VCluster_semantic.ipp 15.8 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * VCluster_semantic.hpp
 *
 * Implementation of semantic communications
 *
 *  Created on: Feb 8, 2016
 *      Author: Pietro Incardona
 */

Pietro Incardona's avatar
Pietro Incardona committed
10 11
private:

Yaroslav's avatar
Yaroslav committed
12 13 14 15 16
	template<typename T>
	struct call_serialize_variadic {};
	
	template<int ... prp>
	struct call_serialize_variadic<index_tuple<prp...>>
Yaroslav's avatar
Yaroslav committed
17
	{
Yaroslav's avatar
Yaroslav committed
18
		template<typename T> inline static void call_pr(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
19
		{
Yaroslav's avatar
Yaroslav committed
20
			Packer<T,HeapMemory>::template packRequest<prp...>(send,tot_size);
Yaroslav's avatar
Yaroslav committed
21
		}
Yaroslav's avatar
Yaroslav committed
22
		
Yaroslav's avatar
Yaroslav committed
23
		template<typename T> inline static void call_pack(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
Yaroslav's avatar
Yaroslav committed
24
		{
Yaroslav's avatar
Yaroslav committed
25
			Packer<T,HeapMemory>::template pack<prp...>(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
26 27
		}
		
Yaroslav's avatar
Yaroslav committed
28
		template<typename T, typename S> inline static void call_unpack(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
Yaroslav's avatar
Yaroslav committed
29
		{
Yaroslav's avatar
Yaroslav committed
30
			if (has_pack_agg<typename T::value_type, prp...>::result::value == true)
Yaroslav's avatar
Yaroslav committed
31 32 33 34 35 36 37 38
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
Yaroslav's avatar
Yaroslav committed
39
					Unpacker<T,HeapMemory>::template unpack<prp...>(mem, unp, ps);
Yaroslav's avatar
Yaroslav committed
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
		}		
	};

	// Structures that do a pack request, depending on the existence of max_prop inside 'send'

	//There is max_prop inside
	template<bool cond, typename T, typename S>
	struct pack_unpack_cond
	{
		static void packingRequest(T & send, size_t & tot_size)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
//			Packer<T,HeapMemory>::packRequest< prop_to_pack::data >(send,tot_size);
			call_serialize_variadic<ind_prop_to_pack>::call_pr(send,tot_size);
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			//Packer<T,HeapMemory>::pack< prop_to_pack::data >(mem,send,sts);
			call_serialize_variadic<ind_prop_to_pack>::call_pack(mem,send,sts);
		}
		
		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
			typedef typename ::generate_indexes<int, has_max_prop<T, has_value_type<T>::value>::number, MetaFuncOrd>::result ind_prop_to_pack;
			call_serialize_variadic<ind_prop_to_pack>::template call_unpack<T,S>(recv, recv_buf, ps, sz);
Yaroslav's avatar
Yaroslav committed
98
		}	
Yaroslav's avatar
Yaroslav committed
99 100 101 102
	};

	
	//There is no max_prop inside
Yaroslav's avatar
Yaroslav committed
103 104
	template<typename T, typename S>
	struct pack_unpack_cond<false, T, S>
Yaroslav's avatar
Yaroslav committed
105
	{
Yaroslav's avatar
Yaroslav committed
106
		static void packingRequest(T & send, size_t & tot_size)
Yaroslav's avatar
Yaroslav committed
107
		{
Yaroslav's avatar
Yaroslav committed
108 109
			//tot_size = send.size()*sizeof(typename T::value_type);
			Packer<T,HeapMemory>::packRequest(send,tot_size);
Yaroslav's avatar
Yaroslav committed
110
			std::cout << "Inside SGather pack request (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
111 112 113 114 115 116
			std::cout << "Tot_size: " << tot_size << std::endl; 
		}
		
		static void packing(ExtPreAlloc<HeapMemory> & mem, T & send, Pack_stat & sts)
		{
			Packer<T,HeapMemory>::pack(mem,send,sts);
Yaroslav's avatar
Yaroslav committed
117
			std::cout << "Inside SGather pack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
118 119 120 121
		}

		static void unpacking(S & recv, openfpm::vector<BHeapMemory> & recv_buf, Unpack_stat & ps, openfpm::vector<size_t> * sz = NULL)
		{
Yaroslav's avatar
Yaroslav committed
122
			std::cout << "Inside SGather unpack (no prp) " << std::endl;
Yaroslav's avatar
Yaroslav committed
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
			if (has_pack<typename T::value_type>::type::value == true)
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					T unp;
					
					ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(recv_buf.get(i).size(),recv_buf.get(i)));
					mem.incRef();
					
					Unpacker<T,HeapMemory>::unpack(mem, unp, ps);
					
					// Merge the information
					recv.add(unp);
				}
			}
			
			else
			{
				for (size_t i = 0 ; i < recv_buf.size() ; i++)
				{
					// calculate the number of received elements
					size_t n_ele = recv_buf.get(i).size() / sizeof(typename T::value_type);
					
					// add the received particles to the vector
					PtrMemory * ptr1 = new PtrMemory(recv_buf.get(i).getPointer(),recv_buf.get(i).size());
			
					// create vector representation to a piece of memory already allocated
					openfpm::vector<typename T::value_type,PtrMemory,typename memory_traits_lin<typename T::value_type>::type, memory_traits_lin,openfpm::grow_policy_identity> v2;
			
					v2.setMemory(*ptr1);
			
					// resize with the number of elements
					v2.resize(n_ele);
					
					// Merge the information
					recv.add(v2);
					
					if (sz != NULL)
						sz->get(i) = v2.size();
				}
			}
Yaroslav's avatar
Yaroslav committed
164 165 166 167
		}
	};


Pietro Incardona's avatar
Pietro Incardona committed
168 169 170 171 172 173 174 175
/*! \brief Reset the receive buffer
 * 
 * 
 */
void reset_recv_buf()
{
	for (size_t i = 0 ; i < recv_buf.size() ; i++)
		recv_buf.get(i).resize(0);
176 177

	recv_buf.resize(0);
Pietro Incardona's avatar
Pietro Incardona committed
178 179
}

Pietro Incardona's avatar
Pietro Incardona committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/*! \brief Base info
 *
 * \param recv_buf receive buffers
 * \param prc processors involved
 * \param size of the received data
 *
 */
struct base_info
{
	openfpm::vector<BHeapMemory> * recv_buf;
	openfpm::vector<size_t> & prc;
	openfpm::vector<size_t> & sz;

	// constructor
	base_info(openfpm::vector<BHeapMemory> * recv_buf, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz)
	:recv_buf(recv_buf),prc(prc),sz(sz)
	{}
};

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/*! \brief Call-back to allocate buffer to receive data
 *
 * \param msg_i size required to receive the message from i
 * \param total_msg total size to receive from all the processors
 * \param total_p the total number of processor that want to communicate with you
 * \param i processor id
 * \param ri request id (it is an id that goes from 0 to total_p, and is unique
 *           every time message_alloc is called)
 * \param ptr a pointer to the vector_dist structure
 *
 * \return the pointer where to store the message for the processor i
 *
 */
static void * msg_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
Pietro Incardona's avatar
Pietro Incardona committed
214
	base_info & rinfo = *(base_info *)ptr;
215

Pietro Incardona's avatar
Pietro Incardona committed
216
	if (rinfo.recv_buf == NULL)
217 218
		std::cerr << __FILE__ << ":" << __LINE__ << " Internal error this processor is not suppose to receive\n";

Pietro Incardona's avatar
Pietro Incardona committed
219
	rinfo.recv_buf->resize(ri+1);
220

Pietro Incardona's avatar
Pietro Incardona committed
221 222 223 224 225
	rinfo.recv_buf->get(ri).resize(msg_i);

	// Receive info
	rinfo.prc.add(i);
	rinfo.sz.add(msg_i);
226 227

	// return the pointer
Pietro Incardona's avatar
Pietro Incardona committed
228
	return rinfo.recv_buf->last().getPointer();
229 230
}

Pietro Incardona's avatar
Pietro Incardona committed
231 232 233 234 235 236 237 238
/*! \brief Process the receive buffer
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param recv receive object
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
239
template<typename T, typename S> void process_receive_buffer(S & recv, openfpm::vector<size_t> * sz = NULL)
Pietro Incardona's avatar
Pietro Incardona committed
240
{
Pietro Incardona's avatar
Pietro Incardona committed
241 242
	if (sz != NULL)
		sz->resize(recv_buf.size());
Yaroslav's avatar
Yaroslav committed
243 244
	
