diff --git a/11_Hypothesis_testing/11b_Statistical_modeling_with_Python 3.pptx b/11_Hypothesis_testing/11b_Statistical_modeling_with_Python 3.pptx new file mode 100644 index 0000000000000000000000000000000000000000..548776d0ce263cd995f97ccdc41cf928d5b6c912 Binary files /dev/null and b/11_Hypothesis_testing/11b_Statistical_modeling_with_Python 3.pptx differ diff --git a/11_Hypothesis_testing/Advanced python.ipynb b/11_Hypothesis_testing/Advanced python.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..ac711b6354e3c70ebd9d25b9e2aa7780bfde2d26 --- /dev/null +++ b/11_Hypothesis_testing/Advanced python.ipynb @@ -0,0 +1,517 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phytonic loops" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "input = [1, 3, 4, 7]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Classical loop" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2, 6, 8, 14]\n" + ] + } + ], + "source": [ + "output1 = []\n", + "\n", + "for value in input:\n", + " result = value * 2\n", + " output1 = output1 + [result]\n", + " \n", + "print(output1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pythonic loop" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[2, 6, 8, 14]\n" + ] + } + ], + "source": [ + "output2 = [value * 2 for value in input]\n", + "\n", + "print(output2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pythonic loops 2" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "def process_image(filename):\n", + " print(filename)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Classical loop going through a folder processing all tif images" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "banana0002.tif\n", + "banana0003.tif\n", + "banana0004.tif\n", + "banana0005.tif\n", + "banana0006.tif\n", + "banana0007.tif\n", + "banana0008.tif\n", + "banana0009.tif\n", + "banana0010.tif\n", + "banana0011.tif\n", + "banana0012.tif\n", + "banana0013.tif\n", + "banana0014.tif\n", + "banana0015.tif\n", + "banana0016.tif\n", + "banana0017.tif\n", + "banana0018.tif\n", + "banana0019.tif\n", + "banana0020.tif\n", + "banana0021.tif\n", + "banana0022.tif\n", + "banana0023.tif\n", + "banana0024.tif\n", + "banana0025.tif\n", + "banana0026.tif\n" + ] + } + ], + "source": [ + "import os\n", + "\n", + "# define the location of the folder to go through\n", + "directory = 'C:/structure/teaching/lecture_applied_bioimage_analysis_2020/03_Feature_extraction_and_ImageJ_Macro/example_images/banana/'\n", + "\n", + "# get a list of files in that folder\n", + "file_list = os.listdir(directory)\n", + "\n", + "# go through all files in the folder\n", + "for filename in file_list:\n", + " # if the filename is of a tif-image, print it out\n", + " if filename.endswith(\".tif\"):\n", + " process_image(filename)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pythonic loop going through a folder processing all tif images" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "banana0002.tif\n", + "banana0003.tif\n", + "banana0004.tif\n", + "banana0005.tif\n", + "banana0006.tif\n", + "banana0007.tif\n", + "banana0008.tif\n", + "banana0009.tif\n", + "banana0010.tif\n", + "banana0011.tif\n", + "banana0012.tif\n", + "banana0013.tif\n", + "banana0014.tif\n", + "banana0015.tif\n", + "banana0016.tif\n", + "banana0017.tif\n", + "banana0018.tif\n", + "banana0019.tif\n", + "banana0020.tif\n", + "banana0021.tif\n", + "banana0022.tif\n", + "banana0023.tif\n", + "banana0024.tif\n", + "banana0025.tif\n", + "banana0026.tif\n" + ] + }, + { + "data": { + "text/plain": [ + "[None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None,\n", + " None]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import os\n", + "\n", + "# define the location of the folder to go through\n", + "directory = 'C:/structure/teaching/lecture_applied_bioimage_analysis_2020/03_Feature_extraction_and_ImageJ_Macro/example_images/banana/'\n", + "\n", + "[process_image(filename) \n", + " for filename in os.listdir(directory)\n", + " if filename.endswith(\".tif\")\n", + "]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Method parameters documented" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.io import imread\n", + "from skimage import filters\n", + "from skimage import measure\n", + "\n", + "def analyse_image(filename, gaussian_blur_sigma, threshold=None):\n", + " \"\"\"\n", + " This function analyses an image by blurring it and applying a threshold.\n", + " \n", + " Parameters\n", + " ----------\n", + " filename\n", + " Image file to open and analyse\n", + " \n", + " gaussian_blur_sigma\n", + " Sigma of a Gaussian blur filter kernel to be \n", + " applied to the image before thresholding\n", + " \n", + " threshold\n", + " Optional, the grey-value threshold to \n", + " differentiate foreground and background\n", + "\n", + " Returns\n", + " -------\n", + " count\n", + " Number of objects in the image\n", + " \n", + " \"\"\"\n", + " \n", + " # load image\n", + " image = imread(filename); \n", + "\n", + " # Gaussian blur\n", + " gaussian_blurred_image = filters.gaussian(image, 5)\n", + "\n", + " # thresholding\n", + " if threshold is None:\n", + " threshold = filters.threshold_otsu(gaussian_blurred_image)\n", + " thresholded_image = gaussian_blurred_image >= threshold\n", + "\n", + " # run connected components analysis\n", + " label_image = measure.label(thresholded_image)\n", + " \n", + " # analyse objects\n", + " table = measure.regionprops_table(label_image)\n", + " \n", + " return len(table[\"label\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "54\n" + ] + } + ], + "source": [ + "print(analyse_image(\"blobs.tif\", 2))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "54\n" + ] + } + ], + "source": [ + "print(analyse_image(\"blobs.tif\", gaussian_blur_sigma=2))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " This function analyses an image by blurring it and applying a threshold.\n", + " \n", + " Parameters\n", + " ----------\n", + " filename\n", + " Image file to open and analyse\n", + " \n", + " gaussian_blur_sigma\n", + " Sigma of a Gaussian blur filter kernel to be \n", + " applied to the image before thresholding\n", + " \n", + " threshold\n", + " Optional, the grey-value threshold to \n", + " differentiate foreground and background\n", + "\n", + " Returns\n", + " -------\n", + " count\n", + " Number of objects in the image\n", + " \n", + " \n" + ] + } + ], + "source": [ + "print(analyse_image.__doc__)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Information hiding, encapsulation\n", + "In classic functional programming, you hand over parameters and calculations are performed:" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "def area_of_ellipse(minor_axis, major_axis):\n", + " return math.pi * minor_axis * major_axis / 4\n", + " \n", + "def aspect_ratio_of_ellipse(minor_axis, major_axis):\n", + " return major_axis / minor_axis" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Area: 6.283185307179586\n", + "Aspect ratio: 2.0\n" + ] + } + ], + "source": [ + "minor_axis = 2;\n", + "major_axis = 4;\n", + "\n", + "print(\"Area: \" + str(area_of_ellipse(minor_axis, major_axis)))\n", + "print(\"Aspect ratio: \" + str(aspect_ratio_of_ellipse(minor_axis, major_axis)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Python classes help to combine variables (e.g. minor and major axis) of objects (e.g. an ellipse)." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "\n", + "class Ellipse:\n", + " \n", + " def __init__(self, minor_axis, major_axis):\n", + " if (minor_axis < major_axis):\n", + " self.minor_axis = minor_axis\n", + " self.major_axis = major_axis\n", + " else:\n", + " self.major_axis = minor_axis\n", + " self.minor_axis = major_axis\n", + " \n", + " def area(self):\n", + " return math.pi * self.minor_axis * self.major_axis / 4\n", + " \n", + " def aspect_ratio(self):\n", + " return self.major_axis / self.minor_axis;\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You enter values once and afterwards, you can ask the object for various properties derived from these values." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Area: 6.283185307179586\n", + "Aspect ratio: 2.0\n" + ] + } + ], + "source": [ + "e1 = Ellipse(4, 2)\n", + "\n", + "print(\"Area: \" + str(e1.area()))\n", + "print(\"Aspect ratio: \" + str(e1.aspect_ratio()))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/Equivalence testing.ipynb b/11_Hypothesis_testing/Equivalence testing.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..6bf3998f77539734a00747825c59b23d7e2f5cb6 --- /dev/null +++ b/11_Hypothesis_testing/Equivalence testing.ipynb @@ -0,0 +1,179 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Equivalence testing\n", + "null-hypothesis: differences are out of a given range\n", + "alternative hypothesis: differences are small; and thus, bot samples are \"equal\" up to a given tolerance" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy import random\n", + "\n", + "x1 = random.normal(loc=5, scale=1, size=1000)\n", + "x2 = random.normal(loc=5, scale=1, size=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO29f3Ad1Znn/T19JRnLkW3F+LcsG/HDA1ISYgtsL0mAgeQddh3I2GFM2NktZoo4qaJmh53d2p3JLB5eT+3UTNXsFvmDWjDMLDO1YIx/AIGK8xKDMZC1jSUPxBJGxha2JEuybCPLAhtLun3eP7pP39Pnnv51b/e9faXnU0UZSff2Pd23+znPec73eR7GOQdBEASRXoxyD4AgCILwhww1QRBEyiFDTRAEkXLIUBMEQaQcMtQEQRAppyqJg1599dV82bJlSRyaIAhiUtLe3n6Ocz5X97dEDPWyZcvQ1taWxKEJgiAmJYyxU15/o9AHQRBEyiFDTRAEkXLIUBMEQaQcMtQEQRAphww1QRBEyiFDTRAEkXLIUBMVT/upYTy59zjaTw2XeygEkQiJ6KgJolS0nxrGv332AMYmTNRUGXj+4dVYubS+3MMiiFghj5qoaA50n8fYhAmTA+MTJg50ny/3kAgidshQExXN6qY5qKkykGFAdZWB1U1zyj0kgogdCn0QFc3KpfV4/uHVONB9Hqub5lDYg5iUkKEmKp6VS+vJQBOTGgp9EARBpBwy1ARBECmHDDVBEETKIUNNEASRcshQEwRBpBwy1ARBECmHDDVBVChU42TqQDpqgqhAqMbJ1II8aoKoQKjGydSCDDVBVCBU42RqESr0wRj7jwAeBsABHAHwR5zzL5McGEEQ3lCNk6lFoKFmjC0G8B8A3MQ5v8wYewnAAwCeS3hsBEH4QDVOpg5hQx9VAKYzxqoA1ALoT25IBEEQhEygoeacnwbw9wB6AAwAGOGcv5H0wAiCIAiLQEPNGKsHcB+AawAsAjCDMfaHmtdtZIy1Mcbazp49G/9ICYIgpihhQh93A/iUc36Wcz4OYBeAf6W+iHO+hXPeyjlvnTt3btzjJAiCmLKEMdQ9AFYzxmoZYwzAXQCOJjssgiAIQhAmRn0QwA4Ah2FJ8wwAWxIeF0EQBGETSkfNOf8rAH+V8FgIgiAIDZSZSBAEkXLIUBMEQaQcMtQEQRAphww1QRBEyiFDTRAEkXLIUBMEQaQcMtRELFBbKAKg+yApqBUXUTTUFooA6D5IEvKoiaKhtlAEQPdBkpChJoomTW2hCll6R31PpS7vkx53mu6DyQbjnMd+0NbWVt7W1hb7cYn00n5quOxtoQpZekd9j9fr4zj/JK9hqcISabgPKhXGWDvnvFX3N4pRE7GQhrZQuqV30JiivsdreS+MYFXGwA9XNmD9igbnOGGMV9KGtJBr48ULB3uwu2MA97QsxIOrGl1/S8N9MBkhQ01MGsTSe3zCDL30jvoe+fWZjIHTFy5j5+E+xwiOTZjYerAHuw734fmHVwNAKAMcpyGN4zy9eOFgD3728hEAwLufnAOAPGNNxA8ZamLSUEhn7qjvEa/fdbgP29t68eL7PajKGKgyGMazHBwAh9vbDmOA4zKkcZ2nF7s7BvJ+JkOdPGSoiYqg/dQwdh3uAwdcYQWVQpbeUd+zcmk9DnSfx4TJYXIgmzXxwK2Wsdre1ousyV3GNowBjsuQBo272OPe07LQ8aTFz0TykKEmUk/7qWH86BkrfAAAO9p6sXXjmrLGQlUPeJ09eaxb0ZBnbMMa4EqI7wrv2StGTSQDqT6I1PPk3uP4+/+vC+JOZQD+8/+zHI/ceV05h0UKByJWSPUxxZANCICKNyarm+aguspwPOrqDEuFRrcSPOBiockoHZChnmTIMq8qgwGMYSJbmORLfUjL9dCuXFqPrT9eHSpGHRdRz3UyGjRKCU8PZKgnGS6ZV9bSIMgqhLAPmvqQblrbjM2vd5btofXyXpMwkHElwcRJOSaCpCWDRHgCDTVjbDmAbdKvmgBs4pw/kdioiIJx6XxtjzqbjS75Uh/S3R0DqXtokzKQcSTBxHltyuXZJi0ZJMITaKg5510AbgYAxlgGwGkALyc8LqJAVJkXUFiMWn1I72lZiEMnP0vVQ5uUgSwmCUZ9fRyecLk821JIBolwRA193AXgBOf8VBKDIeJBDRMU8oDpHtLlC+oKemiTWrYn5fEVmgSjvj4uT7icnu1U2DCtBKIa6gcAbNX9gTG2EcBGAGhsJG1lqShl7LKQh7ZQYxXmvJL0+ApJglFfH5cnTJ4tEdpQM8ZqANwL4C90f+ecbwGwBbB01LGMjvAlydhlXMcuxFhF+ew0e3xxesJpPk8ieaJ41PcAOMw5P5PUYIhoJBm7jOvYhRgr9bN3He6rSG+SPGEiLqIY6h/BI+xBlIckY5eFHlsNWRRirMRnj02YAGPY1tYL0+QVqeWNwxOejBptIhqhUsgZY7UAegE0cc5Hgl5PKeSlIykd8YHu86ivrcHwpbG8Y3t9ZpyhmBcO9mDTqx2YMHP3Z4YBG25txOLZ01NltNJW8J8Me2VSdAo55/wSgPLrsYg84o5dBhkGv7/HGYoZvjQGU3IiGICMwbCjvc8z07IcBiptBf8pm3ByQj0TCRdBDUr9/h5nzzz5WDUZhgdXNeL+1iWYyLpj16IHoDBQ/+ONLvzbZw+UpJ9h+6lhPLHnWKINXaNe0zANZiu15+NUhlLIy0Ral6dBsWm/v8e5eaY7VvupYew83Od0V9nW1ots1qr9/MOVDZE9z2LGKSaGK+MmOAAjoYau4jrsPNwHFuL1Qd8fedyVCRnqMpBkg9RiCTK2Yf4e19h1iTvisz/svYA3PrIESGMTJs6NXgm9+RmHsRKeK4e1LL3tuqvx6N03JPa97bLbfe20W3wVqi2n+h2VCRnqMiA/LGPjJp7Ycwz3tCwsuuhRXIY+yNiGNcZJTDziOG90Drp+zxG+QH8cxkr1XJM00lHH6/f9UP2OyoQMdRlw5GfjJkwAvzl+DvtPnEfWLKzSHZC+JW1SqwY55CCz79hZ/PT2a0M1E9AZq6jj8ksbD3ucsK+NO3GGtN2VR6oMdRqW/qVAPCxP7DmG3xw/B0uBxpExGDjnBT2MaVvSem1qBU0mQfeAHHJggNP1JZsNf86qsQozLq8xyhNDlMkyavZlocZVdz0py7HySI2hTptHmDQrl9bj0btvcFWk27S2WatbDkOplrS6B1/3O914giaTMPdAXGVcZUnhh70XnE3BoEkuLnlinOEMMa6kikIR5Sc1hjptHmExhF0ZJK2SiBvdgw/ovVExHtGVBfCeTMT1On3hcuA9oKogmhfNKmhyk89FyqlBJqNXSojr6nefRpks45xYvQxy2GdqqqxkK5nUGOrJsskR1YtJUiURN65N0AlrE7Txq7Wu3wljIKR0IkFll61WEJNJfW0NDnSfR9fgqLOJWpUxUGUwZM388I/aB1KoIAptMfbEnmOOFy1gAH640t3mS9fpplB5oprxWcwKSsbLIId5psIkOJERLz+pMdSTZZOjkEyySjlnuQaHyYH3PjmHTIY5HqnJgframjyNMZC7Fo/ceR26Bkex6dUOZE0rLm9yDpNbceYHbm3EIiVFXDUm61fkNNNXxq1JIOy1k48lx7kNADXV1rFl1Mlpd8eAr4H1mixFSrzYMDYYYgtH+G2OPrRmGToHLuKeloW+MX/d/ZpkiVoiGqkx1MDk2OSIsjIoVwyx0AdJ3gR975Nz4ACyWXea9+6OAXT0jziGUPy+uspAfW0NfvbyEWw71Iusbd2FsWawvOh1msa1qjHhAKoyhvMZ29t6te/TIR/LYJb+uXnhzDxjJnu/6uR06ORnkb6r9lPDeXVL4gzxeW2OiomSATh08jMsX1DnG/NX79ekS9QS4UmVoZ4MRFkZlCMuX+yDpG6CZjIGwDkmstyRGsohjIzBcH/rEjQvmoXNr3fmhRsyBsPm+1ryPFR5MlGNifB6tx7ssSYLk+d5gl7XXz2WrF8Xxgxwx90fWrMMv+ocxMnzl5wNx50RSq8e6D7vTEyCuDMZZSfnyb3HXdeZwx2WUt/ndb/GUaK2kvea0gQZ6gQIuzIoR1w+jgdJ58HJUkNdCOPJvcddXjZgGauHv3UNHlzl7gikm0zU2HbLolmYVq3fmPSbiNSxe8kI5YSkZ9/71CkQZQBgDNh2qBechyu9urppDqZVW7p5w2B4+FvXoG56daQVTZRVUH1tDbjyO4Mxz/vL634tJBw5Wfaa0gYZ6jJSyINQbPwviQdJJzVUQxHy5zKDgZtWXPq5/Sfx3eYFrtfqjOfqpjnov3AZP99zDBN2bWpdrDjMRKQaJt31cMbKcjF0gwFfWzwLHf0XHQ95TDLuuu9FFysWvSfDEnUVNHxpzKUxNxiw+b6Wgu6XqOHIybLXlDbIUJeZKA9CHLWJwz5IfhOC1zhUL/vJvce1n3v6wmW8+H6Pp25ZnUzqa2vyNifHxk0MXxrDI3de51SD04VJgiYir+she/CbX+90jteyeBZ+2zfivN9gzBnf2IQJg1mhnAdXNeZtqjIA//fEeTBYhj/sd7jzcF9onbe4ftOqjbzxlIrJsNeUNshQVxCFKEq8NM6FvC9oHOK/oM9tPzWMXXYVPJ0x9QpPyMt5E/kKExHvjurR6a6H/Du5+zpgGU4RxhDxdXE9TM6x6dUO5z3yuEU8XRD2O9zRntOiZwzvEIbX9UtypUYKj9JAhjrl+G2qBT2whcajg94XNA6XpM0uOiUXLQpjSHThCdmjNpi1xN91uA9f2nU/JkzLSG77yRrHwItjeV3TQgy5rvyqYYdIxDh2Hu7D+hUNeeMWCCVMmO9wIms677m/dUnBk48XxcjwqPtMaSBDXQbC3qx+m2phbvRC49Fh3rduRQOY/a+XskIuOqVK2nSGxO+6rF/RgLOjV/B215CjJvmw9wLe+tjda9nkHLsO91ler8aAxCEfU8e+cmk9Nt/XgsdeOQKhVtzRbhlqIWd895NzzuszBsOGW5ZgfQhJYV7KvH0OhRo53TVOakLXfTZJ9wqDDHWJiXKz+m2q7TzcByDfW5QpdGNHfp9QWYjfq+NfJyWIyEZALTpVaA0N9feP39uCjv4R7Gjvw68/OpOXWVhTZThyNFXJoaap67z9QnlwVSM6+0fwgpAMZnMJPmKjNUzM2GtPQWR5bn2/J7AmtRde17i+tgYGY0DEgmClWuERIQ01Y2w2gGcBtMAKtf0x53x/kgObrES5WXWbaj96xnrQAGBHWy+2blwTaKwL3e0H8ut4eI1fZwRUJUghNTTU3w9fGsPi2dMxkVUSajKWXltMHHIMXN7sExpvWfctvH3x/XgpN4Imu3UrGpwONGqGYJh0cb/YvgiB6CafsJOwfC2vjJvOZL/59U6YnMMwGDatbS5oQk9yhUeE96h/DuBXnPMfMsZqANQmOKZJTdSbdf2KBnD73wPd5zE+kavDPJ7lkb2SKDFCL49eN36dEWhZNAvL59dh/syr8JPbr80zfmFqaHh9nhMOyFhtuNQwgpdWOps1cdeN8/HbvgsYvHjFSQ2XwyVVhtvoR6mFUUz5VL9J3EsJEyWMsLppDqoMhrGslca+o90y1OIzGTiGL435HkMliiNA0r3CCTTUjLGZAL4D4CEA4JyPAYj2bRIOUeRxan2L1U1zUG2nMwOWFxnFK4kaI3SWxMgtib3GrxqBbYd68YLZYx9pBHcsn+erHBm+NJbXG9CvXsWmtc3Y3TGQp0uWY+C/7hzEf3rpAzR+tdZZ2mcMhre6hjAhpb6bHDg7eiUXEslyvHDQCjF8+/q5ntI4Pw8YgJPkE3apHxSCkPcFCgkjrFxaj/tbl7jCMyJcVIiXW8jGIEn3CiOMR90E4CyA/80Y+waAdgB/yjn/ItGRTWLC3Ky6B/GRO6/D1h/nSoeG2YwKOqbfRLH59U5kTQ7GgIfWLPPdCBRG4PmDlnFWU6a3HepxLf29PGVRFW97Wy/AmLPcl+tVAHDSvg9++pmVwm66swT/9pdH8dQ73QCAk+cvAQCqDIY7ls/Drz9yb0ACwNV101wKDQ4rhv3Wx0Oe0rhi1TG6660LQej2BVybjBkDpy9cdrqK+xlPNTyzbkWDY/ijSPnkyohyyVvylpMhjKGuArACwJ9wzg8yxn4O4M8BPCa/iDG2EcBGAGhsLJ24PgyVKAny8q6K8UiiGA5ZA8w58Ox7n+ZlEMq0nxrG0OgVz+N9NHARR06PuDIK1bitywPNWuZSV68CcG8WqhX6AODFtt68MXDOMbduGqozlucvqDKsSa9l0SxsO9SDjwYuwjS5k5UIWBPFjQtnArAq4e3uGEDzwpme11Noxb9z/Vwn2WXn4T50DY5qY9Wy0VdDEF6Ttqj3vb2tFy++32OFMjSTlozXiiiqlE+tjPj0vhN46+MhmCHT6iudUtuUMIa6D0Af5/yg/fMOWIbaBed8C4AtANDa2qrKRstGJUqCvLyrYm+OKDHC1U1zXNpg0/SOh3v1MQQsvXPr0nq0nRp24sGbXu2AyTmq7Piy/Jlq9xbZEIsyqssX1Lkq2gkyGXcWo0omY3mQzYtm4R9/8ylODH1ue88Mv+4cxHP7T2JswgoH3HXjfNyxfJ7juZsc+G3fCDZs2e+ETd795Bx++p0mV90OYaC3tfW6wivqNVHvRb9J1OtvziajnY4v9i+8wjSqmqQQ1CQeZl/XN4+ecaSJXgWgJgvlsCmBhppzPsgY62WMLeecdwG4C8BHiY4qRtIiCYqinZaL2gvvKq6bI8xDKsb68LeusQoSmRw11d4euC5zUMAAXDe/Dr89PWIZEsaccp9jEya2HuzBrsN9Wi8bgEuDbMBKchETjlxuFQDuuGGukyUovNgZ0zK4dCVrvYZzp1GB7BFmTY4t73aD81x9jD1Hz+CO5fPyPkc1vp0DF/Ho3TfgQPd57bF16O5Fv0lUlugx5ViOZn3CqkvCGMCVxguiFnaQtxvmHlUn0/tbl4DDqmQo8CsApTZPqKRVLpB7PkttU8KqPv4EwPO24qMbwB8lN6R4SYMkKIyRVeN+HJZhCttvMKmx6kqQqqjeNwBkbIsiypKuX9FgeZqHelzvFbFg2ZBsWtvsGAwvid/KpVYhqIOffuZsrr559Ayarp7h+r7vvXmxUw51Isuxu2NAO6lwblXFE6dgcjhZjvIYwICs5Kw3L5zpqvNhcu5rpAHvEqdyAopAVpCI+L3QUYu/P7RmGZ5971OrM06G4f5bG51EJLUWtpe3G9YR0E0oYhUhp9UHrbw44m2eUAp04y+VTQllqDnnHwBoTXgsiZAGSZCf9lh4F6onJoray8kYsifTb28eFXo+Xt6TTo0hd9r24s7fmWdtvNnet1dlO9nICWMuV6hzhUZsj81Lg7xyaT1+uLIBL4gNTDuWLk8uXYOjudAJLMMqjK5hMJgmB+dWd5eH1izDlne7pY41Vir44tnTsWltMzr7R/Di+7LnCOzvPp/73uxQFQNHJmPgjhvm4uq6aWhZNAud/SPgAFqUHo/y9yA634hzF5upYgNRlj8+ve8E3vnkbN4EkTU5Fs2e7hz7CbvaoIAB2ntHd4+K3+uuu87jV1+r3mPqyqvcq9yoqOP/2uJZ2PT98LrzYpgSmYnllgTpvHrZgzEYc1o0AbkMO119jLgz1KoUHbLfCiSo03WVwXD/qkZtWnn7qWF82HvB5W3++NtWfFeuUMekayFkctOqvb2u9Ssa8NKhXscYmZy7JpdddlIHYBnWuunVeVpn+Zwa58xwGUtZ2fDt6+dCjnyYHPhQrqQXsda0+j1ks6ZzfHkzddyOm8tdbd48amVlmvZur5gg1PsrL1bPmPbeUUMoo5fHI+nH1WdM56GrpQXi8khLtbG3ummO8x0AwNGBi4l9lsqUMNTlRudxyAoHwNL3cp7riKIzds7mUba4EIjsPclxYl25Ui+JmPBy5ZRs2ZuTEe/9UjIawmgKgyq00OrqQrcxpl6Tzfe1uEIn4sFvPzVsyfxsqjKGy7DIxxA8uKrRGcuHvRecNPXxCRNDF7/0va4TJsdz+0/m1RZRwwTi511K+VJ5EjOYtUmXzeZkdBxwVg8mh6uFmao11zVqYLA2hXXXdOXSemxa2+z0ddzyTjfEt1VIL0U/pUqcMepSbuyJFZxXZ6EkIUNdIlTjoHquYTtSFxNzV/sAqpphcdPpViAu4z7uVm54dQ6X36t6dsJo6q7P8gV1zspBGCq/85SNqxpqEZ62rsO4F+I1P99zLKehzhjYcEsjjg52Oh6VDvk66iY3ueO6aeYMaVWGgcGKo4s4r3pOXYOjzudwwPHexeQ2NpFrJyZ7yCa39juqMlY4xeuaDl8ac0IoLgOv6Mef3nfCmXS9JlE/pUqchq3UYgGx11LqPS8y1DFQaIZWsQWTorxPNRoPrVmGLe90u+K39bU1nu+XHzw5puzVOVx9b8ZgoY2m+D2DlTF4dd20wPOTDYA6Iam9FuVr4hUC0Rl5MSFsfq3TFfKQMSSjphoRsZEpS+nE8e9vXeKUCZC9b3msuzsGXJ1bftU5iI3fudZVD1v0c5Tj6kOjVzCvbpqTEi+fs9zcQXzHXyqTavPCmc61feFgD96QEoZUIy5/H6XYGyqVWEAtOFbqPS8y1EVSzNKrUO/C631+E4ZqNDoHLuYti/3qPMgPntr1JKgDuC48EWQ0xTUVWYm7Qsbj1Zj5zUtm47MvxtA09yverxMNeqVEkfraGmdTUWwCAkDX4Cg6TueMdMawrp5pl16VFQ+qEbmnZWFeU2CxEhF7BLrwQsbe9DS529M9ef4SfvbyEfz0O02ujWYRV1fPa530GX5dep7ad8KVvbnhllwC2+6OAdd1lI24SpT7u9A4cykmBN21CrPBHidTxlAnteGQJp2234ShMxr7T5yDcOzUam+66ySHFMKGagRe4Qnd2NdLCgcgF6f26/wtxu0qY5rleP+k5ZUeP/sF3j52Flt/vNqlQPBKFOm/cNk5ttBvC6mbvKG44ZZGlycMuL1U1Yio3WLCTKym9IEMwKzaaly4NO78rnPgovM5/RcuY+v7PYEJMF737cql9Xjm37c62Zf3tCx0lWS9p2Whq7a2bMT9KKS1W1iCJoRin/00PONTwlAnueGQ9NIr7E22U+p0IsdJBarRAADDMADT8sIe/34zgOBKcUk8UOqDwIG8+GpGUWDIOmI5Riti5uPZfD2z/JC5EjcU77a+tgY/33PMeV+VpGWXteJVBnN5wn7XR8jd/DYyZcT41OSZjMHw9cWz8I5kLIVXK8Yganmo56XLdhwbz6k85AnmwVWN2prZ4nc6I+5Foa3d4iCOZz8NuRhTwlAXcyMEGcqkll4iiWB7W69rSS7OR1VkyOqGoHizOIZo8QRb0hZ0nYL04IWev/ogiAQZWR2geoo7D/c5CSCGFDMfnzBxyzJrTGoGd1WGOcWLhMpB1OwYvTLhhDi2HepxaoGo8XRhPBmzNvOCrg8QrdSpQIzvMVuFAVi6c5EtKlM3vdr1Pj/5oXp8ofJ46p1uMMBXCinwMuJeBN1XSRrCOCaBUsXb/ZgShrrQGyFKtlacX55X4Ru1xZQskZtQlsdqvDls/We/66QrFBVXa6ugQkFiMhrPcluWlivMBM7BDGtc3H6tCJswANfOnYGvzrAa4cop60IGKJbyIj3b7cFav5eNuzBuz+0/6SpUpbvPijEUHf0jMKUNzQdubUTd9Oq8DNAgrbvX58kqD3HeSSztg54/edKUS9mW4rPDEvczHpUpYagLnRHLFZtSM6BEI1SOnHFSJXKZDHOMta5OtS7jUHdNvK6TV6EoteZymDiy8JJVLa3XtRWrC0eLwBiaF81yPYDfvn4u9tiaZw44uvTqKgN//K0mV2z5yriJLe+cyAsrqKES63dWgsj29j6ngJSTkDOer0VWW5ipypMoToK7+7j1b31tjVP3G7BUJvJ7XMlHHnp88T2MXh6HwazrxOEuWRAnQc+fuLdkeWFcz1kavOE4mBKGGihsRixXbEqNn4rMQSDXYkonkQPgWadady66axImjiyX4XSNVRNHVlUMuWJTOcNYU2U4m3wqutXFxISJbYd68J3rrRRtcW3e/eRsni69vrYGuzsGXPWxOXI1qv2QE0REYlBVhvlKGrsGR/FG5yA6+0dgcrhWPlGdBLn7uJgwaqoMp6Y2h7uqoUvrLjU/CPoeMhEzKgvB7/lL2iEqtzccB1PGUBdCuWZj8bmiWprsFRUjkQtTj8Hrd34JDF6KA/mB2yll4QFu73Vswqpd8Y0ls/Ous7q6ACwDaemYRxyViO78ZA9TGCXG4CqNaig/CxiARfXTcebil8hmc0kgE1nuTDIGc4eYXjjYg5+9fMR1nLHx8PVSZFTduvDixydMXF03DdOqvduW+WV1qtfTihxxV5ZoqfDSu5djsy7tkKEOoJyzsVotTYxFjMdL7uaFei66+DKg3/wKY+gB5DV3Fa+Rl/E69hw9gz1Hz/jWaTYMhjkzajB4MdegQMTuxVK+c+Ai6mtr8jxMBmDpnFrcvGQ2Xvmg33n/RrveyOjlcew5egbHz1qNiziA08OWRO/WZfX4oPcCsib3VVKoGmMg3MauDjWMIk/K8marGovetLYZj71yxAnzZDLeao846m0UupHsVZKgksMTSUKGOkGKUUOEWQ7KhjesZxz0GQA8PzeModcZc3UZ/92b5mNu3TS8eKjHqaYnvFqvOs1CAXPmoruLjGEwbG/rdXVsEZuDahr1yfOXXCEPBuDilQn8+b++EYClRxaGWmZadQaP39uS16NRva6qxhjI97qjIF8/nSHTfc/Dl8ZcextqBqg6ARRjHEWd66zJQ6lFZHR7JqXw6Cux2xNAhjoxilVDRImPR/GM1c+oyuRi4WGUH+Lz1OQSufBOUHxcdCTngFPgBshtmupUAQe6rZRu1StfMHMaTl/IL5a0u2MAD65qxPMPr/ZM+eawOnGL0Enzwpl5hhawdMryZpeoBCdro4GcxnjboR5bsWHVNKmvrXFplL3QFXAKU8fcT80j4vdxdXiRwxWuOtca7b4fce//hDHA5ejMEhdkqBOi2A2SKPHxqE9rVPwAACAASURBVJ6xCyH1sv+VPVhdqEJNvQ4qyCSOqZNfyQVuGAOaF83ChlsaHSMln7tXAki/xkgDwJwZVriha3AUHf3e5Siz2dz1+sff5PTJDMDXG6zxyLU0xsZNbH6tE0cHLmp7Ewpj3fGKFas2Ocfjv7AMWpASQ2zyiVR0tYaH7juUv/svx0283TXkG6uXxxt1FaYrzSswPGp+6BCfEVe4I6wBjvpMpsn7JkOdEHF4DGE9H6/PCvp82UtVSzYKvbbQHHf0jzg6Y6esaUBBJlkGJjqQyPIredN0R3sfjpweQdeZTgDA47/owFiWI8OAv/7B1xzveKdIAsrmV3mTef23A7j1mjnO0lyHKCV6+sJla8JQMmS+17wAD65qRPupYVdcV/bOdSVA5RhxNsuRtcc5luV43kOJsfm1TiezdMLk2PRqBzbf1+JkWaod0AWrm+aASa1p3vjIaiEmhxHCJuJ4/U4YK/k4sEvympzDYP5dXaKuEqIS1gAXu0otp7EmQ50QSSpGdMvYKJpogZpGLDa9XDKvcdNleKoyzCly76c20cnqAMvr2/xap9MZwwlrSDW25czALAcee+WIy7ivX9GQ1y9RZcLk2Haox9NI/+DmRbg0lsWbR89g68Ee2A1VcgsMWJuAIiX7O9fPxZmLX+LI6RFXMo1aI+WD3guujEgOKylF/t3YhDur80db9rti7IDliXf2j8C0jyHXs1M3cE3lHEXYR7C6aU6ewQ+zCtMlWMmy0dtvmOtU5fO7B2Rjl4QUL6wBLnaVSoZ6kpKEYsRrptd9VtDni5CESJzZ/Hqnq5axkIbJrZwmshzfaJiJ5sWztHptgU5WJ/iwbwQ/euaAo51WH7RpVYbr9SZH3gajaCiresEynf0jqK4yMDFh5nnfB7rP4+zolZzny3OZiYCV/NHZP+J49oB7klL17eI7YUxtP+s2soC7+avXOdRUGTh2ZtRJYprIWm3B5M+qyhi4cUFd3nvvaVmYfzGYLSpkDF2Dozh94bKVFJTlnvsTcoKVnCQlNnbftFU665RKiPI1Vo1dErkJUQxwsavUckGGusJwebsxzPQijdirE8fo5XE89U636z1HTo/gqFTEPshb15XZH58w8cSeY067MVmJsOkXHa7XZjSZll2Doy4DJxL0mBQ7NU3gD25pwOLZ0/POY1BRjwiq7JKihsEwNHrF9RnZLMcfrFqCxVKop/2Uuyu1YXfrcSXYSB64rhSqoXjci+un46aFM/Hm0VypUfF+9ftXN0kzhiXblBErFksHbjrhIPGR2ayJrsFRJ7wke+tqkXx5Y7eQUEMxK82gyo5xOkVJrogLIZShZoydBDAKIAtggnNekY1uJwNynWSTF6bRlfFLZFm51EoRV5NChJFQW3jJqMa3s38E2w71OGVVOYD3PjnnqCjE5/3ly0dcdUsA4A9alzhGUSQByTWhAavR6PeaF7gMsglg5jTrFm+cMwMZw91BXIbBSr2/eclstPdcgMk59h07i4wBVylY0Zy2a3DU8SxFpT7RVXvT2ma83TXkKrAPAN+63t2sWFynv/7B1/DfXj7iTGinhy+jf/hyXmsu4bnqNlUdpNWHLqGEKf05AWuS2PRqhyu8JNAZq2JDDYUY1XLEjJNYERdKFI/6Ts55vnaJKCkd/TkDJeokh8HLGwnyHNQUcTDmlCLVZb75ycDWrWjAzsN9eL/7PI6f/SLv/S8c7HF1+QaAmoxVSrT91DA2PP1/HaOZMdwhhjW2sRi9MuFMLAxWV3JRxEgXrs4wq8nuxSsT2N7W69SvBnKbpSKrsXnRrLxu8QID7q7xw5fGnDRvwPLUVSMteHBVIzr7R/CCJFXMO759vrIqZ3tbr5OEY5omsiacGLSIfY9nOaozDI/f2+Kk1G9+vTNvpWNyff8/r5Ba3KEGgdd9mraYcamh0EcFITL8BFWakIDX+1Tpl7zZpHuYvFoPAVbPPNEFW81A9PN6xP/L5yAbFrUo/zcaZjmbjj/+5zbHSAOWSkVO5f7H33zqSOBEHFnnPeqom16N0SsTrjCH2CiUN8p0DWPFa2uq3V3jVzfNwbTqXFfvO39nnu8YxCQmZwwywOnqwiVVjvhvnVQK9vHXOpE1TTsWbat27PMZy3J09I/gb37/awByGa1CjaM2BQ5D0D0DeDdF8MLv/klbzLjUhDXUHMAbjDEO4GnO+Rb1BYyxjQA2AkBjY/hatZOdOLWYaobf/XZIIMz7hBcopF9+FcraTw3jR88ccB6KrT/OJXjU19bgnU/OOl2wRRU98TlBXo9IixeIc3hy7/G8ovwbbmnEge7z6BocxVsfD+WNU7xaFCECrH9vWTYbdyyfZxkwaTNQYDDk6b+f2nfC9Zpr587A3/3wG67x69Kvq5RNRbW7i7zxtvfjobxJUqCGimTv1688qLh2cgz6QPd5qFuaTPM+APhu84KCDKpOfy1X7gNj2uJcfvjdP2mLGZeasIb6Ns55P2NsHoBfM8Y+5py/I7/ANt5bAKC1tTXIiSmaNInRvYg7rqZ6FV677Sr1tTUu6ZnXMlcgG1NRMOmdT