VCluster_semantic.ipp 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10 11
private:

Yaroslav's avatar
Yaroslav committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T>
	struct packRequest_cond
	{
		void packingRequest(T & send, size_t & tot_size)
		{
			typedef typename ::generate_array_constexpr<unsigned int,T::max_prop, MetaFuncOrd>::result prop_to_pack;
			Packer<decltype(send),HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
		}
	};

	
	//There is no max_prop inside
	template<typename T>
	struct packRequest_cond<false, T>
	{
		void packingRequest(T & send, size_t & tot_size)
		{
			Packer<decltype(send),HeapMemory>::packRequest(send,tot_size);
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
37 38 39 40 41 42 43 44
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
45 46

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
47 48
}

Pietro Incardona's avatar
Pietro Incardona committed
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
83
	base_info & rinfo = *(base_info *)ptr;
84

Pietro Incardona's avatar
Pietro Incardona committed
85
	if (rinfo.recv_buf == NULL)
86 87
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
88
	rinfo.recv_buf->resize(ri+1);
89

Pietro Incardona's avatar
Pietro Incardona committed
90 91 92 93 94
	rinfo.recv_buf->get(ri).resize(msg_i);

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
95 96

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
97
	return rinfo.recv_buf->last().getPointer();
98 99
}

Pietro Incardona's avatar
Pietro Incardona committed
100 101 102 103 104 105 106 107
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
108
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
109
{
Pietro Incardona's avatar
Pietro Incardona committed
110 111 112
	if (sz != NULL)
		sz->resize(recv_buf.size());

Pietro Incardona's avatar
Pietro Incardona committed
113 114 115 116 117 118 119 120 121 122
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
	{
		// for each received buffer create a memory reppresentation
		// calculate the number of received elements
		size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);

		// add the received particles to the vector
		PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());

		// create vector representation to a piece of memory already allocated
Pietro Incardona's avatar
Pietro Incardona committed
123
		openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
Pietro Incardona's avatar
Pietro Incardona committed
124 125 126 127 128 129 130 131

		v2.setMemory(*ptr1);

		// resize with the number of elements
		v2.resize(n_ele);

		// Merge the information
		recv.add(v2);
Pietro Incardona's avatar
Pietro Incardona committed
132 133 134

		if (sz != NULL)
			sz->get(i) = v2.size();
Pietro Incardona's avatar
Pietro Incardona committed
135 136 137 138 139
	}
}

public:

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
157 158 159
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
160 161 162 163 164 165 166
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
167 168 169 170 171 172 173 174
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
175 176 177 178
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
209
{
Pietro Incardona's avatar
Pietro Incardona committed
210 211
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
212

213 214 215 216 217 218 219
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
220 221 222
		// receive information
		base_info bi(&recv_buf,prc,sz);

223
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
224 225 226 227 228 229 230
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
		for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
231
		process_receive_buffer<T,S>(recv,&sz);
232

Pietro Incardona's avatar
Pietro Incardona committed
233
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
234
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
235
		sz.add(send.size()*sizeof(typename T::value_type));
236 237 238 239 240 241
	}
	else
	{
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
242
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
243 244 245 246 247 248 249 250 251 252
		
		
		size_t tot_size = 0;
			
		//Pack requesting
		
		packRequest_cond<has_max_prop<T>::value, T> pr;
		pr.packingRequest(send, tot_size);
		
		
Pietro Incardona's avatar
Pietro Incardona committed
253
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
254
			
255 256
		send_buf.add(send.getPointer());
		openfpm::vector<size_t> sz;
Yaroslav's avatar
Yaroslav committed
257 258
		//sz.add(send.size()*sizeof(typename T::value_type));
		sz.add(tot_size);
259

Pietro Incardona's avatar
Pietro Incardona committed
260 261 262
		// receive information
		base_info bi(NULL,prc,sz);

263
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
264
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
265 266 267 268
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
327
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
328 329 330 331 332 333 334 335 336 337 338 339
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
340
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
341 342 343 344 345 346
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}