	Unpack_stat ps;
Pietro Incardona's avatar
Pietro Incardona committed
245

Yaroslav's avatar
Yaroslav committed
246
	pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::unpacking(recv, recv_buf, ps, sz);
Pietro Incardona's avatar
Pietro Incardona committed
247 248 249 250
}

public:

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general 
 * follow the following model.
 * 
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data. 
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
Pietro Incardona's avatar
Pietro Incardona committed
268 269 270
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
271 272 273 274 275 276 277
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 *
 * \return true if the function completed succefully
 *
 */
Pietro Incardona's avatar
Pietro Incardona committed
278 279 280 281 282 283 284 285
template<typename T, typename S> bool SGather(T & send, S & recv,size_t root)
{
	openfpm::vector<size_t> prc;
	openfpm::vector<size_t> sz;

	return SGather(send,recv,prc,sz,root);
}

Yaroslav's avatar
Yaroslav committed
286 287 288 289
template<size_t index, size_t N> struct MetaFuncOrd {
   enum { value = index };
};

Pietro Incardona's avatar
Pietro Incardona committed
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
/*! \brief Semantic Gather, gather the data from all processors into one node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Gather(T,S,root,op=add);
 *
 * "Gather" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master
 *
 * ### Example send a vector of structures, and merge all together in one vector
 * \snippet VCluster_semantic_unit_tests.hpp Gather the data on master complex
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param root witch node should collect the information
 * \param prc processors from witch we received the information
 * \param sz size of the received information for each processor
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SGather(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz,size_t root)
320
{
Pietro Incardona's avatar
Pietro Incardona committed
321 322
	// Reset the receive buffer
	reset_recv_buf();
Yaroslav's avatar
Yaroslav committed
323
	
324 325 326
	// If we are on master collect the information
	if (getProcessUnitID() == root)
	{
Yaroslav's avatar
Yaroslav committed
327
		std::cout << "Inside root " << root << std::endl;
328 329 330 331
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_req;

Pietro Incardona's avatar
Pietro Incardona committed
332 333 334
		// receive information
		base_info bi(&recv_buf,prc,sz);

335
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
336 337 338
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

		// Convert the received byte into number of elements
Yaroslav's avatar
Yaroslav committed
339 340
		/*for (size_t i = 0 ; i < sz.size() ; i++)
			sz.get(i) /= sizeof(typename T::value_type);*/
Pietro Incardona's avatar
Pietro Incardona committed
341 342

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
343
		process_receive_buffer<T,S>(recv,&sz);
344

Pietro Incardona's avatar
Pietro Incardona committed
345
		recv.add(send);
Pietro Incardona's avatar
Pietro Incardona committed
346
		prc.add(root);
Yaroslav's avatar
Yaroslav committed
347
		sz.add(send.size());
348 349 350
	}
	else
	{
Yaroslav's avatar
Yaroslav committed
351
		std::cout << "Inside slave " << std::endl;
352 353 354
		// send buffer (master does not send anything) so send req and send_buf
		// remain buffer with size 0
		openfpm::vector<size_t> send_prc;
Pietro Incardona's avatar
Pietro Incardona committed
355
		send_prc.add(root);
Yaroslav's avatar
Yaroslav committed
356
				
Yaroslav's avatar
Yaroslav committed
357 358 359 360
		size_t tot_size = 0;
			
		//Pack requesting
		
Yaroslav's avatar
Yaroslav committed
361 362 363
		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packingRequest(send, tot_size);
		
		HeapMemory pmem;
Yaroslav's avatar
Yaroslav committed
364
		
Yaroslav's avatar
Yaroslav committed
365 366 367 368 369 370 371 372
		ExtPreAlloc<HeapMemory> & mem = *(new ExtPreAlloc<HeapMemory>(tot_size,pmem));
		mem.incRef();

		//Packing

		Pack_stat sts;

		pack_unpack_cond<has_max_prop<T, has_value_type<T>::value>::value, T, S>::packing(mem, send, sts);	
Yaroslav's avatar
Yaroslav committed
373
		
Pietro Incardona's avatar
Pietro Incardona committed
374
		openfpm::vector<const void *> send_buf;
Yaroslav's avatar
Yaroslav committed
375 376 377 378
		send_buf.add(mem.getPointer());
		
		openfpm::vector<size_t> sz;	
		sz.add(send.size());
379

Pietro Incardona's avatar
Pietro Incardona committed
380 381 382
		// receive information
		base_info bi(NULL,prc,sz);