866Eh0sKS13hV6CvJ72U8PYdsgd2qibVoUn9x534qjiMx7+1jVONqCaXMEYcMvSeleYQubQyWH8/jcbrE01oXawEbpsNQ18ntJAd5XHhpXcbECuNuf1Xe+SPFuT+0+SOi91+YK6vOQj9d5X9y0+7L2AO5bPQ5Vd+rYqw7DODh8VGy/2Ok/XJmc2p7GJEqYIun/SFDMuNaEMNee83/53iDH2MoBbAbzj/67kSJsY3Yu442qFeBWi1q+sPAha5qqz7JmLX0o9DLmr1rN8nKDxHeg+n7eZJy+95Uw1d7W9nJIiYzD89X0tWL6gzvH6dV7B7o4BDF8ay3WxsclkDO2m2boVDdje3uc7Cap1k0VCyJN7j7t7NY5bipZ7Wha6Ou8A7rKk8uaoX/VDNflIxMnlDEZ5Ovr1R2fwdteQVS0Qlhywa3DUGbtfOnrQveV1Twuttrx6iVrfeqp7zX4EGmrG2AwABud81P7/7wHYnPjIfKiEjYX2U8M4feGyKznEr25G2Bszqlch65kNALdplAcq61c0YIetZqjOWCGIrjO5JbhsUAE4HrFYrgOWfE6nFqjO5B5mYXyFXnd3xwAevfsGAHBV2zMMBu50OuGOod3649WeiS/NC2dqjYcIDei85a0/dhf9l6+hLklEbgcmus4wWGqT3xw/h/0nzucl3NRU5xJk5ESX7e19ePz7+SnV6mfu7hhwhbEee+UI7rpxPqozuT6RHHDi7RzWpui2Qz3O+3TPjFoaQIRz/DaXVZXQ/a1LnA1Rg1lKnObFs/JvMB+87u+0rqBLNa4wHvV8AC/bQv4qAC9wzn+V2IhCkPaNBTVe98Ctjb71HZJcGajXKshIA7bR2rjGdQMuX1DneH/CUMrV04QyQpWUqUk5WzeucY4jVBTCEAm53voVDa5Y/LI5M3B86HMAllRu5+E+53iP3n0DDp38zOq4LWSEHE6brPtbl+D5gz3SmLw3YMV1kQ0WOLc2Ke1MPHnilduBmXadahFpEasPWSPNADy0ZpkTV5Y3L8cmTDz2agc4d9cPWd3kLpxldY8/7yQhZbnlQVdXGbj7pnnYd+yslZBjx4nF/380cFHqFuPfAchPeunn9YoNUTHWowMXceT0iKeEMyxpXUGXclyBhppz3g3gG4l8eoGkfYkk3/RZk2PR7OnaMca5MvCT3xXSj07n2cj1sUVGo5y1qHq1XuclJ4wsX1Dn8orVLuQGY/hqbbXruGJj7G9/eRS/6hzE7zUvwPXz63KNC5D7XFlNwQy3+kJ3zXbJ3dylTc+xCRN7PjqD6gzDXTdaZVpFOzC5UD94LvmmusrA1xfPcmLpHMAz73bju80L8lYXABzvOy+RyZEXWuoN0eDW2SuA5TXfvGQ2fnr7tXnKC3FdxLXTbUKLCd2v6YDAy+uVn8vTFy7jRY8mElFJ6wq6lOOqWHlemjcWwnr8ca0M/Gb2uPrR6ZbgXnU0BHLRo/ZTlrHSjVP2ikUI4aE1y/Dse5bkrr3nAjIG7LKhViusR1/8F6cBwMnzl3DrsnqsaKy3mu+C52XCyeqLdz8568R61QJE6manjKWq4Hjr4yFXXP3triHsOXrGkdIZdpW89UI3LmuzubUi+Jvf/xoev7cFf/nKEXDlMpocGL08jif3Hkf/hctO4awJu71Wld06q/vcF3jz4yHXfoH6XMixcL/4u3qdgioieiE+X/S5jGPVm/QKutDwRSlX9hVrqNNMWI8/7OsKaQAQRTIXBvWmvKdlIQ6d/Axj41bnlflKXejr5s7AqqY52N7Wixfft5bR61Y0aMcirsNT+07grY+H8MLBHlcatthE/O5N8/B21xBefL8nz7i9f3IY758cdtK0ZdmgUCWItOcxpbmtXJRIl7lobcjlfhariPEJE3u7hrD34yF35qbJsVhaRb1kV/sTbDvU62Q4quEigdhkFbpwedN0wuR46p1uZOxQj3q+KrIR9ptaxXexTtM9JipxrnqTXEEXE74o5cp+Uhvqcm5AhPX4g14XpmWR38wedtYPula6m1KWuHUNjrr6Bf7xt5os1YVUE0IoTrzG8tbHQ45xnjCt+G6uXDbH5fGsczwvdLJBcR3ExqIJ4NT5S9rO22o4QsTZH1qzDPu7z1uZoSLmbDC8aXvSMnKRo5VL67Ft4xpX84KsXMY0Y7hCLIAV5xZhjazJ8bs3zsOQUrkPyMW+deerQ6hHdtgd1b2KasW1Wo1z1ZvUCrpYR6ZUK/tJa6jTugERFXWTR1S6C9PPEAg364e9Vrpltfzz926ajzMXv8SGWxpddZzlJbeXt7brcF9eKOXebyzC67+1QiwGY2heONMJkVRXGfi95gV455OzGP5iHEAuS9FzQpI01eK1cto3AGzduAZP7TuBoYtfYk3THNRNr3YST+TUcXWTU8Y0LSmdfI02fb8ZG57en9sENC3j+sOVDXjhoDvcIjYlue0t7zt2FhNZa+ViairthVl2h90snGqkXZggmLSGOq0bEFGRbyS1G7WaueW39FWlWLKxLPZaqYZeVG/zmiR06he1yBIAXD+/DpvvyxX/f27/yTxp4K86B8EYnCQZOQlFRs7qBHJ6cp0K5l07uafrzKgzftVIT6s20HS13lBPmFY/QbVBwDcbZ+OQtLFYX1uD1U1zXBuYQK4mScZguHbuV5xKhczkuHWZO9HnuzfNx0/t1mbqNVWTYgzGnOxPv81CHWmVxxVL2oUJgklrqCtlpgxCvpG8UoqjPEQ677nY8IiXoY/Sx+7KeH5wWFTdkyenjv4RLJ493flcx4Byjrrp1U5nEy9DBVglTJfNmYGv1la7PF+vc6mvrXHFdu+2jSMAvN01ZBXkzzAYgEvLfGXcdNWQ/lI5x7e7hjB8aQwPrVmGZ2wVh0zW5K5ysowBP/hmAw73XnAyDsU45NR1Xbhs8+udMO2uLAwcnIdPRoljdZpmQ59mYYJg0hrqSpkpwyDfSGrqc9SHSGeI5PrTfuERtf6HX4xc1ZJ79QqUE3LkjTWDWYX7t7f15jxZg2FHe59TQ+KhNcty9T6Q68giNiVN0+qOLQxV1q4zzU3ueMLvnxzGtrZebNu4BiuX5jcxEIkuoiKfwYCbl8x2rv0dy+eh++znaJr7FdyxfB46+keczUOOXAEqNQ4NAG9+bKlFDMbyurToaLY3IMVruWk1E5CTk4T+XVXoiJ8z4NigtE8rZrM6DJMlDFlOJq2hBipjpoyKek5+D5HuAfTLLPO7Vmr9j1120ol4r2roRaU5UftB1ytQHY+cpCE6jIiYLoOVbSg21MYnTOyXsgcBy0NVizCNjecMFYelyFBNouieosb762trsPNwH86NXnGKOAm54QsHe/D4a53ONTl+9gvs7RrC/a1LsGLJbCc8kc3mNlFFMSehIuFcbIzm0vJFyVKNXceGWxqxfEGd6/s7N3rFVZBq52Grq7pOoSPvFcj3SJhu9bqJOKwTFMbQp9njTgOT2lCXi1LedF6G169lVyErDdW4qT+rhl6Xvj02rg+LyIZxb9cQhuwNSVGQSJybmso+b+ZVAHKx7e6zn+dXyjOYy1B5GcJzo7mOL+I85BTvjMGccb/4fg8MpUUZYIU9tko1pcX75E1Ur8p4auz9qX0n8Gup8cAPbl7kVN2Tvz8RuhEwBCt05O9pp5zgM+6d4KKWuo3iIQeF1sjjDoYMdcyU6qbzqhftF2sNs/HohVr/Y31A5b6VS+vz0rcZA/ptb1RNNlndNMdlGD8a6MCdy+fh29dbDVTFsl81aPtEjNgATn12yTWGjJ0YonvfU/tOYI9U2H9v1xDaTw27rt+4kjV46NSwSy6ottwC8icwOUwCwJVw5GU8AWCuUs2vdlruURXfX/upYasmuF0lT05mCVLoANY99JJUNEqEj3TI75dXS2FCIUHOwWTZ+E8SMtQxU4qbTjcZiE00QdTlahgdtVz/AwD+8uUj4ICnHtdJ37YVK4wBW21vVO3TCMBlGMez3GllVWUAhmFo6xuLMclp0oDVdGDDLY14/BcdrviteN8z/74VG/+5zfmM8Sx3hXNWN+X3MpSTbMQk8My73cjasWvDYMhm3aGVQyeH8be/PIrn9p8M1ZBY4FdPGnDvGWQyDA+uyq8nEyb2nFWaJYTRYxeyUe93rpNl4z9JyFDHTFwJJn6EmQyiLFej6qiFkRDx2R1tvS4jqBuDXPsB3NrUY+C+ySaCCRNgpr7ymzwmMSkYjGFN0xxsO9STF7+Vx3i14rXKn7xyaX4vQ8DdoHb40phLsnfncisx5bd9I66WWlve7Qa308u9wgsqQWVX5T0DkfWoGukwsWf5mocxkuK+1SVeFcpk2vhPCjLUMRPmpis2PBJ2Mgi7XI26ClC7tIxn8xsRyBPRI3del1f7QTzooqTo6qY5TrLJ0f4RnL7wpdRvEPYmI3dVfpObtwqZmyhWpHZOB9xxaMAdzjEY0LLIXZLzwVWNeOVf3LU6rp33Ffzd+q87k4NQg2Q58NbHZ6wklYytd7dPwJVejnANiVcuzZVd1d1HQXsGQd+puHaP39uCjv4RpyY24Jb6yUS9b6M4I5Nx4z9OyFAnQNBNF1WpoTt+VA8kjjRzMT61GH610rvR64FWx6zT++7rGnI8PIMBd904H3cun4dNv+iwVBuAZwdwEVLxErq9feysKw69cmk9Hr+3xcn23Px6Z17RqivKruOMmozz967BUaWPo/UvMzm+e+N8RyLIlBBKp9Sg2A95taAaz6BJxu879fp+5LK106rzDXGUCb0cG4STWTlChroMRFVqRG2h5PX6YtLMBaK4EWAt979ux4JFnHnlUu9MR3XMOr2vHKfm3NqM6+gfcZb3E1mOx17tyJPZySEV7mGss5qmAWpCjfr3Dbc04sO+XA2TNZLB290xoL1G1VUGfnL7tfiJXXL0w94LTiwc0Bdh8sJPvfP4vS14zDasj7/mnmT8vlPd9wPAVbb2iiZEo9639bU1nt53qTcIJ7tyhAx1GfB6iLweoKjLTa/Xexl3L08kjA57wy2NLgXHprXN+LD3gqUVhn/cUxxLbDY2L5yJ/SfOOV6qSLPuv3DZ9T5X/0Tk6naIz9/dMeDUtxYxZbV1mIhpv6Qk1PTbJVnF+T64qhE9579w4syiIcHKpfW4p2Uh3v3knGtstyyrx5/fc6PrmrefGnYyGMMoZuTrLt8Tap1qMckA+dp28dk6j9wrqUe+ruLay8j3rZAXet2Xpd4gnOzKETLUZUJnNL0eoCg3YNTX+3nxYXTY8uddGTcdDw+wGskGld8UDQhELY8Vje5aFp39I66NtUyGWc1us5Ym+ocrG5ySobJmWE7wUDe+5LR12bvl3FKlqIk5ddOtxgWq1/3gqkbs7Rpy9M4MwB3L52k3VdWOOX7fx4+27HeM+h/fdo2rca1sPFXPfGj0Sp6HGzYMBVgTmrxa0ilAxD0QJNEr9QbhZFeOkKFOEV43d5QbMOoN62XYw+qwuwZHHUPC4fZ2TR4s9xq+NObElccmTEdvLNje1ot1KxpcG2tdg6NOxxqRBCLjdR2FZyka0cqKjYzhlgzuPNznvN/vmv709mvx7idnfeuviOscxmDtlLqWj2U59nefz60a4L6eapz6rY+HsOejM674ctgw1Mql9dh8nx2vN7nT29GLMPdZKTcIo04MlRbPJkOdMnQPUJQbMOrrRQahiA0Ljy2swZeL3zPYWmLbWKubjF6fr1YHlMmalqLkkTuvc7xhv441qtpEIDbKTG71PxS1rjOGFYcW/RtFKrtcU2TT2masX9Gg1YwHbZLKfRd19cRVg96pVBGcP/MqTKse9fwe7m9dgqHRK65a3mPjuca7Q6NXUJWxNOiMMV/FyYOrGn2TcGRK7TGHIezEUInx7NCGmjGWAdAG4DTnfG1yQyJUonomUV/P7f+yHHj8Fx2O8QvzIK5umoNp1YYrzNDZP+KbCKOONS/uadfEkGtLC4MmvGEvxYyukzbg3iizJgV7cmHMSRQRRsrpvcjza4CvX9GQJwtUJwXVixXXeGzcfSy5HZhs0AU10qakqJHdNTiaNxnkFXVicBQxgDUZMViTnk7Zon4fYe+dUnrMcVKJ8ewoHvWfAjgKYGZCY6lIKm0JpXKg+7yrTZSsiQ7zIMbhWcmfI4ylbAQBd2dwUSBJ9TDVjTdRHH/dioY8T138KGckyptvosegWgN81+E+J7HG5Lna1KLn4tP7TqD77OdWOVG7iBM4R9bkYEpGplzVTjboQk2z6fvNANx1P4QCZfjSmPNeznleC3h3+nvuz5VimJKkEuPZoQw1Y6wBwL8B8N8B/FmiI6og4lxClcLge6k4qqty7aDChCtU4vSsdMeSN66yWRMPKGU6BfW1Na7kEmGYhDEV/R1XNM52bViqm3I6L1881CKWLsflxyZMbH6tEx39F10Twvdumo+f2PWidcfKKxbFuVMe9ejARXQNjmLz6515dax3dwzg0btvcBQzplgSSSck1yGpsmtlF9qwViZsjfE0Oy9pDNsEEdajfgLAfwFQl+BYKo64llBh+iIWi6omECnfK5daGXCi8akuXCE8TJG9VuobWy76X11lOAWaVNRmsQzQtgAD4LoWOrmcLJlUCzrtUjxqk8PphyhzeTzr2oAF8gsxyT/vPNznVN/LmtzxuFXuaVnoGBu5F6M455rq/BCUOJdi7qkwjknc8d+kjH6lhW0CDTVjbC2AIc55O2PsDp/XbQSwEQAaG/N34icjQdlfYW8wdcmu64tYLKqaQK574XfTCgMv3ru9vc/VNCDquUZFbB6KTuQPrVmm1e+2nxrG6QuXUV1luKR78sQjjy1ILudncGRvW9Zsq9zTsjDvd7rNYvlnOc1e9rgZsxoHiH6UArkDTFWG4Q9al/g2rS2GMI5JnPHfStz0S4owHvVtAO5ljP1rAFcBmMkY+z+c8z+UX8Q53wJgCwC0trZGSb6qWPxkYIXW6/Xri1gMQdXYvDjQ7S736beBF+Vh0hl33e/Eg28lHnJ0Dlz0TQqqMhgeuDW/kpxKkEcVVp64fEEdDtrXKGMAKxrrcWXCzDOoYa+FVx1pEbMX/SgBOHF0wPo+N7QuwX///a+F+sxCkBVCcs0V9TVxxX8rcdMvKQINNef8LwD8BQDYHvV/Vo30VEb3wAfdYKpB8ouJ+qXp6o7lha4aW5j3rm7SV1gT4ZDO0yNO4kjYh0lXUwLQZ2CqD77arURNusmaHItmTy86fhrJ4Di9GA38VykrMQy6kJSsIBHHUq8NYLX5ElNodYblVdhLBNHJnemn+jjjv5W46ZcUpKNOgEIK4ngpH/zSdMN6s06ltO83a5UUQaVNt25c44pRdw2O4rFXjrgKDQWli8tjkaVyouwnAO3kpnvwdVrfsKVlo1wvtcKfuB7iNWKiGrc9fl0tEfWY6gpi82udvqVYAe/SAqKrOoOlp/ZbmcSBpRAKPtdC479+DkylbPolRSRDzTl/G8DbiYxkEuF3g4VZzombNChNN8yxvIxTmC4d8oPzN/aSWhha2UgzALddfzUevfuGUPF4U6rAb0hLaK9ldVBcN+wDXcj1krXO4ufO/hFsO9TjqpznN1HpvgNA35lc56d6Tfzy74Q3nWRcN24PV032CXJgpjLkUSeE1w0W5WYPem2YzUyvBJGgY3s98KqhBSwDJYx0kDcnPlckamy+r8V5X9Cy2o8wD3SYc35izzFXD0FZ6ywSVsQegiBoonJtFo+beGLPMSz5am2eoqOmyt0gIKjdmhwuE152knHdYjxc9b5wJScZDDcunBk5hDaVIENdYqLc7H6v9eu0oWbo6RJEgsbh9cDLhpYxhrt+Zx5+cvu1eQ+flzfn9bnysloklsTxoKoGQlTXExI3+XWqh2vC6nyeU17o613LE5UOcc2u2BmX731yDobBYLBcnZH7W5cEdgdX263p4teb1jZH9nqTLvCvOxfX5JXljsQwbAhtqkGGugxEudl1rw0yiK7NNZ8EEb9xqNrlMAY+rDen+9zVTXOswkh2wocoxuQXjgnaMFRj/JvWNjs9FA92n3elUouxq4xemdBu9GYyBm6/wWq8G0ZhsmltM/7bK0ecllxZ0yqk9MCtjVo5Xdhrqb5u+NJY4OQu/17e2K2uypc0xoHuXOTJS0x8BgNuu857ZZL2RJokIUNdgQQ9xOoSP2qSiqpdVkuVxhHW0SHXq5jwaO8VJeFCbaKr9lB8et8JfGPJbKxusirkidfLcOTL8QpJ/hm+NAbl0E52YzHXUve6sJM74K6BIqfdJx3bFhP+zsN92NHeh2zW9F2ZTHVNNRnqCiToIS52t1zVLqtZgH4a6EKzKg90n3eFFAyD5UkToyZcqE1058+8CsCI89o3j57BnqNnnAd/830trnraVQbysha7Bkfx0qFemJzn1a32x69aZAAADo9JREFUQiTjVGWYS5MOWKGPqB15ZIrZSAWgnZhKFdsWE8p6KWu0mI3gyQwZ6gpEvfGB/IakxUik+i9c9ix85KdgKMbbUTcZH/7WNXnSxDBepvoaNf377WNW7WjDYE47L/HgP3LndVi+oM6VTi9fWyDfA91l162Wi0h5rQKUulCosdPho3bkUSlmI1Xeb2CwGvImESP2G2McG8GTHTLUFYq4ueVuJRnDUlGEzYhTUTchN9yan47s5ZkV6+2ok4/ucx6587pA7zHIwxQNCOT4tajTLDxbEdJQJyW1Ch9jLK/BrlqrxeXh28ix2FJ5il7XRZ3ww67CShUvDlK+TBXIUFc4B7rPOxsyEybHplc7fOsNBx1L3oRcrMnwC6PpFb8L+zB7FfvX6arDeF9RvDexkfb4LzoAxpxmAaoyQVeF787fmYc3j55xQja6Wi2b1jajyshldorzkmOxpfIUdddF/V2Y+6ZU8eIwypepAhnqCkeoJcRy3OS5TbioXk+Y5aXOM2s/NYx1KxpcG2yqTlaVnwn8iv376arj8OjkNmBW7NgdClndNAdVGcNReaxb0YDmRbMced/yBXV495OzrkYHhlKrZfjSGO5vXYIX7Kp4ahYhAM/uMWEptRqiVKuAqR6XliFDXeGsXCr1urO9uNVNcwryeqJsYMmbiGp4ALCqwAlPfyzL8cLB/KaxgHex//UrGjzTlePy6OSJKWMwwG6aK09SwpCbnDv1oa+Mm9h/4jw239fiku6JdHO5Vos4zs7D7joruvNYH7L+ikw51BClihdP9bi0DBnqSYCu112YFHEdUTchVa/n6X0ncObil+g4PaLWsveVEgqjLl7H4Q4JyAqQuDwt3aasfA3/8uUjTvebiSzHtkM9eWGmbT9Zk7cc19Ui0W3+qlmjcveYMEZXZFLqrkWSXnaxqqK0fU4lQIZ6kqAaWNUbCarC50XYlHChpHjDbhklk7E7yfpJCXcd7sP2tl5HabJ+RQNa7DBD88KZeYkrcXlafjFaNQNx3syrkDEuasNMfseUf+eXNcoRflNW3kQWG5nVRaymolKoqiitn5N2yFDHSJoyp2RvJKgKnxdRU8Lf6BzM63RSZVhSu7rp1b5KjZVL6/O6sIgx7z9xPi/uWwpPa/2KBuywVR3VGYaf3n4t7lw+Ly/MFAW/rFHA3TjA79g7pdCSAXdGX6GrKSK9kKGOiTRmTgkDWOiDGzUlvL62xmm+Clhensk5ntt/MnSMXLxGHjPA7WPBUYCUwtNaubQ+rxPMyqX6MqthCcoaDTMBtZ8adtWirsq4VSQU2518kKGOiTTvUBf64EZ934OrGtFz/gtsebcbJpc6fRdwPVwbfXbjV2QLq6xXDGEkbVGP52eMxc9Cn677HFHACtCrSCi2O/kgQx0TYYxauUIjhT64hbyvbnq162fRYDaqVyd/9ukLl/Hi+z2BBevThtf37Wfow6zMdF65CsV2JxdkqGMiyKiVOzRS6IMb9X2q5M1LPx3ls9tPDYeO3aaFQr/vMCuzsBNomvZMiOIgQx0jfkYtzaGROEli2b1yqXcdaT/UDiKVkBQSNtwUNIGW2zEg4oUMdYmYShs8OiNSjHcnyq6OTZg4dPIzbYq8bweRjAFwjgmTh9YnF2vUC/2+45ropopjMFUgQ10ipvIGT7HeXZDRCeogMj5hbbzJ3WOihKjEGJKO78vvLfT+kJsmTBXHYCoQaKgZY1cBeAfANPv1Ozjnf5X0wCYjU3WDp1jvbnXTHM/Gt17HV1Uj4NxqhJAxsL2t19O7Vo+183AfdkXIFpQp9feta8xbSG1wIn2E8aivAPhdzvnnjLFqAO8xxnZzzg8kPDaijMS5ERU1DKD9bJ8CTbrjqx4tAJeCJGx3HIZctqBoTBum23o5UCeZzv4RLJo9vdzDImIg0FBzzjmAz+0fq+3/1OxaYhIR90ZUlDCAVxjDq0CT3/FVjzaMgkRn4Hce7nMq5P3m+DkcOvlZKjfn1FWE38qBqCxCxagZYxkA7QCuA/Ak5/yg5jUbAWwEgMbGwgrXE+kgiY2osGGAoDCGX/nVMMcPM2mox3r+4dV4Ys8x/Ob4uVRvzsnn9kHvBez5yKqVnfaVgIDkhN6EMtSc8yyAmxljswG8zBhr4Zx3KK/ZAmALALS2tpLHXcGUU6ESJoxRqklDfv2jd9+AQyc/S/3mnDivn7/5Sa6hAdK9EgBIThhEJNUH5/wCY+xtAL8HoCPg5USFEjVUEbdmOkwYo9RUkmpHTjEXpHklAJCcMIgwqo+5AMZtIz0dwN0A/i7xkRFlJYxhTMoLKtQoJ710LvdkEZYwDRGKIYnrPJXyDAohjEe9EMA/2XFqA8BLnPPXkx0WUQmkyQuaaktnP2PppXiJ0jWm1KUQKmnFUg7CqD5+C+CbJRgLkRLCekxp8oLUScMvqaXSCVsnHMgZ6LBNYYOOneTkXCkrlnJAmYmEiygeU5q8oKkkTQtjLJMqCpWmyXkqQYaacBHVY0qLFyRPGkFJLWFJq1wsjLFMqihUmibnqQQZasJF2jymKMZSTBpxlEVNc8w7jLFMsihUWibnqQSzEg/jpbW1lbe1tcV+XKI0pMWTLMZYFnsOT+49jv/xRpfV/osBf/a95aHjvGkhLd8jEQ7GWDvnvFX3N/KoiTzS4jEVs3Elb6bJP4clbSuLQkjL90gUDxlqIrUUYyyLDV1QLJZIE2SoidRSjLGMQ0am80gpnECUAzLURKopdPmeROgirg1GMvZEVMhQE5OSJEIXcXjpaVaTEOmFDDUxaYl7My0OLz1NafdE5UCGmiBCEoeXPhnUJETpIR01EQmKrxYPXUNCB+moiVio5Phqmowj6ZuJqJChJkJTafFVYZzra2uw+fXOipxgCAIgQ13RlNpLrKT4quz9G4zB5LxiJhiCUCFDXaGUIwxRSdl6svcPzmEYDAw89RMMQeggQ12hlCsMUSnxVdX737S2GcOXxlI/wRCEDjLUFUolhSHKQSV5/wQRBMnzKpg0KRkIgigOkudNUiolDEGkA5rYK5dAQ80YWwLgnwEsAGAC2MI5/3nSAyMIIj4qWQNPAEaI10wA+E+c8xsBrAbwCGPspmSHRRBEnOg2n4nKIdBQc84HOOeH7f8fBXAUwOKkB0YQSdF+ahhP7j2O9lPD5R5KyRCbzxkG2nyuQCLFqBljywB8E8BBzd82AtgIAI2NjTEMjSDiZ6qGAEgFU9mENtSMsa8A2AngUc75RfXvnPMtALYAluojthESRABRNskqLQ0+TmjzuXIJZagZY9WwjPTznPNdyQ6JIMIT1UMm/TlRiYRRfTAA/wDgKOf8fyY/JIIIT1QPmUIARFIkKX8M41HfBuDfATjCGPvA/t3POOe/jHUkBFEAhXjIFAIg4ibpvY9AQ805fw8Ai+0TCSJGyEMm0kDSex+UmUhUPOQhE+Um6b0PMtREWaB0ZmIykfTKjgw1UXKmqpaZmNwkubILk0JOELFC6cwEEQ0y1ETJoXRmgogGhT6IkkNKDYKIBhlqoiyQUoMgwkOhD4IgiJRDhpogCCLlkKEmCIJIOWSoCYIgUg4ZaoIgiJRDhpogCCLlMM7jb8bCGDsL4FTsB/bnagDnSvyZcVPp51Dp4wcq/xxo/OWn0HNYyjmfq/tDIoa6HDDG2jjnreUeRzFU+jlU+viByj8HGn/5SeIcKPRBEASRcshQEwRBpJzJZKi3lHsAMVDp51Dp4wcq/xxo/OUn9nOYNDFqgiCIycpk8qgJgiAmJWSoCYIgUk7FG2rG2BLG2F7G2FHGWCdj7E/LPaYoMMauYoy9zxj70B7//1vuMRUKYyzDGPsXxtjr5R5LVBhjJxljRxhjHzDG2so9nkJgjM1mjO1gjH1sPw9ryj2msDDGltvXXvx3kTH2aLnHFQXG2H+0n+EOxthWxthVsR270mPUjLGFABZyzg8zxuoAtAP4Aef8ozIPLRSMMQZgBuf8c8ZYNYD3APwp5/xAmYcWGcbYnwFoBTCTc7623OOJAmPsJIBWznnFJlswxv4JwLuc82cZYzUAajnnF8o9rqgwxjIATgNYxTkvdeJcQTDGFsN6dm/inF9mjL0E4Jec8+fiOH7Fe9Sc8wHO+WH7/0cBHAWwuLyjCg+3+Nz+sdr+r+JmT8ZYA4B/A+DZco9lKsIYmwngOwD+AQA452OVaKRt7gJwolKMtEQVgOmMsSoAtQD64zpwxRtqGcbYMgDfBHCwvCOJhh0y+ADAEIBfc84ravw2TwD4LwDMcg+kQDiANxhj7YyxjeUeTAE0ATgL4H/b4adnGWMzyj2oAnkAwNZyDyIKnPPTAP4eQA+AAQAjnPM34jr+pDHUjLGvANgJ4FHO+cVyjycKnPMs5/xmAA0AbmWMtZR7TFFgjK0FMMQ5by/3WIrgNs75CgD3AHiEMfadcg8oIlUAVgD4X5zzbwL4AsCfl3dI0bFDNvcC2F7usUSBMVYP4D4A1wBYBGAGY+wP4zr+pDDUdmx3J4DnOee7yj2eQrGXqm8D+L0yDyUqtwG4147zvgjgdxlj/6e8Q4oG57zf/ncIwMsAbi3viCLTB6BPWo3tgGW4K417ABzmnJ8p90AicjeATznnZznn4wB2AfhXcR284g21vRn3DwCOcs7/Z7nHExXG2FzG2Gz7/6fD+sI/Lu+oosE5/wvOeQPnfBmsZetbnPPYvImkYYzNsDeiYYcLvgego7yjigbnfBBAL2Nsuf2ruwBUxIa6wo9QYWEPmx4AqxljtbZNugvWflksTIYu5LcB+HcAjthxXgD4Gef8l2UcUxQWAvgne6fbAPAS57zi5G0VznwAL1vPF6oAvMA5/1V5h1QQfwLgeTt80A3gj8o8nkgwxmoBfBfAT8o9lqhwzg8yxnYAOAxgAsC/IMZU8oqX5xEEQUx2Kj70QRAEMdkhQ00QBJFyyFATBEGkHDLUBEEQKYcMNUEQRMohQ00QBJFyyFATBEGknP8fUYROhQh0O+AAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.plot(x1, x2, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.00030345809258036736,\n", + " (3.433984168873193, 0.00030345809258036736, 1998.0),\n", + " (-5.311451764509381, 6.043239585972563e-08, 1998.0))" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from statsmodels.stats.weightstats import ttost_ind\n", + "\n", + "pval = ttost_ind(x1, x2, low=-0.2, upp=0.2)\n", + "\n", + "pval" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Opposite situation" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "from numpy import random\n", + "\n", + "x1 = random.normal(loc=6, scale=1, size=1000)\n", + "x2 = random.normal(loc=5, scale=1, size=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO29e3Bd1Z3n+137HMlYadlWjN+yZMRDIRJpRhIgh3TAAXLbPQYmJhkemdtFp4iZKqpvZ3puTT/SOB6nO3WnKnWLnirqBofpSXc1FsYPIKGaDJhgXo2EJQ1gCSNjZOth2bIty7LAxtI5e90/9l77rL3O2s+z9zn7SOtT5bJlncfar+/6rd/6PQilFAqFQqFILlqpB6BQKBQKd5RQKxQKRcJRQq1QKBQJRwm1QqFQJBwl1AqFQpFw0nF86JVXXknXrVsXx0crFArFnKSnp+cspXSZ7HexCPW6devQ3d0dx0crFArFnIQQMuT0O+X6UCgUioSjhFqhUCgSjhJqhUKhSDhKqBUKhSLhKKFWKBSKhKOEWqFQKBKOEmrFnKRnaBJPvn4UPUOTpR6KQlEwvuKoCSH/CcAjACiAQwD+hFL6RZwDUyjC0jM0ie8/3YmZjI7KtIZnHmlHa31NqYelUITG06ImhKwB8H8BaKOUNgNIAXgg7oEpFGHpHJzATEaHToHZjI7OwYlSD0mhKAi/ro80gIWEkDSAKgBj8Q1JoSiM9oalqExrSBGgIq2hvWFpqYekUBSEp+uDUnqCEPJzAMMALgF4hVL6ivg6QsgWAFsAoK6uLupxKhS+aa2vwTOPtKNzcALtDUuV20NR9hCvVlyEkBoAewHcD+A8gN0A9lBK/9npPW1tbVTV+lAoFAr/EEJ6KKVtst/5cX3cCeAYpfQMpXQWwD4AX49ygAqFQqFwxo9QDwNoJ4RUEUIIgDsAHI53WAqFQqFgeAo1pbQLwB4AvTBC8zQAO2Iel0KhUChMfMVRU0p/AuAnMY9FoVAoFBJUZqJCoVAkHCXUCoVCkXCUUCsUCkXCUUKtUCgiQRXCio9YmtsqFEmkZ2hSZSvGhCqEFS9KqBXzAiUk8U5UskJY8+38xokSasW8YL4LSdwTFSuENZvRVSGsGFBCrZgXzHchiXuiUoWw4kUJtWJeMN+FpBgTVWt9zbw7r8XCs3peGFT1PMVcYK5tPs6145lruFXPUxa1QiFhLm4+Kou3fFFx1AqFhGK284or/ljFNc8dlEWtUEgo1uZjXJb7XFwRzGeUUCsUEoq1+RhXNMZ8D0ecayihVigcKIZPNy7LvVThiGrDMh5U1IdCwVEKoYnrO4t9LMrdUhgq6kOh8EGcQuMmml6WO3tvTVUlJi/O+BbeYkd5xO1umc/WuhJqRdFI+oMWl9AUMgHw79UpQAAsqMj/jCSc2zjdLfPdWldCrSgK5fCgxSU0hUwA/HsBgCL/M5JybuPcgJ3vm6NKqBWBCWO9JeFB8xp3XEJTyATA3svOnQbkfUYSzi0jLnfLfK/VooRaEYiw1lupHzS/4w4iNH4nrEImAP69Tj7qUp9bN6Jyycz3Wi1KqBWBCGu9lfpBi9rqDDphFWJper231OfWiahdMvM5Bd5TqAkhjQB2cf/VAGArpfSJ2EalSCyFWG+lfNCitjqL7W7w47ZJmoglySVT7ngKNaV0AMCNAEAISQE4AeD5mMelSChxW29xRS9EPW6/wh/F8TDL9PKsjpRGsP3eZjx0S10hwy8KpXbJJCESJioCJbwQQr4N4CeU0lvdXqcSXpJLUm/enqFJ7Osdxe7uEWR0mtjIEB6vcxnV0v/J14/i5/9rAOxJTWsEux5dn+hzwyjV/ZaUSJggRJnw8gCADocv2QJgCwDU1SV/ti+EpIqdF0m9eXmLkYlRUiNDeNjvWWU98fVRLf3bG5YipRFkzBg9ndKycSOUyiUz19wuvoWaEFIJ4B4AfyX7PaV0B4AdgGFRRzK6BJJUsfNDEm/enqFJPLH/iE2kCfJD0JzeG+WEubNrGFtf7ENWp9KkEtn3u90LUS39W+trsP3eZmx9sQ86NVYbSYrsSCKldrtETRCLeiOAXkrpeFyDKQeSKHZ+sWJyZ3UQQlBTVVnS8fBCR2HECKfTGr7bWov7WmoLEskwY9n6Yp9ltc7Mel9br3shSr/4Q7fUoXFltaerpRxXenGQ1EiYsAQR6gfh4PaYT5TzTN1aX4Otm5osy2z7S/1oXFldspuYFzqNALdecyV+dOd1vsYT9YTZOTgBnduv0TTiuUFYU1XpeS9EsfTnBfixDdc4vqZcV3pxkcRImLD4EmpCSBWAuwA8Gu9wkk+5z9STF2egUxqJwBVqwYmTnl+Rlr230AmTzwDUiBFZ4WeDcOumJtdCSTu7hvFy30lsbF4VKlLDrwDzE9flWR17e0fL7t5UOONLqCmlFwGUj+kYM+U8U0clcFFYcFFl7EUxYfr9PNGSn7w442jl7uwaxl8/fwgA8NYnZwEgsFj7XTm0NyxFWiOYyVJQAHt6RnFfS631GeVoVChyqMzEeUZUAheV6yGujL0w1r6fsdRUVUIjBKDUc6LbdXA47+egQu13Ym2tr8H32tZiZ9cwKIBsVse+3lHs7R0tmjtE+cjjQwn1PCSKFUGSffVx9iHc/lI/dEqhaQRbNzW5fu6KRVcAmBJ+DkaQiXVzSy329o5a14QCBU2mQYRX+cjjRQm1IhRJ9tUXYu2LPmVerPjPpZSib2zK9bMeve1q/G7gNDJZinSK4NHbrg58LEHjuvlrAgD7OOEOMpnywst89m6rgXKOhioHlFArbAQVhiQ+jGGtfdGnPDzxOX717nHbxqHMD+x0Dlrra7Bry/rQk1kYK1W8JmEnU154dUqx9cU+1wihJK+w5gJKqBUWbsJQTv7HsNb+y30nbT//tv+UlYgzM2tsHH6vbS2e6TJ8z5mst+VYyGQWhZUa9vvbG5ZCI8QKWczoFPu4SBL+fmBj9YqAmWsU85lQQl1ikiSATsLgZdkF9WUW43jDCNTG5lVWdAYA3Lh2CY5PXAQA6DA2EvkkIZ2ioKQhr3NRSiuVZUM+bmZqAsDu7hFsNiNJ2P2Q1ghACDLZ+eWbLrZPXgl1iUhiESKZMIgp3m5toLx8mcW8ucNMCGzczEc9eXEGGoGVkDN5cQaAkeLOMinZ/wX9Xr/n4r6WWlDz72LfGw/dUoe+sSl0sEgSnVp1TawJPUsBUOm9MZcptk9eCXUJSFIRIh7ZZpSY4u3WBsrLl+l1c0dlbUc1IThZtAsq5Fau3+91mvwASM99ZVqzYqKLSc/QpFF3JUWQ1e3hiOy8pEyLOpudX77pYq92lFCXACZYQYsQFQPeZfDk60c9U7xFX6auO1d2c7u5o7S2w1o74mbiz75zg60NFhNRJ/+3n+/lCz/xk19NVWWeMDu5oYrhOuKvRzql4f6b19qsenFCT4r7rlgUO+pJCXUJ4AUrlfJXhKgU+Enxbq2vwSPfuAo73hoEpUBlhXtSRiEiF3bcfidAcTPx5b6TljtEnERk2Yhe3ysWfiIAbr3WmPz445+Z1dF3YgrplIZMNldAq5DJLKjA8+PJZnWsWbLQ9j5xDyBp924xKGbUkxLqEpDkGGQeP+PsGZrEr949DkqBlI8kEKebO8qlpN/zK4qXuJm4sXkVAP+TiNf3ioWfUhqxTX6ssqEO4NCJKWgaAYHhG97+Uj82O1jZbsfE/i+owM+lcLskbdiHRQl1iUhqDLKI1zh5Nw6lNG9zLcj3RF27I+hmXuPKanz7qyswfuEL3H9TnWVNBxEtt+91K/zEjn/7b/rxweiUkVSTNUSd+bEJIB0HX81v+0v9eYIcZrUS5HokWQjnSsakEmqFRZgHLmpLuFhx26J47e0dxT6uLkbjymrbuESf7JOvH0VNVWXguOHNLbUg5t+y9xw+ecH6dzqVs6gr0ho2t9Ric0ut7bzwG9PEjFAB7IIc9hr5MSaiEMI4r/VcyZhUQp1wSrF55PXAiWOK2o3jZyxRl1glcK+LwURLjNjRCHzFlovHtFkSxdE5OGHzX3+vzdjAE49T9O2zsTCvirg57XSNori3ChXCuC3eueLCmddCneQlG1DcZZtbsoub4LAx+RX1sGNh/y8LXQt7XvgYZQC2gkY1VZVSq1mM2JEJlOwc+RE0UVTYBrNMWNn5qKmqtPVTBABC4LlXEHcIoxtO9VPisHjLZT/Ii3kr1OXguyrmss0p2SWM4DDCnmNxLH5D1/wiJulcvJzBxOczeHj9OlQvrLB8vTKr2fIzm5t+GnGPLWfj8yNobqIihsuBUitRikXdWFpN7Yk4hV5HN4IKoazxQtwWb7nsB7kxb4W6HHxXcS7bREtX5ocVkzL29o6CAEhr+QkQMvxa6bLx8GMRP4cCeUL+5OtHQ4We6ZTihffHAORipycvztiSkfjxP7bhGltstcxHLbtufgXNSVTEcwDAqkHSf/ICtvxBA55++xh0neaFSIadOPwSRAjFsUxenJkTFm/czFuhLgffVVzLNjf3hejeYEkZKY1gT88oMll5AoQMv1Y6IHdl8J8tugSY79Yp0sENMUmHh6WP87+R+Xy9QhCjvm58w4J02rSosxQ6gHeOnsXB4+ew/d7myCeOqHEaS1R7G3NV8OetUJeL7yqOZZvXaoL/PctIrPtyFTreG3ZMgHAau3iO+WxH3v8cppu30+f5Gdf2e5vx+AuHkBW0WqzxQQB841p5011Wr0VWi0O8bvwmZErzru8sfg/fsGDb3U1oXFmNJ/YfwTtHz3q2BXM7f2HurUIEsdjGx1xh3go1MDd8V2HwSuU+cf4S0inNqt/wozuvA2DfbAsb4uX03WG7eYddGT10Sx36x6as1lUA8O2vrrCaBXhlZPYMTeLBXxrCAAB7ukfQsWV9nmsHMCa+E+cvWe6UjO5d35mHnzhZw4KHbqnDj+68DgePn8tbschEMEqr1W89k2IZQV6Fw+YC81qo5ytu4Vp8+coHbq6zxfuGsYS8fOGFfLbbsfhBbF3Fd2DxinfuHJywfMWAUUWOrQ5kJUDTKQ0agWXB69S5JopIe4O8ca1sX0HmVopSML1WY7KqkHydatkYCxmXzE2XVFdmISihThilrNdsq++gU6z2qO/ghZcv3Gs8hRwLPwan8ykTeT/xzoAhnhVmliFgVJjL2/jkSoBmszruuH4FfvfxaejUELAgqxKxcS0TSP7YRTdQmOa2hdTIllWFnMno2Ppin3XMsjR4IPxkInPTyVZA5Y4voSaELAHwNIBmGJvNP6CUvhvnwOYjcTZl9fMgRL3BWorIGtHt4HU+RZH3M2b2HX/UvBKdgxNY++Uq/OXG663XsTRxAkDTCHQzQubR267Go7ddHUiU2Hc1rV7sWF6VIV6/oM1t/dx/bisYMcacANAIsSoFytLgxdDLoPe8eMxzUaQB/xb13wP4LaX0u4SQSgBVMY5p3hKHsDFfKruRO37o/iBEWai+2JE1otB4xVvLJjCvMbMypXyCyakLl/Fq/ynrs7ZuarJKmaaAPBdSELeRGHPslrIuc4UEaW7rlWjktQnJnztWFbJ59WJsf6nfGoOYBl/oPV8uQQGF4inUhJBFAL4J4GEAoJTOAAhXeUfhShzCxupXAIZ1xfe945GJXKGEfYjCun+84q1ly3SZJffNa5dZhZlEYRdFmrHjrUHA/L4/uHaZZUXKXEhhj4dFdfQMTTrGjYsi+swj7Vb8uxeyRKMHd7yL2SxFRYpYm6VOOF3vxpXVUrFnFHrPz4egAD8WdQOAMwD+JyHk9wH0APgzSunn/IsIIVsAbAGAujp/YUcKO2GEzUvUTk9fdv2ZEZebIiq/Nvud27HyscYs3rp59WIrNtrLxQEAD+54FzPmjt/hU/22yIzOwQlp7DVg1NlgCSi/+/i0tfxPacRRfEQ3DRNUZn37jUP3Or9sst7bO+r6evH+29s7ap2LmSzF3t5R6zy4WfVB9h/mi0VcKH6EOg2gBcCfUkq7CCF/D+AvATzOv4hSugPADgBoa2uT380KT4IIm1PyCH/TL69eYHuP+DMjKQlAbtmMbnHIYqzx1k1NAGAlwxw8fs4murLj7RycMDcADcQJy0ofzxip51+/eineNuOYWao5n0hDANzeuNyaBETrnI8O0QFkzO/e3TNquajEDjMnzl8KNKHu6x0NFLbG33/7TGFmnJ2+7Ls/ZhC87vm5nMjiFz9CPQpglFLaZf68B4ZQK0qMKGqyXf7NLbXY3WP4KdMpAgrjxve7ScTXOg5a0jMM7Q1LkU7l/Jx8LLJbHDL/e51S9I9NYfLijKOoOR1vRYpYVqQ4YYnC+XLfSatinQbghjWLsXzRFXjjyBlks8b4DwycxqsfjYMQYMsfNOAv/+h67Owaxo43P8UXs4ZLatYMu2PwLio2Lr7Oh98U/p6hSezuHslZ96lg6fb8vVOR1rCseoEt9T5ILHhY5noii188hZpSeooQMkIIaaSUDgC4A8BH8Q+t9JRqJvf6Xl48vXb5H9twDTp+2I59vaPYdXAYHV3DjskZomXjt6Rn5DD149wM7Q1LbVXisjq1+dtrqiptYrfr4DC233uD6ypBPN7W+hp0bFmPvb2jODt9GVdKVh+icLLY3XRaw+GTF3DoxJQVg04Bq4M3pcAv3hzEqQtfWLVFGBoBQIBsLiwbu0yBZanyfFusB26uw+olCz3vy85Be9nU265bFijdvrW+Bh0/tG9O7jo44qs/ZlSUInIoifiN+vhTAM+YER+DAP4kviElg1LN5F7f6xYJAMh3+Vvra7C3dxQsP4P3N7p9lxhuJVrubgkhfo9VnJCYuLCNOD5eePu9zXicawy7u3vE+n6xs0xWR6iCP631NXi1/5QlsPykxtjLuRNY7O4VFSns/2jctoHY3rAUHe8Ng59B9h8et30fASyx58lkKXZ2DWNf76itwlwqZUzIfNy304pHdO8QIHD2njiZbb+32YiLlhR/cqIQgycpLrlS40uoKaXvA2iLeSyJolQzeZA6HLL6Dk7CJO76E5fvEi12vqRnKqVh18FhS/SfPTiCn4bwVTpNSE4baOyY7r9prSWivJDz/mMgl4ASdDNzZ9cwfvHmoPUzm9R4V9CenlFLe9MawcbmVdj2m/68DcTW+hq01dfg4PFJ6/PW1lTh8Klp23caqeHy8czM5irMsYy/Z9/LCTizkFldkgUV9sQi3lXDj5EQYOz8JakbzI2HbqmzojiY3xxwDjkUS8p6+bX9ZrLONxKXmZiUjYNSzeRe32sJ0myuOzWPkzCJ/kaWcecVVfDw+nXoP3kBTasWoXphBU6cv4SOrmHrc7MB61YwnCYJ8cEEkLeCkCV+sGW6U5Ekv4idyIHcJMdqSrDUcdaFZfLiDDKc3+L2xuXWhHfdimr0Dk0iS4G0Bvztd27AwKlpvNx3Ek2rFuFX7x43LGUz3XyWW8EARsIMexb29o5a/uzZjI6X+05a5xCAq6XcNzZljdGw4gk63hv2jASRIbp/3Fac/HX28msHyWSdbyRKqJO0cVCqmdzre1vra6yECp0a3an9iKTob2SvZ5YaBSwBYcvjmVndqHFMKQ4eP2dFlezpHrE23IBwvkreAhYnHP7B3PJP3blNt4x7/eIoHmixE3lKMyY5WU2JyorchMdqcQDAgSNnsLNrGNt+029t4t7fttbWsYUVf5q+nMEZ0x/evHox+semrDoZBMC3vrIcQL4ln9IImlYtwr9+OmGZ46wc7dj5S9jZNYwDA6fx2senQSm1bUISIVswzGrR74qzvcFeUtbtXuE3hGdm568/WkaihDppGwelmsm9vnfy4gx0SgOfJ6fP3d2TS4rhfaaaRvK+57EN16Bjy3r84o1PjXjhAnyVfAafbMLZ2TWMVz7K+XSJFs6d4ZeeoUlMXpzBv7txNToHJ1D35Sr8hZkaztfRkNWUEGtx7Do4bJ3T2awhuqJbycltwYpF7ekZxf7D43jzkzP4g2uX2Sz5G9cuwS/fGrSKPKU04FtfWYE3zElC9KTMZnR8rXYxmtYszssWDLNa9LviZHsLfvza/Iawbv7sRlJW38UgUUKtNg784eXHDXLT8pmLAGwbZBubV0kf6Nb6Gvzyj9sCfadstcQmHCfLTnRDNK1alBc26PXdQV7HxseE89zFWWvTlQ8bTKfya0rwlfhSGsHZz/ITjUR/LZsE2XnnJ8POwQlkssZYZjJCEk2KoMd0pzB0HfhiNotMVs8Tafb5H45OYWB8Gve11ObFZwP+U9vZa/2uOHm/tttr+TrgGkHeBjFPklbfxSBRQq02Dvzh5ccNctPKHupKrriN2wMWxLKVrZa8JmbRDXH/TcYmlN8u5Xy5zbRZe8LJd82Pj52XmYyODi7ygrkYslkdA6em89wuLF17T88oTpz/wvb5y6sX2L+DUhCNgJgTFQFsLiD+3DBXBczXNa1ahEMnpmyfX5HWsLF5FQ4eP2dt/jKYj12cDIB8/3+QWPkg19/Pa4MYamFW3+VsgSdKqIH5kbcfBfx5CtPlhHFfSy2e6x5BJkuR0oAHbsovIBTF9ZA9hF4TM4sOYCng7Gevh9Sp3CYTXZmw8z5zvpQH85e+3HcyFzZIgb954ZBtjOxcMUuYh5X3fLX/FABDONNpDbqec2UQgjwXEG/18iub9Q1L0T92AZRSaAS44/oVuL1xOSYvzlhiW1NVif6xKVDA0dXBn0exHGmxKzey8+fXUAu6+i53CzxxQq2Q43bDF+oy0mCIRYoQ17jonqFJ3/HTsvjeMO2gHrqlLi9VfOz8JdfsPDH+m+G2ecZbxLu7R2yp5DoMK/bdT3O1PnQKPP7CIfSPTVnnQuyOk+Ks+IFT07awv9+vXYyeoUlrjCw8T4yAYePkQ+K2v9RvVOYzU+kbV1Z7ipAspE5mtReywSgSRhz9GgZBV99R7X+VyipXQl0G+ClUFHTZypAlmLD/F1PJ+YJFfD0Kp/HKMhplPf2cjlk2Bj6V+o7rl1vZg/zEwIRcTM0Wm9SK5Cxiu8QTANULK7D93mb8zQuHLIs7S40Nz71CTLOsO84T+4/YPpP3U/M4FXFiAsZWT4b3hGLy4owvERJD6tIawffa1tos8G2/7sNslroWkgpC0DojQQmy2oti/6uUVrkS6jKAfxAvz+pWAkYUN454AzsVcu8ctBcsciuZ6pTR6PdBdTou/jxksrrVLWVP94gtBpkV7L9pXQ3eHzlvWJ8ePmpe6PlUdcBwS9RUVVqWPd8UVxbTnNEp+jgfcmt9jaO//cfPH7JNJiwG2wn+erFQvKbVi6UiJE52NleHmfnIIk2sAwUFCMHAqemCLEdZnZFSBgdEsf9Vyqg0JdRlQHuDvGdeFDeOeAM7fWZ7w1JbwSLAnsItjlfMaAxixbiNQbpU51peAbBWB73D57H93mbPlYY4MTzyjavw9NvHLLHWKSzfcePKaqRSGrJmpAw7NraRd3nWGPcHo1P4YHQKHe8N487rV+DR267Gz75zQ56//cDAaVsI4rLqBdjZNYx/eHsQIAQ/uPWqPD84v2nZ8d6wdCNQNtmx88esXN7SBWBFjGQi8FezlRpgTJzfbS28EUWhFLrfUsqoNCXUZUBrvbxnXlQ3jngDixY2q7a27Z5m/PfXjuDUBSP0jE/hFj+P3wgL6pJxOi4We+2U1ZfJ2KMdsjrFy30nXdszyTpYMzfHj184ZPmOWQIGAFuGX92Xq7Dlm1dbYvo33HsAQ+Rf+WgcBwZOo2PL+rz06UdvuxoHjpyxjrV6QRp//fwh6/fs306blk6lBGST3WMbrsEzj7TjF298itcOj0OndlcLPwmK8fPsM/1eR/EaFtKIIknRGlF2QAqCEuqIiPtmEjtm+4maCIMs2mDGFENdz8X9it2enY4/TBlMp+NiNadZfWmxIFXn4ASmL81a1jAF8PYnZ62sStGvzx8fHyI3fWkWr/SfsgkuEQSNrRaGz120rG23uN+ZbK7an3iu+IxR0ZcNGFEvosC7ZXbyvxdj7ff2juLAwGnOz07zzrkYZTJ9aRb3P/Wubws7zL6J0/2TlGiNODogBUEJdQQU42ZyEq+owxn5B4bfDNI5lwcBcOu1ucw8cZPv9uuW4cDAaWR05wfbabNQLMjDI/rq+8am8LPv3GA7RwBQt/RL1qafmI7slHTCh8jx0RmMlrol1vvva6lF17FzOHr6M2lcOJ9AxIf67e4eQZMZKierZwHkx46z/5Odu4fXr8PTbx+zwvoAWBuDkxdnrDot7P1iyCJgVBkU9xoaV1bbRJtvPzbj4WIL2qMTyPWhzOrUVlQKcPcLix1y4jSUSp01rYQ6Aop1EaMWZYbMwkynjDhfWUJMSiM2d4IYj8v7XL3inGUhZiwigdXRYA+g6Kt/rnskbwnaMzRpK+gPACC5dGQx6UTTCAjs9S9kXLeiWhqfDdgLJ4mJSNt/048PRo2NReaKcbtXGldW4+Z1NXjPrLiXThE0rqzOO3f8RMOSc7ZyJWCtUgAEOHj8HDabjX5lx3dm+jJ+/PwhKyyRxWazjulZbrbRCHHNhPXbo5Oxs2vYFkkj1vhwcoOJHXJACDLZ+AylUmdNK6GOgFJfRCC460UmzryFyVuFIo984yrbd4ibVAyncLjOwfxuLf/+prV5EQm7e0YBSm2W+e2Ny62JICMpQcqHEDIoBR5/sQ8HBk7j9sblttrOt123DMurF9gsXV1Qs4oUsTpny8ROF99g0lpfg613N+H7T+csTLbpKBMetkFoS+kX9gH8TjRixA0BpNdII8aGJh/KmOX86tvuacaCCsPVo5mTKuCcCSueidPTlx07yrBmwfzpE8uvOq0kbcYRt5nsZBg4uVXiSMaJAyXUEVDqixjU9eJYc4JSI0KLgxVn4i21/pMXbHWM2fGzlG0xHA6A7WFtb7B3a9EpzRMS9tAB9uiEZULXFX64fDNWAFi5aAHGL1y2okBe+WgcB46cwba7m6wqda8dHrcyB9k1nL40ix1vDebSyU3znDXPpdRueVMKa8NNdh3Ee0NMy3ey1IFcWBs/sbIYcUKAr1+9FMPnLuLGtUvwL4dOWoLLLGpifsbmllpsbqnNpdVnDZH/1leWY//hcamlPZul0mqFbpmw99wkRWgAACAASURBVLXUYo9pmac04I0jZ7D/o3Fpn0vRWifE2AsQy6/KVpJimCIIQTbrv9t8nMk4caCEOiLcLmLcG41BXS9OVllFWsM3r12GV81OJWJxJraB9s7R/A06dvzM8nQLE2ut5yqqmRtUTEj4qnzptAadUmSz1BaHy+pqp1LEOr+t9TV5zRF+b0EaZ7QZmxiwmOe1X65CRs+vDAgY7greysvowFPmuFhG4KavrcJLH560VYRzug5eD7iTpc7C2gB7z8QszaWyv2n6s49PXETKbBNTkSLY0Lgcrx0eR5bCSlWXXaOBU9P43cenjfsgZd8wdmq+wFxQsuSY1nqjnVnn4IRVbpVfOYkNhnlrnU0afu5jmZtJ9ow5XZNS+5yDooTagajE1U9rLa/vEV8j/hzU9SK+fuumJvSNTRkFf1Yvxpuf5MLF+OJMT+w/gnfMrttuGXB+HhRZRbWeoUm89ckZo4aFRvCDr6/DP7xzDFnAyrFmURJ8HDGzvppWL7aN5eiZz5EiOesS5t9vf3IWqRQxEmMAW1TE95/utOpfMzQAr5kiDRiujmtXVGPXo+vyrp1TaCM7F6zTCnvNtrubMHb+klU1jsHKnt5nWsF8+KCTH52VGNF1ivELX1hJORkdNhcRu0YsioZ1bt9+j7FX4Kv5ApccI8J//q6DI7aVE3/PyMSWv/e87mPxXpON1enZSIK7MghKqCVEGcXhtWvtpwqc2HGFFfN3W167Id304iIRZGFVrfU1+NGd10n9q27wyS9uDQLEc0VA0X/ygmP/RDGOmLkeRMGz6jUT4Kplv4ejpz8zLDzzF2mN4OH1huC+MXA6T6QBoG1dDbqHcu20+M1DUSjE1lescQABrGYAbEwzGR2Pv9hnuVaszydGR/OmNYsxcGraluGXThmuqqxkCyGdIqBm/ZMVi64AkMuOzJfT/PM9eXHG1/KenXsW07+3d1QawbOvdxQtdUusmiaVkntG/L44w03Zd7PJ0+93JSGOWwm1hCiXRW4zt5/vESMqeN8pHyoV1H/Gv170OYrJE/x7wjSLfXj9Oux4a9CxQYDTudrYvApdgxPWEpu3UJ3Oq6wCHqNCy5errE5tBfhFNAJcu6IaH56Ysnz62+9ttgmSGFLYWl+DHz9/yNY4wImsZKCaRqyO5nw9EAJgQ+NyHDhyBlnd8M3e/bVVmPh8BhubV9lWKABsiTSbubhfsSdmUKtS9A8/1z2CbJaiIkXQsWU9AODBX3Zaxy92uHHD730cdCPQyQ3nVXsmKXHcSqglRLkschM3P98jpk3zNShYqFSh+D3enV3DVlYgs2C9btqeoUlzBWD8fHnWCNkC8n2KMuuHLbEpgG2/7rNFgMjOK2/R9o1NYU/PqFXJ7mOhqSwAy9frRFozIj6aVi/OS/92e4hl/mYKo2+isfFlbLYRQmxCzteblu0hXFm9IFdGlRoumCc4seGvh6z1mjjmMMW8+Ov0wch5KwqHNQJes2ShtREMANksxZolCyMTuLDiGcYAS4ov25dQE0KOA5gGkAWQoZTO6Y7kxYri8PM94nKabeqxUKkwYwvS6Zm9dvrSrJUI8tYnZ63QOz6yw2kzh7caKYBdB43QO1ncq2jpW/UnTDHjI0Ae23CNp4+c1UR5f+Q8XuXiu/3AmtcCsGVEshWB20PMoh9muHGzv396T7OtYh3/fSmNYH3DUgyMT9v2EPgMzH1ChqoTMutUHHPf2BTWLFkY6Lzwn/1jLt2dHUN7w1JUpPM7wkdFWPEMY4AlxZcdxKLeQCk96/2yuUFQV4ITXrO/n+/hX+OnpVGY8cjGwb9WhCVZdHQNY48k3lnc2ed9v1kdyOry8pe81X7hcsZW2xmUOtagFsfNb4g9tuEabPmnbttrrl9ZjWMTn0tD4hgpzR4/LQoDC9cDpbbNQ5YZuO2eZrzcd9KWaZjVYWVU/vj5Q5Y1zWdG/urd47asQjF9vBAjQnRb7DEnTD7JKMhnit3tm1YvRufghBUCSWE0LvC7Agt6DEHEM6zrLgldpxLn+kiC4z5Kol46hZ1A2HkdO3/J93jsm01ynOKdRav2zPRlHBjIhbcxK5kPu9vZNWwVIbKs9lSutjMbk5PVX1NViQMDp60QL8DomL7tnmYcOHLGen06RfC337kBA6embSVLNWJuRuqGn/iRb1xl8+UyUZ++NJsXMfHw+nXSZrVbNzXhXz+1ryreO3bOSOjhNgk1s5YKmwD57u+iT9/pHvDz7PDCM3b+EjreG7aSjJ7pGsaugyNWvLPfz2MuFj55ik3YQPg2cU4UIp5hnp+ojLZC8CvUFMArhBAK4ClK6Y44BpMUx32UJGHpJKbbahoB9VEgXhw7s/KaVi3C9OWMLblFZu2K13ObbMnPRTzsOjhs+34W7UGRE2hx80dsSisymzXStvmKd/e3rbVcF/xbdGr4jO/46nJsaFyO7S/1W2nuX796Kd785CwoBX7x5iB6hyetVYJOKd7lY9PNsbN6JD8VGg4cPf0ZHje7cjMWX5HGhS9mjdPB7UXMZuRRFSJBnh1+c203554BjMiUx180ro2sJgn7LtkGqiwRBkAsPt4kiGcx8SvUt1JKxwghywG8Sgj5mFL6Jv8CQsgWAFsAoK6uTvYZniTFcR8lpVw6sQfqBGdFZ7JGU1UA0hhYHq+xs0w3trwVN6XE68miSZ58/aiVQZcxq8rt6x21FdsHcj7bPQ7+bPE7ZLDNORZWmEppoOa5kaW+Z3WK1z8+jWXVC2xp7mKhJFaLg/Hh6JS09dfu7hE037MYN6xZbNX8AIxYZ43kNjLPXZwFANy8rga9I+dz4ydwPX7ZeZiZ1fHE/iOu5V1tXyCMPKtT7Do4LH0W3SYEt0icUvt4yx1fQk0pHTP/Pk0IeR7AzQDeFF6zA8AOAGhra3PZR3cmiPVZTi6SOGd/P+Uh0ykNmuFKheFSpba61m5j8xr7XrMIj0xEnGKoa6oqc7UoYFjSWd0uFwTAXV9dgfELX1gRELLJWya2PBTAP7xzDLc3Lgdg1LV49r1ck1tWhH/XwRHLPZE14535NHevG9rp95kstYol8WiaKZDCG09PX7YsbZaAxI7frXIdf651GK6jrmPnrOp1svuExUPLWLHoCtuGJp+04yTgnYPy0qZJ8PGWO55CTQj5EgCNUjpt/vvbALbHMRi/1udcdJGEwe088A9UJmsIJcBCvWC5LE5wBXCC4rUCaq03Cv2zVHG+bjNLTDHGIhc6lrJNkd8lhhceVmfkWVPweSgM/+srH40jRYyfxbTx1voaLFqQtqJaKAyB3H7vYjxuuixSZjJJltozHb0Q66TkBkalq4Ab1y7BqQtfWAK5vmGpZYnrFHl1p/lz/cwj7bZqfax6HSD3E7c3LJXuPaQ1o6EBq57HZ47yzXvFjM5CNszLyfAqBX4s6hUAnjcedKQB7KSU/jauAfm5qHPRRRIGt/Mgxl8zsdB1igduNlxTu7tHbNZlQREEDqI/eXHGKvrEYqg3t9Ta3sf82/yGmsaNWUOu5kjn4AQGTk3byrGyEEEKoMOsLUEAm2sBMP6d0gg0s9ocL3rVCytshYxYzDRru5XVqb2RAAGog1pfv7Iaa79chWVcVT6xcwql+eMDgN/2n7JZpZ2DE7mSpeb5FOFFrklwsVC4N5nVNCOmm6elriZvT0Dc5+Cb97oVafKDMry88RRqSukggN8vwlh8k4QNulLiJ7NMFn/NZ6l1Dk7kFSWShec5WTn8UpdVopOJfnvDUqRTmlV0iPVZlBXUYUkqbMnPj9kqDJXJL8fa0WV879ZNTVhQkTsff9i0Ei+8P2Ybd2vdEvQOGw1vt/2mH31jU7ivpdaI/U3lal2/9clZvMtFazBRtsTcFH0CmrciOHxqGscmPrfOAwupFK/D1k1NeN2MUuFbfomZofwxife6LIGlMkWs6nVHx6fRfXzSGh8fZSPGuDPeOz6Jg8cnbXHyvFGQ1SlWcwkshT6PYvatb//6PCJx4Xl+SEpsYykIklnmFX/t9nDxXTfEEpXiGDa31DqKfmt9Db7bWmtZuqxmBxMiNqb2hqV5n+nUdJdl6zFfO7MU+ZKcNVWVVvQCg6WDd5u1J0SRF721WZ3aLGcCoH5pFYbPXbTGcf/NdeganMDRM5/b3ssXwHe7DpMXZ/AaV2ZU0/Kr0Yn3ulMXHnYOOrasx16znCm/6Sk2meUFFuYKhiE7P36MgkJiu9n1lbVPm++UpVAD8y88h+EUSeGFeL7cHi5W0J1tpIklKsUxEMCymmH2HOTrT9trFOc6hIjCLC6fa6oqrb/55JJ02ij4T2BsDmayOVcGHyomWot3XL8CTasX22pKszC6XQeH81wAIEDjimocOf2ZVXb12hXVGJv6wvLRbjZdLqJQ811l2DmVhRiyFcdsxjnblL924iZxluvCw6xldo0ywvGkNGLr9SdbdYkRNLJJ0MsoCAobxxP7j+DtT846xuPPZ8pWqOcrUdchcQr1EkUuq+eas4pjaFq92IqBZj0HWcIHS3oQy2LKxJ6PEPlkfNpyW7z1yVlUmFXjiEag67pV8P8Ht15lJYfwBZ/ETbcUgRUbnTVD49jGIgWMAkgabJuRlBpujLQG3PHVFTgwcBqvHR7P89ECRlswXhgphTUeQL6Zx7q6sKJLKQJb2y0Z4nnjr9Lt1y2zWct8GneKwOrOwk+iMmu/pqrScmfxsfFxGket9TXY2LwK7346Ad1H9ul8Qwl1meFnmVnoDjpL++ZD3iiMMDomTqJbQhZtwSc98GUx2ft4sWeFj1iEyK8/sPuWrVRrSm2f33/yguWvnjWjHDoHjWJBPA/cXIfJizOWr5wKkXE6NfzOQP5GYUYHLs1mLfcO89ECOdHbtWU99vWOWk1vxeOXJYKIbcP4Uq5u18bJXXEl1/2mtd7IGORT6QH3LEFRiMUmEGHwey+KmZ5bNzUpa5pDCXUZ4mbZRLGDzsLqXu47ibPTl3HYrDqX0YFfvPEpfvnHbXljYBtxDL4gP5DvD5dNOJ2DE7au4DwVZvcRMQuS70GYSmlWg1Zxi6xp9WI0rqx2rEQIcMJN8+ta80kzrK6HeJ43t9Rid/eI9R5+406MjnnqjU9t58upvyQP332cZYj+wzvHMGuWGGVizIsjE1tAHiXE/l+ssOeUCeqGrMGF33vRXq6ASqNb5jNKqOcYUYQuMutmJsPir3PsPzyOnV3DtkJBrfU11gYWi9jwk/Qgir1YMChrFshPpwj+q5l+3t5gtI9ihZsmL85YG6onzl/Cs+8NS2Oc2YPPwviaVy/GT37dJ60VnTLbQrHynRoxwvfY5LWxeZVlnfORCmu/XGUrssRv3PE9JZ99bzgvEPtrtYux9W5nK1KWKv/upxN45BtXoXphhVQc0+akxopliRuCsskG8Febw02UWc1u/hx53YvzPZLLCyXUcwxR7MZCJLSIERa2VlYUto1F/oH92XducPxMP/5N3spmBYMAoxM32zRlk8jlWR1vfXIWGoFNZMQu3oDxe1GU7mupxbNb1uOpNz7F4JnPMHTuorkpaXRZv6tppVV4P53SbJttXcfO4bbrliGd0qwuM6y9F+8qauZag1kbfHp+oks6RVxFemfXMP77a0fyus9kdIodbw3ib//dDdJEJ7FYlrgh6GRhe4mrOBl8t7UWhHufTo3N5+33NvsW33KJ5CpVYk6ihFplJxUOu+FlPQX9ZoexTtdsaa5psJI0ACNphj3UMouskGvIBJ1ttMlSmHnfOS8o7Q1LrUauDI0A2+5uklp3j224Bjv+2Citzocj/urd46hb+qXcAVOKvrEpmwW9/6NxVKQIGiTtvdj39o1N5XVfF9PdWS0SJ/iKgjJ0YeIUk5DEYlnihBmmNocY99zRNYyKFDFWX+Y503V5B3M3kh7JVcrEnMQItcpOcido6yFWx8GvC0Q8/7c3Lre6kYMCd12/Ar/7+LRr1+19vaOutT+C4GRh8XVCGCw0T7apqVNjE/T+m+qkAsQXrtLNkL3ZjNGpnO/XyKJSmMhSGBbtsTOf5Y1dI0ZnmN1mJEhFWrNqbvCTKLs+H45O4ftPd9qiQdhxv9x3Mu/zbzZ7ODLLPKtTW5KIn+7cbufYS1zFCYedo29dvwKvC/eIl/iWk3FWyozoxAi1Sgt3Jswk5uTzc3ow+PN/2Vxi8xlxstoPgN36YkkShfrH+e8Q3y/WCSHEWGpv+3Ufbm9cjpRmbHryfDA6hcMn+/CDW6+yivG31tfYrGiYtahTQN4mJYtKYdUCWdgaEaIugFy6+8KKVK5FlTmJ8eFw97XUSuOGAfsq5Q+bVto+P50i+IuN12Pg1LQV605hL8LEw69QeOte/L3sPU4wgefPRUVaw3+87Wr8R8k94kQhxlkpBL6UfvTECLXaTHAmzCQms5a8SlTyqd4HBk5b9aPFDUCn7wC820Tx7hW+vRSfdMFqQPPZkAynGiYzWYpXPxpHRVrDXV9ZhsNjUxg9/4X1vpms0cRWp0CXKYh8Ug+oUXfj219dgUdvuxqt9TXSbM7W+horkoJvjaYDlr/8R3deh71mMSSGuApgccP/asYNaxrBifOXrBWJTo3sxpc+NCxqAuCmdTX4i43X24T0xy8cyqWfZ3T8t5cP4/3RKesaMOF+cMe7VnRIx5b1BYsbG4MshM/vZ4c1zmT3Mfu8OIW7lH70xAh1uWwmREUQiyDsJCZaRjbfolCzuLU+P9XbT9aj+B1u15A9YGxTjHVwASHIZI1oAT4b8vEXDN8sP1nw9wkv7NYSPKvjxrVLQACbUAO5AkgzWWqWVs2P+Bi/8IVjVAo7Bv74xCQR9ol8NiYfOsd/ztYXD1mumtksNXy9aQ1pLWeps/NBANzWuNw2nsmLM3mFofiUcWbJs4mMHfte07qXwR8f4N5Rp9AkGK/72s/qL2qXmxel8qMnRqiB5G8mREXQJV9Uk5hVU8G0AN85aq+pcJ+5tA8yITh1+5DBNgIZFCyRhcU92yNMshT4G1Osxf6O7PMeXr8O7w5O4KOTF2wZbSfOX7J995qahTgxmfu/FYuuwIKK6bxIisq05nqsTv0md5ptrFgG5zOPtKNjy3rHa7a3dzTPRcMmmgdurrMSjNjJ0JFf4pSvkeEERX5MulO7CN4VxE+gYjZlVHtJbve1LNyPra5EgY/C5ZZ0EiXU84WwrowolquspsI7R8/mfX/QCSHIQ9szNImx85fySntqxEgMYbUzvrZmsc0qZEYvn3Uo1qXgeyuy5qrNqxdbVeQqUgSP3X4Ntv2m3+Zzv71xOX7+ygDOfZ5LrrhuhXMKt9N1E2ujsIJMsi7pDJlYsiQh5k4QAljykkBa643sw6fe+DS38ctRyVnyfAPazYJ1D+TXd5nJUhBQm/+cbVL7SZqRITYddpvY+e9h4X4ssiWMy63cUUJdAqLwx4fdTGmtr8GP7rzOtlEmVkKLysfI+6OZsKbMnUCdwvJD875gAPj3T71rc0sQwMo6zOjUVuYUsPdW5Pv8bbun2Sqb2riy2mrCyr5n22/6bdZoRYpIRYzhdN1YRiVDrIAno2n1YiOpx6xO+EMhcQUwmhXwIX+ypgGt9TXY8cdtljWsUyrtKM4fuxhZwgSYP4aUOYFmMvndeTSzbotT0gz7TtGN8uAvcx3t93SPoGPLeuv8ifdxe8NS6zoDuZBQJ7fUXHebKqEuAWFcGeJNX8jyM2pXikzwxaWr1eVENxoXrF6y0NpQBGDzhf/03uY80aEAnjU7ZrMyp4Ah1swS5ZMuZjNGY1nmJ95tCgP7HlbsnuffrF1iWYhO52Rzi5HcwYsgvxHLEma8LMvtL/VD143jk22aAsC6pV/C0dNG+J+fpgG7HnV2tYjvEe8f3o3CXA0AbN15AFhFrVJmPQ5ZfDoAWwgiq444y53vWbNXppNvubW+BtvZfcCF+zmRBLdpnJEoSqhLRJAby09J0KA3RpSuFK8NH0qNjD9Wz2KzpEAQX1f7oVvq8iIu2LKZL7rPOprz0SN8kszZ6cuOm2jtDUsti5bRM3we3UOT0smvZ2jSFjkhWt7M8qPU6NF4V9NKV199rjiUva4FS/RhNUsYWorg/ZHz2PJP3biyeoFjkSXZ5q+f++exDdfkXcsnXz9qa9Dwct/JvHGLkzWzsPmkHlYdka/mV2Fmcbrdx7L7IKnEnQeihLqE+J2BRRcDS77wEwYX9w3uJPi8hcayGtNcVTS+fdPMrG5ZbrJNQ/Y9flYB/Gv2CSFyvF+4tb4GP723GY+/cMho0WU2/XUSjb29ozbR3/6bfivtu3NwwlbL2iuyQiZuT75+NC+KhUc3ww8Zz3WPoGnVIscWWzx+7x/xnNdUVVruJZ3mF6Zi10FMSxczL8U4dOajBuS+5aiiSopJ3HkgSqhLhNMMLBNY8cFmN71XGFwpszz5jUuW1MFbj2I8tO4ikvxnAnB1T4gP9nNciJxoBfMWW01VpbXZyFe9Y4ibf3w2YXuDvfYzYNQcuY9zjwD5DXlF/z3vIuIRK/kBRrr6h6NTVi9Ft72OoPcPY/LijK1fY/XCCs/iWgOnpm3jv+urK3B743LrPX8n1IMJEuufZOLOA1FCXSJkMzDLNsvq1Cq67xaN4bW0LnW4ktvGJX9MvFiJTWd5wjzEhPvjNEYmEHxtD5HNLbXYzRV84q3YxzZcg44f2juAs7rb/MaazE3BrywAaomyZpTpMP9NoFEqDefTiJEJ6dZjMOj9w2hvMPpIzmYp0iniy8LlM0c1AiyrXmDb4PWqgV1oVEmp3CRR7fs4oYS6RMiWv7IQL6ddbhH+Jk1SlqfbDSweE5uk+E4tPG7hcU5+cpZizTavZOewZ2gST+w/YqvtIYps5+AEtt3dJO18wo5l691N+P7Tnba606xyodPY+WuVSmmGrztrRD9T5vc2N2ApgLPTlwEYmaNsDH4awYZ2IQidebwoNMbZyeftp+xqqS3xON00SqhLhMy3FzTEiyG7SWXiGJfFEcXnTl6csRVFkj3QsgkoSFo864Au2yS0KgUS5PlLZQ0C9vWO4vT0ZZsfvHPQuSu70+TJ3wd8PW1KjcgK9jcAmyulGNYj25hliTh+4/0LiXGWPRd+hD4pq8i48C3UhJAUgG4AJyilm+Ib0vxBnIHF8Ci/N5rsJuWTLVjEBItD9vKJB8HLkvFr6fhdBYjhcbzrQHxAW+uNtPidXUZd60w2v9UVv0kIADessRfwl53b9oal2N09Yr3vue4REMA6t/dJurLLoioYvPtFjGzpG5uSlquNe5OtZ2gSe3pGc41zAxgOeSslruGCnzHLnguv+yJJq8g4CGJR/xmAwwCci+cqQlOIj8tPPLMYLsV8f4UuF3khuzyr57kX/Fo6XscvCzFj2Y6sNobsAV20IHeLy9KwxQV985rFtu+WndvOwQlb6NxsNpf6zixQt+YN4maobJORD5ELUq7WDVlmoBOdg0aZXHaOvte2NvREznzUB4+fk7q03PD7XMTtIy41voSaEFIL4N8C+DsAfx7riOYxYa0kt5uUj9kF7L35olguerkXglg6bscvjnVv7yj2mckS6ZSG+29eK42yePrtY9bPBPlJI02rF1ubX3xkiJt4AvYekRUpAgJYk8V9LbW4r6U2r3nD1k1NeRtrgJGxx1e742Oho7IUe4YmpZmBTud7+tKsdc4WVOQmxqBC6Pcec/tsv89F3KuMUuLXon4CwH8B4FgIgRCyBcAWAKiry8+yUsSL000qblZ9t7XWJmjpVO53YUSAuRf4qnui+yFo/RCnlGJesPgsxGxWx5olC6Wbj7a0aGH53jM0iW2/7rOlorP/d0skaa2394hk4i6Om1mlTKRYwggvWmPnL1niOZPRbfHZQc+fm9h1Dk7kZQY6ieb/8y+H8Ys3B62fH16/DkD+hCI7ZhE2kbvdY0nYCEw6nkJNCNkE4DSltIcQcrvT6yilOwDsAIC2trb8+CZFSXB70AdOTSObNa1tSUiaDFlTU1YUiVmULIGDD+fy8+C5PbCyTSpZqy5Z9MuMmeTxra8st32f6MLIZnMtxrysQNkxiT/zdTFSKQ0LK1J5bppfvPGp7T0fCN1enL4ryLkDkBfrXZHKn7RYqORTnEgDRkPj6csZ24Ty1Buf4s1PzvgTV5ewR2DubwRGgR+L+lYA9xBC/gjAFQAWEUL+mVL6H+IdmiIqZA86q5bGdEq20SYiigG/lGfuh+bVi13jZt3wemDF42BdRnhLWLT6+NZX+w+P481PzlhjMtLIcx1h3PoGBl32M99sVmex0RT7D4/nuWmWVy/Ie28YF4Gfc9fxw3apj1qsyyLK6eDZz9Gw7Pds/zd+4Qvf0RhOYY+Mub4RGAWeQk0p/SsAfwUApkX9fyuRLn/8hAPKKqzxDye/lGfuB75Iz0xA6yjMA7u3dxSXZ3U8d3AELXVLbFbfvt5R/N13bshzQfBj0jQN0I1Nv22my6FnaBL3tdTaUp35Oh+yzjey88v89joFkKVWmBvvpmGJNGwT0i3LUKw3wvuY/Zw7J8ucv64ARUooRQsKXFm9wFY29v6b6jAw3u95rfyOK2hkSFIoVpKNiqOep/BuAVk4oFuFNfbQiX0F2xuWYuDUtK0+hFOWoYyg/uzOwVxdiYxOcXBo0vZ7pjVOYsFHNsBMb+fLhbJQO7HOx+Mv9oEKdUmczi+L/AAhVs1tXqyYpcvcDm4TgDgOVk+EiQVf2KqQqKGtm5pwYOA0Xjs8DkqByorcBil/bfwUTPJzTQuNDCkVxfStBxJqSukBAAdiGYmiqHg9QPtMS1VMlRbfIz6snYMTtvoQstKcDJk14uaPFV9vuC6Ire9hiovgYNaw07F6Zoeaxy2G8LGKe7IUZ/7fQbqB+9kkZFmJDILgYuF0znk3UuPKajx0S53ja/2O2+/reItebBGXZIrpW1cW9TzG6QHqGZrE7u6RXLJDyp5J5/awtjcstXUvd/LvhhEY2eu36kbhoQAADsZJREFUc7Wrmd+cNQvwOlZRwDsHJ2xlTzWScwcx90TKDMXLZI0NQj7FOa3lt68So0WCwh93WiOoMJsJ8J1g/IqF1zlntaH3CYk1ss+Jcrlvre4cWsQllWL61pVQK/JgG0CAYbV9t9U9OYJHFp0hE4egAvPE/iPS14s1i4Fclxc+k89tvPzvF1QYgqFpueL5nYNGnQ9W/3rbr/uMF1OK/rGp3Li4/o8yyzCIwLHXfjBy3lrZZHWK+2+uw5olC22f4Vcs3M55kHjnqJf77J5xahGXVIK66gpBCbUiD9FSEDtoe8GLn1OKt19rRMysFGtx+P0+v+P2mmTEKAYxCxGEIJPJtwxln+Vl+Yp1qVMayUvqCSIWbufc7/WIa7nfWu/eIi6p+HX/FIoSakUeUVoKTgkPfr+Dj57Q4F3Ss9DlqJfoyyYxfpMNgNQyBPxXkROzSQFjZXP9Knn1hiC+Yrd6I36uR5zL/WJaqOWGEmqFlEgtBYeEBz/fIQqD1yZT1JOMKEpOn89/j5Nl6DcLVPTZss3ZDyXJMEFxO+d+rkfcYlosC7XcUEKtiBU/CQ9ueAlD0MiRILiJctDJwqsxgdP7a6oq8XLfSatLThJ8t0pMi48SakWsRLFUdos+iHJjK0rRF98nTlj7ekddrVL+/Y0rq9F17FxBNVmKRSm7rMxllFArYqXQpbJXoaGoNraiiEd2w5YAk9KktcFd8WmNlxJVXCk+lFArHInKOgprlbo9+D1Dkzhx/hLSKU2a8ReUKOORZfATFuvk4neCKdR9VCz8nENlcYdDCXURKaebNG7ryM+5cHrwxSSQB26uy2uxFZQgLpqwljybsMROLl5Fn5JUtMjvOGUNE5TFHR4l1EWi3G7SONNjw7Tn4h98fmxZnWK1pBZ1UIJsWkYRAugnKcjv2KLCa/L0um5snGLDhDBJTsU+tqSjhLpIRH2Txn3jycQoTGZdGN+y2F1F1inFrfVY2PMSZNOyUOHkresn9h/Jq6vidD6inCzFqBSvyZMvgjUz61ynu3NQXq2wVCuDcjOSZCihLhJR3qTFuPGCWn1+x+fV51D23jVLFtoe/MmLM7bwNZZQEmSMQZBNLHzz4LDwxyorcerWlDiq7+UzLr0MiZqqSisJR0euXZeI071eqoSWUlryUaGEukhEeZMW68bjLcwgqdm+fMsOfQ5l73VKPAHswry5pTaWVUtNVWUsliB/rBqxZ126NSUudIPO7zkWmbw4YyXfAMDTbx/DXU0rpVa1V8f1YpIkH39YlFAXkahu0lLceEG+0+m1vEBkHPocBskGFAWHwH+BIi9k3WzC1Hp2wy3rUpZGDgAfjJwveIMuyDkW38eXldVdIlCSlBRTKks+SpRQlyEytwTfo7AY3+n2PU6vramq9Gwq4PRe2YMvCs7mllqr9GfYc8GsU9Z0lne38CVLo8DtnPLHRjQCXafIUuCVj8Zx4MgZdPww/AZdkHMsvs8qK6tTVFaUj3XKT4D8z+UCoTEE0Le1tdHu7u7IP1eRTzltlDz5+lH8/H8NWP7Y//x/NBYsflFutIlhf3xXljiyHr1eyzq+jJ2/hJ1ml3fAqP3x4C1GudOaqkpsfynXEqsY19/pWIqx6VnI5yT9OSGE9FBK22S/UxZ1kYgrSqOcNkraG/KbChRK0CW232gUo/bz2rzaz2EIIhKy1wLA7u4Rqw1XKkWwp2fUalAQh1vGDdk5j0MIo/zMcnpOZCihLgJxzubltFFSal+h13WQlTCNK2okyEbsYxuuwbZ7mrHr4DBWLLoCy6oXoIPLbIzDLROUOIQwys8sp+dEhhLqIhDnbF6o+BU7EaCUm0xe1yGuicSvSDilxfPNXwfGp13jyP0QxzUPcox+vztKcS21kVAoSqiLQNyzeVjxK8TSL8dMr/YGeRMDnjgmEj8iwV8LTSNoXrMY999Uh9b6mrzQSD6OPOj5j2t1F/QY/Xx31OKapEiUoCihLgJJnc3DWvrlsDEjY+DUNLJZI+RNpxR7e0cBFCcCwEsk+GuhZyk+HJ3CwHg/GldWO4bThRl33Ks7v8cYJEKlHO6tuPEUakLIFQDeBLDAfP0eSulP4h7YXCOJN1xYS78cN2Z6hiax9cU+mPtxyGQpOrqGbR23o/qeMBMyuxYswYVPJ39swzWxdq0pFuXuJy4lfizqywC+RSn9jBBSAeBtQsjLlNLOmMemiJmwln45PnCdgxPQhVDUqDumFLLSYNeCpYyL6fVRTfSlXN0ldWVZDngKNTUCrT8zf6ww/yS3enkJKEd/LSOMAJTjA8cml5mMDkIICCgoze9oXgjiSmOvRxcXEXYtmlYvxst9J7GxeVUs57aUq7skrizDUszn3pePmhCSAtAD4BoAT1JKuySv2QJgCwDU1dVFOcZEU67+2kIpxwduc0stiPk3gFgjH1KaPdbZ733BR3gcPH4OjSury+48zweK/dxrfl5EKc1SSm8EUAvgZkJIs+Q1OyilbZTStmXLlkU9zsQi89cqwtEzNIknXz9qNIKN+HO//3QnnjXLpALGRBNFBTwettL482834ntta/NKffohafdTXNek3Cn2dQoU9UEpPU8IOQDgDwH0xTKiMqMc/bVJJE4LpZibn2yl0TM0ib1CFxc/JOl+mq+rRT8U+zr5ifpYBmDWFOmFAO4E8N9iHVUZUY7+2iQSp5iWQvzC3hdJup/KMbqnWBT7OvmxqFcB+EfTT60BeI5S+lKsoyozytFfmzTiFFM/D9XOrmFrA++hW6LZYwl7XyTlfkqSdZ9EinmdVPU8RWIoVfTMzq5h/PXzh6yff/adGyIT63KnnCOayg1VPU9RFpTKkny572Tez0qoDZJi3c93fEV9KBRzmY3Nq1x/VihKjbKoFfMeZj1H7aN2Q7kUFEFQQq1QwBDrYrk7VNibIijK9TGPUckMpSFpSS2K5KMs6nnKfLLqkuZmUGFviqAooZ6nzJdkhiROSElKalGUB0qo5ynzxapL6oSkwt4UQVBCPU+ZL1bdfJmQFHMblZmomPMkzUetUMhQmYmKsiAuQVVuBkW5o4RakQiSuOmnUCQFFUetiJww8dkqtlihcEZZ1IpICWsZl2LTT/muFeWCEmpFpIQNhyt2FIpytSjKCSXUikgpxDKOc9NPtJ6TGl+tUMhQQq2IlCTGZ8usZxVfrSgnlFArIidp4XAy6/mxDdckbkJRKJxQQq2Y8zhZz0mbUBQKJ5RQK+Y8Qd0xKhpEkTSUUCvmBX6t5zijQdQEoAiLEmpF2RKH8MUVDaLCARWF4CnUhJC1AP4JwEoAOoAdlNK/j3tgCoUbcQlfXNEgKhxQUQh+LOoMgP9MKe0lhFQD6CGEvEop/SjmsSkUjsQlfHGFF6pwQEUheAo1pfQkgJPmv6cJIYcBrAGghFpRMuIUvjiiQZIYX64oHwLVoyaErAPwJoBmSukF4XdbAGwBgLq6utahoaHoRqlQSFCbc4q5hFs9at9CTQj5PQBvAPg7Suk+t9eqxgEKhUIRDDeh9lXmlBBSAWAvgGe8RFqhUCgU0eIp1IQQAuB/ADhMKf1/4x+SQqFQKHj8WNS3Avg/AXyLEPK++eePYh6XQqFQKEz8RH28DYAUYSwKhUKhkKBacSkUCkXCUUKtUCgUCUcJtUKhUCQcJdQFEKbbtkKhUARFVc8LiaqGplAoioWyqEMiKwqkUCgUcaCEOiSsKFCKQFVDUygUsaJcHyFR1dAUCkWxUEJdAKo5qkKhKAbK9aFQKBQJRwm1QqFQJBwl1AqFQpFwlFArFApFwlFCrVAoFAlHCbVCoVAknEDNbX1/KCFnABS7u+2VAM4W+TvjYi4dCzC3jmcuHQswt46n3I+lnlK6TPaLWIS6FBBCup0aQ5Ybc+lYgLl1PHPpWIC5dTxz6VhElOtDoVAoEo4SaoVCoUg4c0mod5R6ABEyl44FmFvHM5eOBZhbxzOXjsXGnPFRKxQKxVxlLlnUCoVCMSdRQq1QKBQJp6yFmhByBSHkPULIB4SQfkLIfy31mKKAEJIihPxvQshLpR5LIRBCjhNCDhFC3ieEdJd6PIVCCFlCCNlDCPmYEHKYELK+1GMKCyGk0bwu7M8FQsiPSj2usBBC/pOpAX2EkA5CyBWlHlOUlLWPmhBCAHyJUvoZIaQCwNsA/oxS2lnioRUEIeTPAbQBWEQp3VTq8YSFEHIcQBultJyTECwIIf8I4C1K6dOEkEoAVZTS86UeV6EQQlIATgC4hVJa7ES1giGErIHx7H+VUnqJEPIcgH+hlP6qtCOLjrK2qKnBZ+aPFeaf8p15ABBCagH8WwBPl3osihyEkEUAvgngfwAApXRmLoi0yR0APi1HkeZIA1hICEkDqAIwVuLxREpZCzVguQneB3AawKuU0q5Sj6lAngDwXwDopR5IBFAArxBCegghW0o9mAJpAHAGwP803VJPE0K+VOpBRcQDADpKPYiwUEpPAPg5gGEAJwFMUUpfKe2ooqXshZpSmqWU3gigFsDNhJDmUo8pLISQTQBOU0p7Sj2WiLiVUtoCYCOAxwgh3yz1gAogDaAFwP9HKf03AD4H8JelHVLhmC6cewDsLvVYwkIIqQFwL4CrAKwG8CVCyH8o7aiipeyFmmEuQw8A+MMSD6UQbgVwj+nbfRbAtwgh/1zaIYWHUjpm/n0awPMAbi7tiApiFMAot2LbA0O4y52NAHoppeOlHkgB3AngGKX0DKV0FsA+AF8v8ZgipayFmhCyjBCyxPz3QhgX7OPSjio8lNK/opTWUkrXwViO/o5SWpaWASHkS4SQavZvAN8G0FfaUYWHUnoKwAghpNH8rzsAfFTCIUXFgyhjt4fJMIB2QkiVGWBwB4DDJR5TpJR7F/JVAP7R3LXWADxHKS3rkLY5xAoAzxvPDdIAdlJKf1vaIRXMnwJ4xnQXDAL4kxKPpyAIIVUA7gLwaKnHUgiU0i5CyB4AvQAyAP435lg6eVmH5ykUCsV8oKxdHwqFQjEfUEKtUCgUCUcJtUKhUCQcJdQKhUKRcJRQKxQKRcJRQq1QKBQJRwm1QqFQJJz/H9nDTQeVRxU3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "plt.plot(x1, x2, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0,\n", + " (26.801197639278193, 9.755590019896484e-136, 1998.0),\n", + " (17.710726885754962, 1.0, 1998.0))" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from statsmodels.stats.weightstats import ttost_ind\n", + "\n", + "pval = ttost_ind(x1, x2, low=-0.2, upp=0.2)\n", + "\n", + "pval" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/T-Test.ipynb b/11_Hypothesis_testing/T-Test.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..84608b90156e2c421f90eec1cf088db9e77a5ba5 --- /dev/null +++ b/11_Hypothesis_testing/T-Test.ipynb @@ -0,0 +1,369 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# T-Test\n", + "See also: https://en.wikipedia.org/wiki/Student%27s_t-test\n", + "\n", + "null-hypothesis: Our sample set has a mean that is equal to a given population mean.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEGCAYAAABvtY4XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAREUlEQVR4nO3dfbBtdV3H8feHJ3kQxOJkKR6PmtJQo8DcoRQlQmIQCtIckcQRH7pWokJZ0UxTGGMyaY2OWHojQU1wVMQQSjAFn0Dh8iBcuFqG1ydQRFHRIRX69sdal7vv4ZzLvvecdfa+P9+vmT137b3X/v2+e51zP3ud31rrt1NVSJLas8OkC5AkDcOAl6RGGfCS1CgDXpIaZcBLUqN2mnQBo/bZZ5+am5ubdBmStN249tpr76yqmYWem6qAn5ubY+3atZMuQ5K2G0m+vNhzDtFIUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRg16mmSSDcDdwH3AvVW1asj+JEmbrMR58L9RVXeuQD+SpBEO0UhSo4begy/gsiQFvK2q1sxfIclqYDXA7OzswOVIApg77ZL7lzececwEK9GQht6DP6SqDgKeCbw8yaHzV6iqNVW1qqpWzcwsOJ2CJGkbDBrwVXVb/+8dwIXAwUP2J0naZLCAT7JHkj03LgNHAuuG6k+StLkhx+AfAVyYZGM/51XVhwfsT5I0YrCAr6pbgScP1b4kacs8TVKSGmXAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalRBrwkNcqAl6RGGfCS1CgDXpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8JLUqMEDPsmOSa5PcvHQfUmSNlmJPfhXAetXoB9J0ohBAz7JvsAxwNlD9iNJeqCdBm7/jcCfAXsutkKS1cBqgNnZ2YHLkZZu7rRL7l/ecOYxE6zkwW1trcv13lZyG432tRL9bU8G24NP8lvAHVV17ZbWq6o1VbWqqlbNzMwMVY4k/dQZcojmEODYJBuA9wCHJ/nXAfuTJI0YLOCr6i+qat+qmgOeB3ysqk4cqj9J0uY8D16SGjX0QVYAquoK4IqV6EuS1HEPXpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalRBrwkNcqAl6RGGfCS1CgDXpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktSowQI+ya5Jrk7yuSQ3J3nNUH1Jkh5opwHb/hFweFX9IMnOwKeS/EdVfWbAPiVJvcECvqoK+EF/d+f+VkP1J0na3KBj8El2THIDcAfwkar67JD9SZI2GXKIhqq6Dzggyd7AhUl+parWja6TZDWwGmB2dnbIcqQFzZ12yf3LG848ZiL9jlrJGqbRpH4eLVqRs2iq6rvAFcBRCzy3pqpWVdWqmZmZlShHkn4qDHkWzUy/506S3YAjgM8P1Z8kaXNDDtH8AvCOJDvSfZC8t6ouHrA/SdKIsQI+yUer6hkP9tioqroROHCJ9UmSttEWAz7JrsDuwD5JHg6kf2ov4JED1yZJWoIH24N/GXAKXZhfy6aA/z7wlgHrkiQt0RYDvqreBLwpySuq6s0rVJMkaRmMNQZfVW9O8lRgbvQ1VfXOgeqSJC3RuAdZ3wU8HrgBuK9/uAADXpKm1LinSa4C9u/nl5EkbQfGvdBpHfDzQxYiSVpe4+7B7wPckuRqummAAaiqYwepSpK0ZOMG/OlDFiFJWn7jnkXz8aELkSQtr3HPormbTV/WsQvdl3f8sKr2GqowSdLSjLsHv+fo/SS/Axw8SEWSpGWxTdMFV9UHgcOXuRZJ0jIad4jm2SN3d6A7L95z4iVpio17Fs1vjyzfC2wAjlv2aiRJy2bcMfgXDV2IJGl5jTUGn2TfJBcmuSPJN5NckGTfoYuTJG27cQ+yngNcRDcv/KOAD/WPSZKm1LgBP1NV51TVvf3tXGBmwLokSUs0bsDfmeTEJDv2txOBbw9ZmCRpacYN+BcDzwW+AdwOPAfwwKskTbFxT5M8A3hhVd0FkORngDfQBb8kaQqNuwf/pI3hDlBV3wEOHKYkSdJyGDfgd0jy8I13+j34cff+JUkTMG5I/z1wZZL3001R8FzgtYNVJUlasnGvZH1nkrV0E4wFeHZV3TJoZZKkJRl7mKUPdENdkrYT2zRdsCRp+hnwktQoA16SGmXAS1KjDHhJapQBL0mNGizgkzw6yeVJ1ie5OcmrhupLkvRAQ043cC/wJ1V1XZI9gWuTfMQLpCRpZQy2B19Vt1fVdf3y3cB6um+DkiStgBWZMCzJHN3sk59d4LnVwGqA2dnZlSinGXOnXXL/8oYzj5mqdkYtZ5ujbY1T99a+t619D4u1P/TPZrE6l9rf1tYxtCF+p5Zax7T9H9mSwQ+yJnkocAFwSlV9f/7zVbWmqlZV1aqZGb8FUJKWy6ABn2RnunB/d1V9YMi+JEmbG/IsmgD/Aqyvqn8Yqh9J0sKG3IM/BHgBcHiSG/rb0QP2J0kaMdhB1qr6FN3c8ZKkCfBKVklqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalRBrwkNcqAl6RGGfCS1CgDXpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjBgv4JG9PckeSdUP1IUla3JB78OcCRw3YviRpCwYL+Kr6BPCdodqXJG3ZTpMuIMlqYDXA7OzsNrczd9ol9y9vOPOYZV9/6Hamxej7GbVc722c7bVYDZNod1trWOzx5fpdm6TF3s/Wvv+h3s9S+hvi//Akf24TP8haVWuqalVVrZqZmZl0OZLUjIkHvCRpGAa8JDVqyNMkzweuAvZL8rUkLxmqL0nSAw12kLWqThiqbUnSg3OIRpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGmXAS1KjDHhJapQBL0mNMuAlqVEGvCQ1yoCXpEYZ8JLUKANekhplwEtSowx4SWqUAS9JjTLgJalRBrwkNcqAl6RGGfCS1CgDXpIaZcBLUqMMeElqlAEvSY0y4CWpUQa8JDXKgJekRhnwktQoA16SGjVowCc5KskXknwxyWlD9iVJ2txgAZ9kR+