)
{
	if (global_v_cluster_private == NULL)
		global_v_cluster_private = new Vcluster(argc,argv);
}

static inline void delete_global_v_cluster_private()
{
	delete global_v_cluster_private;
}

static inline Vcluster & create_vcluster()
{
#ifdef SE_CLASS1

	if (global_v_cluster_private == NULL)
		std::cerr << __FILE__ << ":" << __LINE__ << " Error you must call openfpm_init before using any distributed data structures";

#endif

	return *global_v_cluster_private;
}



/*! \brief Check if the library has been initialized
 *
 * \return true if the library has been initialized
 *
 */
static inline bool is_openfpm_init()
{
	return ofp_initialized;
}

/*! \brief Initialize the library
 *
 * This function MUST be called before any other function
 *
 */
static inline void openfpm_init(int *argc, char ***argv)
{
#ifdef HAVE_PETSC

	PetscInitialize(argc,argv,NULL,NULL);

#endif

	init_global_v_cluster_private(argc,argv);

#ifdef SE_CLASS1
	std::cout << "OpenFPM is compiled with debug mode LEVEL:1. Remember to remove SE_CLASS1 when you go in production" << std::endl;
#endif

#ifdef SE_CLASS2
	std::cout << "OpenFPM is compiled with debug mode LEVEL:2. Remember to remove SE_CLASS2 when you go in production" << std::endl;
858
#endif
incardon's avatar
incardon committed
859

860 861
#ifdef SE_CLASS3
	std::cout << "OpenFPM is compiled with debug mode LEVEL:3. Remember to remove SE_CLASS3 when you go in production" << std::endl;
incardon's avatar
incardon committed
862 863
#endif

864 865 866 867 868 869 870 871 872 873 874 875 876
	// install segmentation fault signal handler

	struct sigaction sa;

	sa.sa_sigaction = bt_sighandler;
	sigemptyset(&sa.sa_mask);
	sa.sa_flags = SA_RESTART;

	sigaction(SIGSEGV, &sa, NULL);

	if (*argc != 0)
		program_name = std::string(*argv[0]);

incardon's avatar
incardon committed
877 878 879
	// Initialize math pre-computation tables
	openfpm::math::init_getFactorization();

incardon's avatar
incardon committed
880 881 882
	ofp_initialized = true;
}

883

incardon's avatar
incardon committed
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
/*! \brief Finalize the library
 *
 * This function MUST be called at the end of the program
 *
 */
static inline void openfpm_finalize()
{
#ifdef HAVE_PETSC

	PetscFinalize();

#endif

	delete_global_v_cluster_private();
	ofp_initialized = false;
}


#endif