383
		// Send and recv multiple messages
Pietro Incardona's avatar
Pietro Incardona committed
384
		sendrecvMultipleMessagesNBX(send_prc.size(),(size_t *)sz.getPointer(),(size_t *)send_prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);
385 386 387 388
	}
	
	return true;
}
Pietro Incardona's avatar
Pietro Incardona committed
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

/*! \brief Semantic Scatter, scatter the data from one processor to the other node
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * Scatter(T,S,...,op=add);
 *
 * "Scatter" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SScatter(T & send, S & recv, openfpm::vector<size_t> & prc, openfpm::vector<size_t> & sz, size_t root)
{
	// Reset the receive buffer
	reset_recv_buf();

	// If we are on master scatter the information
	if (getProcessUnitID() == root)
	{
		// Prepare the sending buffer
		openfpm::vector<const void *> send_buf;


		openfpm::vector<size_t> sz_byte;
		sz_byte.resize(sz.size());

		size_t ptr = 0;

		for (size_t i = 0; i < sz.size() ; i++)
		{
			send_buf.add((char *)send.getPointer() + sizeof(typename T::value_type)*ptr );
			sz_byte.get(i) = sz.get(i) * sizeof(typename T::value_type);
			ptr += sz.get(i);
		}

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(prc.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

		// process the received information
Pietro Incardona's avatar
Pietro Incardona committed
447
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
448 449 450 451 452 453 454 455 456 457 458 459
	}
	else
	{
		// The non-root receive
		openfpm::vector<size_t> send_req;

		// receive information
		base_info bi(&recv_buf,prc,sz);

		// Send and recv multiple messages
		sendrecvMultipleMessagesNBX(send_req.size(),NULL,NULL,NULL,msg_alloc,&bi);

Pietro Incardona's avatar
Pietro Incardona committed
460
		process_receive_buffer<T,S>(recv,NULL);
Pietro Incardona's avatar
Pietro Incardona committed
461 462 463 464 465 466
	}

	return true;
}


Pietro Incardona's avatar
Pietro Incardona committed
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*! \brief Semantic Send and receive, send the data to processors and receive from the other processors
 *
 * Semantic communication differ from the normal one. They in general
 * follow the following model.
 *
 * SSendRecv(T,S,...,op=add);
 *
 * "SendRecv" indicate the communication pattern, or how the information flow
 * T is the object to send, S is the object that will receive the data.
 * In order to work S must implement the interface S.add(T).
 *
 * ### Example scatter a vector of structures, to other processors
 * \snippet VCluster_semantic_unit_tests.hpp Scatter the data from master
 *
 * \tparam T type of sending object
 * \tparam S type of receiving object
 *
 * \param Object to send
 * \param Object to receive
 * \param prc processor involved in the scatter
 * \param sz size of each chunks
 * \param root which processor should scatter the information
 *
 * \return true if the function completed succefully
 *
 */
template<typename T, typename S> bool SSendRecv(openfpm::vector<T> & send, S & recv, openfpm::vector<size_t> & prc_send, openfpm::vector<size_t> & prc_recv, openfpm::vector<size_t> & sz_recv)
{
	// Reset the receive buffer
	reset_recv_buf();

#ifdef SE_CLASS1

	if (send.size() != prc_send.size())
		std::cerr << __FILE__ << ":" << __LINE__ << " Error, the number of processor involved \"prc.size()\" must match the number of sending buffers \"send.size()\" " << std::endl;

#endif

	// Prepare the sending buffer
	openfpm::vector<const void *> send_buf;

	openfpm::vector<size_t> sz_byte;
	sz_byte.resize(send.size());

	for (size_t i = 0; i < send.size() ; i++)
	{
		send_buf.add((char *)send.get(i).getPointer());
		sz_byte.get(i) = send.get(i).size() * sizeof(typename T::value_type);
	}

	// receive information
	base_info bi(&recv_buf,prc_recv,sz_recv);

	// Send and recv multiple messages
	sendrecvMultipleMessagesNBX(prc_send.size(),(size_t *)sz_byte.getPointer(),(size_t *)prc_send.getPointer(),(void **)send_buf.getPointer(),msg_alloc,(void *)&bi);

	// process the received information
	process_receive_buffer<T,S>(recv,&sz_recv);

	return true;
}