AtwDOB/YETkuw/VH+SpM0NuQd/MPDFqrq1qn4MvAc4bsD+JEkjUlXDNJw8Bziqql7a338B8KtVdfK89VYDq/u7+wFfGKSgydsHuHPSRUwpt83i3DYLc7ts8piqmlnoiZ0G7DQLPPaAT5OqWgOsGbCOqZBkbVWtmnQd08htszi3zcLcLuMZcojma8CjR+7vC9w2YH+SpBFDBvw1wBOSPDbJLsDzgIsG7E+SNGKwIZqqujfJycClwI7A26vq5qH62w40Pwy1BG6bxbltFuZ2GcNgB1klSZPllayS1CgDXpIaZcAPLMmGJDcluSHJ2knXM02S7J3k/Uk+n2R9kqdMuqZpkGS//vdl4+37SU6ZdF3TIsmpSW5Osi7J+Ul2nXRN08ox+IEl2QCsqiovypgnyTuAT1bV2f2ZVrtX1XcnXdc06af8+DrdRYJfnnQ9k5bkUcCngP2r6p4k7wX+varOnWxl02nIC52kRSXZCzgUOAmgn87ix5OsaUo9A/gfw30zOwG7JfkJsDteX7Moh2iGV8BlSa7tp2VQ53HAt4Bzklyf5Owke0y6qCn0POD8SRcxLarq68AbgK8AtwPfq6rLJlvV9DLgh3dIVR1EN6vmy5McOumCpsROwEHAP1XVgcAPAaeUHtEPWx0LvG/StUyLJA+nm7TwscAjgT2SnDjZqqaXAT+wqrqt//cO4EK6WTbVTWXxtar6bH///XSBr02eCVxXVd+cdCFT5AjgS1X1rar6CfAB4KkTrmlqGfADSrJHkj03LgNHAusmW9V0qKpvAF9Nsl//0DOAWyZY0jQ6AYdn5vsK8GtJdk8Sut+b9ROuaWp5Fs2AkjyObq8duiGJ86rqtRMsaaokOQA4G9gFuBV4UVXdNdmqpkOS3YGvAo+rqu9Nup5pkuQ1wPHAvcD1wEur6keTrWo6GfCS1CiHaCSpUQa8JDXKgJekRhnwktQoA16SGmXA60Elua+f1fDmJJ9L8sdJlvy7k2Quye+N3D8pyVlLbXcr+j8gydEj949Nsk1X0/YzY/7RFp5/ZT9j5ru3sM5hSS4eWV7wAp4kpyd59bbWNn+7q10GvMZxT1UdUFW/DPwmcDTw18vQ7hwwyaA5gO69AFBVF1XVmdvY1t7AogHfP3d0VT1/zPYOY/mu0Jxf2xxbud37WS21nTHgtVX6KRdWAyenM5fkk0mu629PBUjyriTHbXxdkncnOXZec2cCT+//Oji1f+yRST6c5L+T/N3I649MclXfx/uSPHR+bUmuSPLGJFf2c4Uf3D9+cP/Y9f2/+/XzvPwNcHzf//Gjf0EkmUlyQZJr+tsh/eOnJ3l739etSV458l4e37f1+nl1vZVucrWL+rnM9+jbuKav6bh5688BfwCc2rf39AV+FE9O8rF+O/3+yGv/tG/3xv6CoIVq22y7J9kxyetHXveyvq3Dklye5DzgpgVq0LSrKm/etngDfrDAY3cBj6CbrnXX/rEnAGv75V8HPtgvPwz4ErDTvDYOAy4euX8S3RWtDwN2Bb4MPBrYB/gEsEe/3p8Df7VATVcA/9wvHwqs65f32tg33VwmF4z0d9a8/s/ql88DntYvzwLr++XTgSuBh/R1fRvYmW6veN0WtuEGYJ9++W+BE/vlvYH/AvYY3R59P69epK3Tgc8Bu/U1fJVu4q0j6b6MOnQ7bxf322Gz2hbY7quBv+yXHwKspZvM6zC6SeAeO+nfQW/bdnM+eG2r9P/uDJzVTztwH/BEgKr6eJK3JPk54Nl0oXrvGO1+tPpL85PcAjyGLgT3Bz7dTT/CLsBVi7z+/L7/TyTZK8newJ7AO5I8gW765p3HqOMIYP++P4C90s8rBFxS3aXxP0pyB90H3dY4Ejh2ZBx9V7oPka3xb1V1D3BPksvpJrF7Wt/29f06D6X70P3KGPU8Kclz+vsP61/3Y+DqqvrSVtamKWHAa6ulm2PnPuAOurH4bwJPpttr/N+RVd8FPJ9uTvMXj9n86Jwi99H9jgb4SFWdMMbr58+9UcAZwOVV9ax++OOKMdrZAXhKH6L36wN/oRq3RoDfraovzGt7az4oFnqfAV5XVW+b1+7cGPW8oqounfe6w+j24LWdcgxeWyXJDPBWuqGMotvbu72q/g94ATB6MO5c4BSAqrp5gebuptu7fjCfAQ5J8ot9DbsneeIi6x7fr/M0ui+D+F5f49f7508as//LgJM33un/QtmScd8LwKXAK9J/WiQ5cBvaOy7Jrkl+lm4o5Zq+3RdvPD6R5FH9X1Dz25p//1LgD5Ps3L/uifHLV5pgwGscu/UH5G4G/pMu/DYewPtH4IVJPkM3PHP/Hl9185ivB85ZpN0bgXvTnXp56iLrUFXfogvm85PcSBf4v7TI6ncluZLuQ+gl/WN/B7wuyafZ/APocrphmBuSHD+vnVcCq/qDjrfQHfRcVFV9m24Iad38g6wLOINumOjGJOv6+/N9CHjWFg6yXg1cQrctzqiq26r7ZqPzgKuS3EQ3x/6eC9Q2f7ufTTdV83V9PW/Dv+6b4GySGky6KW9vAg6qFZjyNskVdAcm1w7dl7Q9cA9eg0hyBPB54M0rEe6SHsg9eElqlHvwktQoA16SGmXAS1KjDHhJapQBL0mN+n9KMJp4I04eCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from numpy import random\n", + "import matplotlib.pyplot as plt\n", + "\n", + "given_mean = 7 # this number serves for generating the sample\n", + " # in a realistic scenario, we don't know it\n", + "\n", + "# generate random numbers following a normal distribution\n", + "x = random.normal(loc=7, scale=1, size=100)\n", + "\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(x, bins=100)\n", + "ax.set_ylabel(\"count\")\n", + "ax.set_xlabel(\"Day the patient felt better\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAYzElEQVR4nO3dfbRddX3n8ffHICopyIyktk1IEzHKZGaAZtJgDUWwwiLgMqKuAj7Vqk3pgKhdzjSz1ixrdVYL9mHZVjRmaHwakWXVtNGkBMeHOiPSJkEEAqJpRLlEm4AUdGQI0e/8sXeYw82+N+eG7Jxweb/WOuvsh99v7++5gfu5++l3UlVIkjTek0ZdgCTp8GRASJI6GRCSpE4GhCSpkwEhSep0xKgLOJiOO+64mjdv3qjLkKTHjS1bttxTVbO61k2rgJg3bx6bN28edRmS9LiR5DsTrfMUkySpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnq1GtAJDknyR1JtiVZOUm7X07ykySvmGpfSVI/eguIJDOAK4FlwELgoiQLJ2h3BbBxqn0lSf3p8whiCbCtqrZX1W7gGmB5R7s3AZ8Cdh5AX0lST/p8kno2cNfA/Bhw6mCDJLOB84EXAr88lb4D21gBrACYO3fuYy5amk7mrVw/sn3fefl5I9u3Do4+jyDSsWz819e9B/i9qvrJAfRtFlatrqrFVbV41qzO4UQkSQegzyOIMeD4gfk5wI5xbRYD1yQBOA44N8meIftKknrUZ0BsAhYkmQ/cDVwIvHKwQVXN3zud5EPAZ6vqb5Icsb++kqR+9RYQVbUnyaU0dyfNANZU1dYkF7frV021b1+1SpL21etw31W1AdgwbllnMFTV6/bXV5J06PgktSSpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjoZEJKkTgaEJKmTASFJ6mRASJI6GRCSpE4GhCSpkwEhSepkQEiSOhkQkqROBoQkqVOvAZHknCR3JNmWZGXH+uVJbk5yU5LNSU4bWHdnklv2ruuzTknSvnr7ytEkM4ArgbOAMWBTknVVddtAs88D66qqkpwEfAI4cWD9mVV1T181SpIm1ucRxBJgW1Vtr6rdwDXA8sEGVfWjqqp2diZQSJIOC30GxGzgroH5sXbZoyQ5P8k3gPXA6wdWFXBdki1JVky0kyQr2tNTm3ft2nWQSpck9RkQ6Vi2zxFCVa2tqhOBlwLvGli1tKoWAcuAS5Kc3rWTqlpdVYuravGsWbMORt2SJPoNiDHg+IH5OcCOiRpX1ZeBE5Ic187vaN93AmtpTllJkg6R3i5SA5uABUnmA3cDFwKvHGyQ5NnAP7UXqRcBRwL3JpkJPKmqfthOnw28s8dapV7NW7l+1CVIU9ZbQFTVniSXAhuBGcCaqtqa5OJ2/Srg5cBrkzwMPAhc0IbFM4G1SfbWeHVVXdtXrZKkffV5BEFVbQA2jFu2amD6CuCKjn7bgZP7rE2SNDmfpJYkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVKnXp+DkA43PtEsDc8jCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVKnXp+kTnIO8Oc0Xzl6VVVdPm79cuBdwE+BPcBbqup/D9NX0uFtVE+t33n5eSPZ73TU2xFEkhnAlcAyYCFwUZKF45p9Hji5qk4BXg9cNYW+kqQe9XmKaQmwraq2V9Vu4Bpg+WCDqvpRVVU7OxOoYftKkvrVZ0DMBu4amB9rlz1KkvOTfANYT3MUMXTftv+KJJuTbN61a9dBKVyS1G9ApGNZ7bOgam1VnQi8lOZ6xNB92/6rq2pxVS2eNWvWARcrSXq0PgNiDDh+YH4OsGOixlX1ZeCEJMdNta8k6eDrMyA2AQuSzE9yJHAhsG6wQZJnJ0k7vQg4Erh3mL6SpH71dptrVe1JcimwkeZW1TVVtTXJxe36VcDLgdcmeRh4ELigvWjd2bevWiVJ++r1OYiq2gBsGLds1cD0FcAVw/aVJB06PkktSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjoZEJKkTgaEJKmTASFJ6mRASJI6GRCSpE4GhCSpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnq1GtAJDknyR1JtiVZ2bH+VUlubl/XJzl5YN2dSW5JclOSzX3WKUnaV29fOZpkBnAlcBYwBmxKsq6qbhto9m3gBVV1X5JlwGrg1IH1Z1bVPX3VKEmaWJ9HEEuAbVW1vap2A9cAywcbVNX1VXVfO3sDMKfHeiRJUzDpEUSSW4CaaH1VnTRJ99nAXQPzYzz66GC8NwB/N7h54LokBXygqlZPUOMKYAXA3LlzJ9m8JGkq9neK6cXt+yXt+0fb91cBP95P33Qs6wybJGfSBMRpA4uXVtWOJD8LfC7JN6rqy/tssAmO1QCLFy+eMMwkSVMzaUBU1XcAkiytqqUDq1Ym+Qrwzkm6jwHHD8zPAXaMb5TkJOAqYFlV3Tuw7x3t+84ka2lOWe0TEJKkfgx7DWJmkkf+uk/yfGDmfvpsAhYkmZ/kSOBCYN1ggyRzgU8Dr6mqbw4sn5nk6L3TwNnArUPWKkk6CIa9i+kNwJokT2/n/wV4/WQdqmpPkkuBjcAMYE1VbU1ycbt+FfB24BnA+5IA7KmqxcAzgbXtsiOAq6vq2il9MknSYzJUQFTVFuDkJMcAqar7h+y3Adgwbtmqgek3Am/s6LcdOHn8cknSoTPUKaYkT0/yZ8AXgM8n+dOBowlJ0jQ07DWINcAPgV9vXw8AH+yrKEnS6A17DeKEqnr5wPwfJLmpj4IkSYeHYY8gHhx3F9NS4MF+SpIkHQ6GPYL4HeDD7XWHAD8AfqO3qiRJIzfsXUw38f/vYqKqHui1KknSyB3IXUxf8C4mSZr+vItJktTJu5gkSZ28i0mS1GnYI4iLgY+Mu4vpdX0VJUkavWHvYvo63sUkSU8oQwVEkqcALwfmAUe0o6xSVZN9H4Qk6XFs2FNMfwvcD2wBHuqvHEnS4WLYgJhTVef0WokkHQTzVq4f2b7vvPy8ke27D8PexXR9kn/fayWSpMPKpAGR5JYkNwOnATcmuSPJzQPLJ5XknLbPtiQrO9a/qt3ezUmuT3LysH0lSf3a3ymmFx/ohpPMAK4EzgLGgE1J1lXVbQPNvg28oKruS7IMWA2cOmRfSVKP9hcQ91XVA0n+9QFsewmwrf36UJJcAywHHvklX1XXD7S/AZgzbF9JUr/2FxBX0xxFbAGK5iG5vQp41iR9ZwN3DcyPAadO0v4NwN8dYF9J0kE2aUBU1Yvb9/kHsO10LKvOhsmZNAGxdziPqfRdAawAmDt37tSrlCR1mjQgkiyabH1V3TjJ6jHg+IH5OcCOjn2cBFwFLKuqe6fSt61hNc21CxYvXtwZIpKkqdvfKaY/nWRdAS+cZP0mYEGS+cDdwIXAKwcbJJkLfBp4TVV9cyp9JUn92t8ppjMPdMNVtSfJpcBGYAawpqq2Jrm4Xb8KeDvwDOB97fAde6pq8UR9D7QWSdLUDTsW01HA7wJzq2pFkgXAc6vqs5P1q6oNwIZxy1YNTL8ReOOwfSVJh86wT1J/ENgNPL+dHwP+Wy8VSZIOC8MGxAlV9W7gYYCqepDuO40kSdPEsAGxO8nTaG81TXICjuoqSdPasKO5/j5wLXB8ko8BS/Eb5SRpWhs2ILYALwOeR3Nq6c3A0X0VJUkavWFPMX0GeLiq1rd3Ls1ql0mSpqlhA+IPgc8kmZnkPwCfBF7dX1mSpFEb6hRTVa1P8mTgczSnll5aVd/qtTJJ0kjtbyymv+TRg+QdA2wH3pSEqrqsz+IkSaOzvyOIzePmt/RViCTp8LK/sZg+fKgKkSQdXvZ3iukTVfXrSW6h4/sYquqk3iqTJI3U/k4xvbl9P+DvppYkPT7t7xTT99r37xyaciRJh4v9nWL6Id1f9RmgquqYXqqSJI3c/o4gHE5Dkp6ghn2SWpL0BNNrQCQ5J8kdSbYlWdmx/sQkX03yUJK3jVt3Z5JbktyUZPzzGJKkng07muuUJZkBXAmcRfMNdJuSrKuq2waa/QC4DHjpBJs5s6ru6atGSdLEegsIYAmwraq2AyS5BlgOPBIQVbUT2JnkvB7r0GFm3sr1oy5B0hD6PMU0G7hrYH6sXTasAq5LsiXJiokaJVmRZHOSzbt27TrAUiVJ4/UZEF3fWd11y+xEllbVImAZcEmS07saVdXqqlpcVYtnzZp1IHVKkjr0GRBjwPED83OAHcN2rqod7ftOYC3NKStJ0iHSZ0BsAhYkmZ/kSOBCYN0wHdsvJjp67zRwNnBrb5VKkvbR20XqqtqT5FJgIzADWFNVW5Nc3K5fleTnaIYUPwb4aZK3AAuB44C1SfbWeHVVXdtXrZKkffV5FxNVtQHYMG7ZqoHp79OcehrvAeDkPmuTJE3OJ6klSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVInA0KS1MmAkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmdeg2IJOckuSPJtiQrO9afmOSrSR5K8rap9JUk9au3gEgyA7gSWEbzPdMXJVk4rtkPgMuAPzmAvpKkHvV5BLEE2FZV26tqN3ANsHywQVXtrKpNwMNT7StJ6lefATEbuGtgfqxddlD7JlmRZHOSzbt27TqgQiVJ++ozINKxrA5236paXVWLq2rxrFmzhi5OkjS5PgNiDDh+YH4OsOMQ9JUkHQR9BsQmYEGS+UmOBC4E1h2CvpKkg+CIvjZcVXuSXApsBGYAa6pqa5KL2/WrkvwcsBk4BvhpkrcAC6vqga6+fdUqSdpXbwEBUFUbgA3jlq0amP4+zemjofpKkg4dn6SWJHUyICRJnQwISVInA0KS1MmAkCR1MiAkSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUicDQpLUyYCQJHUyICRJnQwISVInA0KS1KnXLwzS/s1buX7UJUhSp16PIJKck+SOJNuSrOxYnyR/0a6/OcmigXV3JrklyU1JNvdZpyRpX70dQSSZAVwJnAWMAZuSrKuq2waaLQMWtK9Tgfe373udWVX39FWjJGlifR5BLAG2VdX2qtoNXAMsH9dmOfCRatwAHJvk53usSZI0pD4DYjZw18D8WLts2DYFXJdkS5IVE+0kyYokm5Ns3rVr10EoW5IE/QZEOpbVFNosrapFNKehLklyetdOqmp1VS2uqsWzZs068GolSY/SZ0CMAccPzM8Bdgzbpqr2vu8E1tKcspIkHSJ9BsQmYEGS+UmOBC4E1o1rsw54bXs30/OA+6vqe0lmJjkaIMlM4Gzg1h5rlSSN09tdTFW1J8mlwEZgBrCmqrYmubhdvwrYAJwLbAN+DPxm2/2ZwNoke2u8uqqu7atWSdK+en1Qrqo20ITA4LJVA9MFXNLRbztwcp+1SZIm55PUknSQjGpkhDsvP6+X7ToWkySpkwEhSepkQEiSOhkQkqROBoQkqZMBIUnqZEBIkjoZEJKkTgaEJKmTT1K3/G5oSXo0jyAkSZ0MCElSJwNCktTJgJAkdTIgJEmdDAhJUqdeAyLJOUnuSLItycqO9UnyF+36m5MsGravJKlfvQVEkhnAlcAyYCFwUZKF45otAxa0rxXA+6fQV5LUoz6PIJYA26pqe1XtBq4Blo9rsxz4SDVuAI5N8vND9pUk9ajPJ6lnA3cNzI8Bpw7RZvaQfQFIsoLm6APgR0nueAw1T+Y44J6etn048XNOP0+Uz/qE/Zy54jFt7xcnWtFnQKRjWQ3ZZpi+zcKq1cDqqZU2dUk2V9Xivvczan7O6eeJ8ln9nAdfnwExBhw/MD8H2DFkmyOH6CtJ6lGf1yA2AQuSzE9yJHAhsG5cm3XAa9u7mZ4H3F9V3xuyrySpR70dQVTVniSXAhuBGcCaqtqa5OJ2/SpgA3AusA34MfCbk/Xtq9Yh9X4a6zDh55x+niif1c95kKWq89S+JOkJziepJUmdDAhJUicDYghJZiT5WpLPjrqWPiW5M8ktSW5KsnnU9fQlybFJPpnkG0luT/Iro67pYEvy3Pbfce/rgSRvGXVdfUjy1iRbk9ya5ONJnjrqmvqQ5M3tZ9x6qP4t/crR4bwZuB04ZtSFHAJnVtV0f9joz4Frq+oV7V1yR426oIOtqu4AToFHhq65G1g70qJ6kGQ2cBmwsKoeTPIJmrsePzTSwg6yJP8O+C2aUSZ2A9cmWV9V3+pzvx5B7EeSOcB5wFWjrkWPXZJjgNOBvwKoqt1V9S+jrap3vwb8U1V9Z9SF9OQI4GlJjqAJ++n4zNS/AW6oqh9X1R7g74Hz+96pAbF/7wH+M/DTURdyCBRwXZIt7RAm09GzgF3AB9vThlclmTnqonp2IfDxURfRh6q6G/gT4LvA92iepbputFX14lbg9CTPSHIUzeMBx++nz2NmQEwiyYuBnVW1ZdS1HCJLq2oRzSi6lyQ5fdQF9eAIYBHw/qr6JeD/ANN2OPn2FNpLgL8edS19SPKvaAbynA/8AjAzyatHW9XBV1W3A1cAnwOuBb4O7Ol7vwbE5JYCL0lyJ82Isi9M8j9GW1J/qmpH+76T5nz1ktFW1IsxYKyq/qGd/yRNYExXy4Abq+qfR11IT14EfLuqdlXVw8CngeePuKZeVNVfVdWiqjod+AHQ6/UHMCAmVVX/parmVNU8msP0L1TVtPvrBCDJzCRH750GzqY5rJ1Wqur7wF1Jntsu+jXgthGW1LeLmKanl1rfBZ6X5Kgkofn3vH3ENfUiyc+273OBl3EI/l29i0l7PRNY2/w/xhHA1VV17WhL6s2bgI+1p1+20w7xMt2056rPAn571LX0par+IckngRtpTrl8jek75MankjwDeBi4pKru63uHDrUhSerkKSZJUicDQpLUyYCQJHUyICRJnQwISVInA0K9S/KTdkTRrUm+nuR3kzzm//aSzEvyyoH51yV572Pd7hT2f0qScwfmX5LkgJ7KbkeY/Y+TrL+sHXn2Y5O0OWPviMPtdOcDY0nekeRtB1rb+J+7pi8DQofCg1V1SlX9W5r78s8Ffv8gbHceMMpfVKfQfBYAqmpdVV1+gNs6FpgwINp151bVq4bc3hkcvCeKx9c2jyn+3NsRZfU4Y0DokGqH8VgBXJrGvCT/K8mN7ev5AEk+mmT53n5JPpbkJeM2dznwq+3RyVvbZb+Q5Nok30ry7oH+Zyf5aruPv07yM+NrS/KlJO9Jcn077v6SdvmSdtnX2vfntg/ZvRO4oN3/BYNHMElmJflUkk3ta2m7/B1J1rT72p7ksoHPckK7rT8eV9cqmkEG17XffTCz3camtqbl49rPAy4G3tpu71c7/ilOTvKF9uf0WwN9/1O73ZuT/MEEtT3q557m+1L+eKDfb7fbOiPJF5NcDdzSUYMOd1Xly1evL+BHHcvuo3l6+yjgqe2yBcDmdvoFwN+0008Hvg0cMW4bZwCfHZh/Hc2T0U8Hngp8h2bEy+OALwMz23a/B7y9o6YvAf+9nT4duLWdPmbvvmnG/vnUwP7eO27/722nrwZOa6fnAre30+8Argee0tZ1L/Bkmr/Kb53kZ3gncFw7/YfAq9vpY4FvAjMHfx7tft42wbbeQTPY29PaGu6iGejubJqnkEPzx+Nn25/Do2rr+LmvAP5rO/0UYDPN4Hln0AyGOH/U/w36OrCXQ21oVNK+Pxl4b5JTgJ8AzwGoqr9PcmU7/szLaH4pDzN65eer6n6AJLcBv0jzS3Qh8JV2KJEjga9O0P/j7f6/nOSYJMcCRwMfTrKAZkj0Jw9Rx4uAhe3+AI5JO9YVsL6qHgIeSrKTJiin4myaQST3Xkd4Kk0ITcXfVtWDwINJvkgzMONp7ba/1rb5GZrQ/u4Q9ZyU5BXt/NPbfruBf6yqb0+xNh0mDAgdckmeRRMGO2muRfwzcDLNX63/d6DpR4FX0QyU+PohN//QwPRPaP4bD/C5qrpoiP7jx54p4F3AF6vq/Pb0zZeG2M6TgF9pfwk/og2MrhqnIsDLq/nWuMFtTyVouj5ngD+qqg+M2+68Iep5U1VtHNfvDJojCD1OeQ1Ch1SSWcAqmlMxRfPX5veq6qfAa4DBi5kfAt4CUFVbOzb3Q5q/7vfnBmBpkme3NRyV5DkTtL2gbXMazZfP3N/WeHe7/nVD7v864NK9M+0R0mSG/SwAG4E3pU2bJL90ANtbnuSpaQZ/OwPY1G739XuvzySZ3R7Bjd/W+PmNwO8keXLb7zmZ/l/C9IRgQOhQeFp7QXMr8D9pfnnuvQD6PuA3ktxAc3rpkb84q/kOg9uBD06w3ZuBPWlunX3rBG2oql00v9g/nuRmmsA4cYLm9yW5nibE3tAuezfwR0m+wqMD7Is0p5FuSnLBuO1cBixuL9reRnPReEJVdS/NKbBbx1+k7vAumtNcNye5tZ0f7zPA+ZNcpP5HYD3Nz+JdVbWjmm9iuxr4apJbaL4r4+iO2sb/3K+iGTL9xraeD+DZiWnB0Vx12EozXPUtwKK91xV63t+XaC7sbu57X9LjgUcQOiwleRHwDeAvD0U4SNqXRxCSpE4eQUiSOhkQkqROBoQkqZMBIUnqZEBIkjr9PzBaNsw+XqisAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.hist(x, bins=10, density=True)\n", + "ax.set_ylabel(\"likelihood\")\n", + "ax.set_xlabel(\"Day the patient felt better\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean of the sample is 6.91035435725224\n", + "Standard deviation of the sample is 0.9794186535937979\n" + ] + } + ], + "source": [ + "# Descriptive statistics\n", + "mean = np.mean(x)\n", + "print(\"Mean of the sample is \" + str(mean)) \n", + "\n", + "standard_deviation = np.std(x)\n", + "print(\"Standard deviation of the sample is \" + str(standard_deviation)) " + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p-value of or mean being 9: p = 2.1331173491593363e-37\n" + ] + }, + { + "data": { + "text/plain": [ + "2.1331173491593363e-37" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p-value of or mean being 4.0: p = 1.2080635908265571e-57\n", + "p-value of or mean being 4.5: p = 1.4774685646480428e-50\n", + "p-value of or mean being 5.0: p = 2.927549110228349e-42\n", + "p-value of or mean being 5.5: p = 2.0723760293438062e-32\n", + "p-value of or mean being 6.0: p = 8.80211621737463e-21\n", + "p-value of or mean being 6.5: p = 2.1235971268731145e-08\n", + "p-value of or mean being 7.0: p = 0.7671296791633029\n", + "p-value of or mean being 7.5: p = 2.97710641011874e-07\n", + "p-value of or mean being 8.0: p = 1.6669010569660399e-19\n", + "p-value of or mean being 8.5: p = 2.6682967439642807e-31\n", + "p-value of or mean being 9.0: p = 2.501526909114919e-41\n", + "p-value of or mean being 9.5: p = 9.090047576810763e-50\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAeCElEQVR4nO3dbXBc93Xf8e/BLpfAgo9YIKL5gF2mpewybexKCJ3UiZ3UdSIlqVm3zphyW0/duio7VpK208ZKp80b943HmU7aWgmH46ieTltzXD8kqs1I7jRTp9PUGUK2rJiW6bL0LgDBKoEFRVG7eMbpi90LrpYL4mJxd+8+/D4zHOHuXizODqkfDv4493/N3RERke43EHcBIiISDQW6iEiPUKCLiPQIBbqISI9QoIuI9AgFuohIjwgV6Gb2iJldM7PrZvZkg+cPmtl/NbNvmdlVM/tw9KWKiMj92HZz6GaWAL4HvAeYAa4Aj7n7d2rO+efAQXf/mJmNAdeAI+6+0rLKRUTkDZIhzjkDXHf3GwBmdgk4C3yn5hwH9puZAfuABWDtfi86OjrquVyumZpFRPrW888/P+/uY42eCxPox4DpmuMZ4O1153wKeAaYBfYDH3D3jfu9aC6XY3JyMsSXFxGRgJkVtnouzBq6NXisfp3m54AXgKPA24BPmdmBBoU8bmaTZjY5NzcX4kuLiEhYYQJ9BjhRc3ycSide68PAF73iOvB94C31L+TuF919wt0nxsYa/sQgIiJNChPoV4BTZnbSzFLAOSrLK7WmgHcDmNkDwJuBG1EWKiIi97ftGrq7r5nZE8BzQAJ42t2vmtn56vMXgI8DnzGzP6WyRPMxd59vYd0iIlInzC9FcffLwOW6xy7UfDwL/Gy0pYmIyE7oSlERkR6hQBcR6REKdJEILK2u87kr02xs6A5gEh8FukgEnv32K/zaF17km9Ovxl2K9DEFukgEvj9fAqBQLMVcifQzBbpIBIIgzxfLMVci/UyBLhKBIMjVoUucFOgiEVCHLp1AgS6yS7cXV7lVXiUxYOrQJVYKdJFdmqp25Q+NH+LV8iq3y6sxVyT9SoEuskv5alf+rgcrO4gWFtSlSzwU6CK7FCyz/OSpSqBrHV3iokAX2aV8scwDB/by5gf2A1CYV4cu8VCgi+xSoVgimxlmKJXgyIFBdegSGwW6yC7li2VymTQA2Uxaky4SGwW6yC6UV9aYu7NMNjMMQC4zrA5dYqNAF9mFQjW8c9VAz46mmX99mdLyWpxlSZ8KFehm9oiZXTOz62b2ZIPn/5mZvVD9820zWzezkejLFekswfJKNlhyGRmuPq4uXdpv20A3swTwFPAocBp4zMxO157j7p9097e5+9uAXwe+5u4LrShYpJMEyyvjNWvooD1dJB5hOvQzwHV3v+HuK8Al4Ox9zn8M+GwUxYl0ukKxRGY4xYHBPcDdQNc6usQhTKAfA6Zrjmeqj93DzNLAI8AXdl+aSOfLz5c3Qxxg/+AeRvel1KFLLMIEujV4bKv7bP1V4H9ttdxiZo+b2aSZTc7NzYWtUaRjTS2UN38hGshmhje3AxBppzCBPgOcqDk+Dsxuce457rPc4u4X3X3C3SfGxsbCVynSgZZW15m9vbg5shjIZtKbG3aJtFOYQL8CnDKzk2aWohLaz9SfZGYHgXcBvx9tiSKdaeZWGXfesOQClRHG2dtLLK2ux1SZ9KttA93d14AngOeAl4DPuftVMztvZudrTn0f8FV318+a0hfy85UuvD7Qg+PpBXXp0l7JMCe5+2Xgct1jF+qOPwN8JqrCRDpdsE7eaA298nyZU9UNu0TaQVeKijSpUCxzYDDJofSeNzye0yy6xESBLtKkwkKZ3OgwZm8cBDuUTnFwaI8mXaTtFOgiTQq2zW0kl0nr8n9pOwW6SBNW1zeYubVIdiTd8PlsZliBLm2nQBdpwsu3Flnf8HsmXALZTJqZW2VW1jbaXJn0MwW6SBM2J1xGGy+5ZDPDbDi8/OpiO8uSPqdAF2lCsJyyVYee29ykS78YlfZRoIs0oVAsk04lGNu3t+HzwS9LdcNoaScFukgTggmX+pHFwOi+FMOpBAVdLSptpEAXaUK+WNpywgXAzDTpIm2nQBfZofUNZ3phkezo1oEOlfV1raFLOynQRXboB7cXWVnfuGcPl3rZzDDTC2XWN7a6fYBItBToIju03YRLIJdJs7ruzGp0UdpEgS6yQ0Ggh+nQa88XaTUFusgOFYolUskBjhwYvO95ueoae2FB6+jSHgp0kR3KF0uMj6QZGGg8shh4YP8ge5MD6tClbRToIjtUKJY3rwS9n4EBY3wkTV4XF0mbhAp0M3vEzK6Z2XUze3KLc37azF4ws6tm9rVoyxTpDO5emUHfZv08oFl0aadtA93MEsBTwKPAaeAxMztdd84h4LeB97r7jwC/1IJaRWJ3884yS6sboTp0qO6LvlBiQ6OL0gZhOvQzwHV3v+HuK8Al4GzdOR8EvujuUwDufjPaMkU6w92RxZAd+ugwS6sb3Lyz3MqyRIBwgX4MmK45nqk+VutB4LCZ/Q8ze97MPtTohczscTObNLPJubm55ioWidFWN4beiu4vKu0UJtAb/Sq//ufHJPAw8AvAzwH/0swevOeT3C+6+4S7T4yNje24WJG4FYolkgPG0UP3H1kM5DSLLm2UDHHODHCi5vg4MNvgnHl3LwElM/sj4K3A9yKpUqRD5Itljh8eIpkINyD2poODJAdMe7pIW4T5V3kFOGVmJ80sBZwDnqk75/eBnzKzpJmlgbcDL0Vbqkj87ndj6EaSiQFOjOiG0dIe23bo7r5mZk8AzwEJ4Gl3v2pm56vPX3D3l8zsWeBFYAP4tLt/u5WFi7Sbu1OYL/Pw+OEdfZ52XZR2CbPkgrtfBi7XPXah7viTwCejK02ks9wqr3JneW1HHTpU1tEn87dw9y1viCESBV0pKhLS3RtDh5tBD2QzaV5fXqNYWmlFWSKbFOgiIQWjh+MjO+/QK5+vdXRpLQW6SEj5+TJmcGJkaEefN65ZdGkTBbpISIViiaMHh9ibTOzo844fHmLAKiOPIq2kQBcJKV8s73j9HGBvMsHRQ0Pq0KXlFOgiIU0tlHc84RLIZYbVoUvLKdBFQri9uMpCaSX0Lov1spm0OnRpOQW6SAhT1e56pxMugVxmmFfLq9wur0ZZlsgbKNBFQmh2Bj2Qzej+otJ6CnSREO7OoDcb6JXOXuvo0koKdJEQ8sUyDxzYSzoVareMewTfCAq6v6i0kAJdJISpYvMTLgBDqQRHDgyqQ5eWUqCLhJAvlpqecAlo0kVaTYEuso3yyho37yzvqkOHyqRLYUEdurSOAl1kG3dvDL3LDn00zdydZUrLa1GUJXIPBbrINgo7vDH0VrIj2nVRWkuBLrKN4BeZ4xGsoYN2XZTWCRXoZvaImV0zs+tm9mSD53/azG6b2QvVP78Rfaki8SgUy2SGUxwY3LOr1wkCXZMu0irbDtWaWQJ4CngPMANcMbNn3P07daf+T3f/xRbUKBKryo2hd9edA+wf3MPovpQ6dGmZMB36GeC6u99w9xXgEnC2tWWJdI7CLmfQa2Uzw1pDl5YJE+jHgOma45nqY/V+wsy+ZWZ/YGY/0uiFzOxxM5s0s8m5ubkmyhVpr6XVdWZvL0bSoYNm0aW1wgR6o9uUe93xN4Csu78V+HfA7zV6IXe/6O4T7j4xNja2s0pFYjBzq4z77idcAtmRYWZvL7G0uh7J64nUChPoM8CJmuPjwGztCe7+mru/Xv34MrDHzEYjq1IkJvn5aGbQA8FujdO6wEhaIEygXwFOmdlJM0sB54Bnak8wsyNmZtWPz1Rftxh1sSLtFlzZGVmHrl0XpYW2nXJx9zUzewJ4DkgAT7v7VTM7X33+AvB+4B+a2RqwCJxz9/plGZGuUyiWODCY5FB6dyOLgZxm0aWFQu0FWl1GuVz32IWajz8FfCra0kTil69OuFR/AN21Q+kUB4f2aNJFWkJXiorcR1Qz6LVymfTmHZBEoqRAF9nC6voGM7cWI1s/D4xrFl1aRIEusoWXby2yvuEt6dBnbpVZWduI9HVFFOgiW9iccBmNtkPPZobZcHj51cVIX1dEgS6yhWASpRUdOqB1dImcAl1kC/n5MulUgrF9eyN93WAWfUrr6BIxBbrIFgrFEuMj6chGFgOj+1IMpxLq0CVyCnSRLVRuDB3t+jmAmWnSRVpCgS7SwPqGM72wSHY02vXzgGbRpRUU6CINvPLaEivrGy3p0KGyjj69UGZ9QztkSHQU6CINFOZbM+ESyGXSrK47sxpdlAgp0EUaCHZDjOpORfU2J120ja5ESIEu0kChWCKVHOBNBwZb8vrBvuhaR5coKdBFGshXRxYHBqIdWQw8sH+QVHJAky4SKQW6SAOFYnnzis5WGBgwsiNp8vPq0CU6CnSROu5OoboPeitlNYsuEQsV6Gb2iJldM7PrZvbkfc77MTNbN7P3R1eiSHvN3VlmcXW9pR06VCZdCgslNjS6KBHZNtDNLAE8BTwKnAYeM7PTW5z3CSq3qhPpWsGEy3irO/TRYZZWN7h5Z7mlX0f6R5gO/Qxw3d1vuPsKcAk42+C8Xwa+ANyMsD6RtgsmT9rRoYPuLyrRCRPox4DpmuOZ6mObzOwY8D7gAiJdrlAskRwwjh0aaunXCa5C1Tq6RCVMoDea26pf9Pst4GPuvn7fFzJ73MwmzWxybm4ubI0ibZUvljl+eIhkorUzA286OEhywDSLLpFJhjhnBjhRc3wcmK07ZwK4VN1mdBT4eTNbc/ffqz3J3S8CFwEmJib0myDpSFNtmHABSCYGODGSVocukQkT6FeAU2Z2EngZOAd8sPYEdz8ZfGxmnwG+XB/mIt3A3ckXSzw0fqgtXy+rXRclQtv+TOnua8ATVKZXXgI+5+5Xzey8mZ1vdYEi7XSrvMqdpbWWT7gEctVZdHf9wCq7F6ZDx90vA5frHmv4C1B3/zu7L0skHu2acAlkM2leX15jobRCJuJb3Un/0ZWiIjXu3hi6fR063J19F9kNBbpIjfx8GTM4MdLakcXAuGbRJUIKdJEaUwtljh4cYm8y0Zavd/zwEAOmDl2ioUAXqZEvljb3Km+HvckERw8NqUOXSCjQRWoUimXGR9qzfh7IZYbVoUskFOgiVbcXV1korbRtwiWQzaSZUocuEVCgi1RNtfg+olvJZYa5VV7ldnm1rV9Xeo8CXaRqcwa9jWvoUDPpsqAuXXZHgS5SNbVQ3Qd9pL2Brll0iYoCXaQqP1/igQN7SadCXUAdmeAbSEH3F5VdUqCLVBWKZbJtnnABGEolOHJgUB267JoCXaQqXyyRbfOESyCbSTOlNXTZJQW6CFBeWePmnWVyo+3v0EGz6BINBboId28DF1eHPp5JM3dnmdLyWixfX3qDAl2Eu4Gea/MMekD3F5UoKNBFuLvb4XiMa+i1dYg0Q4EuQmUGfGQ4xYHBPbF8/SDQtY4uuxEq0M3sETO7ZmbXzezJBs+fNbMXzewFM5s0s5+MvlSR1inEOOECsH9wD6P7Upp0kV3ZNtDNLAE8BTwKnAYeM7PTdaf9d+Ct7v424O8Cn466UJFWKhTLsa2fB7KZYfLz6tCleWE69DPAdXe/4e4rwCXgbO0J7v66373L7TCgO95K11heW2f29mKsHTpAdiStNXTZlTCBfgyYrjmeqT72Bmb2PjP7LvAVKl26SFeYXljEPb4Jl0A2M8zs7SWWVtdjrUO6V5hAtwaP3dOBu/uX3P0twF8DPt7whcwer66xT87Nze2sUpEWuXtj6Hg79GCXx+kFLbtIc8IE+gxwoub4ODC71cnu/kfAnzGz0QbPXXT3CXefGBsb23GxIq2Qj2kf9HpZ7boouxQm0K8Ap8zspJmlgHPAM7UnmNmfNTOrfvwQkAKKURcr0gqFYon9g0kOp+MZWQzkNIsuu7TtPqHuvmZmTwDPAQngaXe/ambnq89fAP4G8CEzWwUWgQ/U/JJUpKPlqxMu1Z4kNofSKQ4O7dHVotK0UBs/u/tl4HLdYxdqPv4E8IloSxNpj0KxxF84djDuMoDKOn5eHbo0SVeKSl9bXd/g5VuLsU+4BLKZYXXo0jQFuvS12VcXWdvw2CdcArlMmplbZVbWNuIuRbqQAl36WqdMuASymWE2HF5+dTHuUqQLKdClrwUTJbkO6tABraNLUxTo0tfy82WG9iQY27837lKAuz8pTGkdXZqgQJe+FuyyGPfIYmB0X4rhVEIdujRFgS59rbAQ/y6LtcyMcU26SJMU6NK31jecqWKZ7GhnrJ8HcppFlyYp0KVvvfLaEivrG2RHOqdDh8o6+vRCmfUNXWwtO6NAl75VmO+sCZdALpNmdd2Z1eii7JACXfrW5gz6aOd16ABT2kZXdkiBLn2rUCyRSg7wpgODcZfyBsG+6FpHl51SoEvfKhTLjI+kGRjojJHFwAP7B0klBzTpIjumQJe+lS+WOm79HGBgwMiOpMnPq0OXnVGgS19y92qH3lnr5wHtuijNUKBLX5q7s8zi6vrmenWnyWXSFBZK6D4xshMKdOlLnbbLYr3s6DBLqxvcvLMcdynSRUIFupk9YmbXzOy6mT3Z4Pm/aWYvVv/8sZm9NfpSRaKT77BdFutt7rqodXTZgW0D3cwSwFPAo8Bp4DEzO1132veBd7n7jwIfBy5GXahIlKaKZZIDxrFDQ3GX0lBw9arW0WUnwnToZ4Dr7n7D3VeAS8DZ2hPc/Y/d/Vb18OvA8WjLFIlWvlji+OEhkonOXHU8emiQ5IBpFl12JMy/5mPAdM3xTPWxrfw94A8aPWFmj5vZpJlNzs3Nha9SJGKFYpnxDl0/B0gmBjgxklaHLjsSJtAbXXXR8FfvZvYzVAL9Y42ed/eL7j7h7hNjY2PhqxSJkLt37Ax6rax2XZQdChPoM8CJmuPjwGz9SWb2o8CngbPuXoymPJHo3SqvcmdprWMnXAK5zDBTxbJGFyW0MIF+BThlZifNLAWcA56pPcHMxoEvAn/b3b8XfZki0en0CZdANpPmzvIaC6WVuEuRLpHc7gR3XzOzJ4DngATwtLtfNbPz1ecvAL8BZIDfrt7Ka83dJ1pXtkjzpjp8Bj2Q3bxhdJnMvs6456l0tm0DHcDdLwOX6x67UPPxR4CPRFuaSGvkiyXM4MRIZ44sBoJvOIViiYezh2OuRrpBZ85sibRQoVjm6MEh9iYTcZdyX8cPDzFgd69qFdmOAl36Tr5Y2lzO6GR7kwmOHhqioEkXCUmBLn2nUCx3/Pp5IKddF2UHFOjSV15bWmWhtNLxEy6BbCatDl1CU6BLX+mWCZdANpPmVnmV2+XVuEuRLqBAl74SzKB3wxo61Ey6LKhLl+0p0KWvFDY79O4I9Fw10DXpImEo0KWv5OdL/ND+vaRToS7BiN34SOUbT0H7oksICnTpK4ViebPr7QZDqQRHDgxSWFCHLttToEtf6ZYZ9FqadJGwFOjSN8ora9y8s0xutHs6dAi20VWHLttToEvfmKouWwTr0t0imxlm7s4ypeW1uEuRDqdAl76Rn68EejetocPdenXFqGxHgS59I1iHHu/CNXRA6+iyLQW69I18sczIcIqDQ3viLmVHavdFF7kfBbr0jUIXTrgA7B/cw+i+FFO6WlS2oUCXvtFtM+i1spnhzd8BiGwlVKCb2SNmds3MrpvZkw2ef4uZ/W8zWzazfxp9mSK7s7y2zuztxa6bcAlkRzSLLtvbNtDNLAE8BTwKnAYeM7PTdactAL8C/GbkFYpEYHphEXfIjXZpoGeGmb29xNLqetylSAcL06GfAa67+w13XwEuAWdrT3D3m+5+BdAen9KRCpu7LHbnkkvwjWhaWwDIfYQJ9GPAdM3xTPWxHTOzx81s0swm5+bmmnkJkaYEEyLdvIYOmnSR+wsT6NbgMW/mi7n7RXefcPeJsbGxZl5CpClTxRL7B5McTnfXyGIgp1l0CSFMoM8AJ2qOjwOzrSlHpDXy1QkXs0b9Sec7lK7Mz+tqUbmfMIF+BThlZifNLAWcA55pbVki0SoUS113hWi9yiZd6tBla9sGuruvAU8AzwEvAZ9z96tmdt7MzgOY2REzmwH+CfAvzGzGzA60snCRsFbXN5i5tdg1N4beSjYzrA5d7ivUbVvc/TJwue6xCzUfv0JlKUak48y+usjahnfthEsgl0nzlRdnWVnbIJXUNYFyL/2rkJ7X7RMugWxmmA2Hl19djLsU6VAKdOl5U9V1525fctGki2xHgS49L18sM7Qnwdj+vXGXsitZ7Ysu21CgS88Ldlns1pHFwOi+FOlUQpMusiUFuvS8fLHcldvm1jMzTbrIfSnQpaetbzhTXbxtbr2cZtHlPhTo0tNeeW2JlfWNrh9ZDGQzw0wvlFnfaGr3DelxCnTpaYUemXAJ5DJpVtedH9zW6KLcS4EuPS1Yb86O9k6HDpp0kcYU6NLT8sUSqcQARw4Mxl1KJO7eMFrr6HIvBbr0tMJ8mRMjQyQGuntkMXDkwCCp5IA6dGlIgS49LV8s9cyEC8DAgJEdSZOfV4cu91KgS89yd6YWyj0z4RLQLLpsRYEuPWvu9WXKK+tde2PoreQyaQoLJdw1uihvpECXnrU54dJrHfroMEurG9y8sxx3KdJhFOjSs4J15uxIb3XowfvROrrUCxXoZvaImV0zs+tm9mSD583M/m31+RfN7KHoSxXZmUKxTGLAOHZ4KO5SIpXTLLpsYdtAN7ME8BTwKHAaeMzMTted9ihwqvrnceB3Iq5TZMfyxRLHDw+xJ9FbP4gePTRIcsA0iy73CPMv/Qxw3d1vuPsKcAk4W3fOWeA/eMXXgUNm9qaIaxXZkUKx9yZcAJKJAU6MpNWhyz3C3FP0GDBdczwDvD3EOceAH+yquga+9r05/tWXvxP1y0oP+v58iQ++fTzuMloim0nzh9+9yXv+9dfiLkWa8IEfO8FHfuqHI3/dMIHe6BK7+nmpMOdgZo9TWZJhfLy5/9H27U1y6oF9TX2u9JcHj+znlx4+EXcZLfHhd5wknUrEXYY0aXRfa+6eFSbQZ4Da/yuOA7NNnIO7XwQuAkxMTDQ1RPtw9jAPZx9u5lNFesa7HhzjXQ+OxV2GdJgwa+hXgFNmdtLMUsA54Jm6c54BPlSddvlx4La7R77cIiIiW9u2Q3f3NTN7AngOSABPu/tVMztfff4CcBn4eeA6UAY+3LqSRUSkkTBLLrj7ZSqhXfvYhZqPHfhotKWJiMhO9NaArohIH1Ogi4j0CAW6iEiPUKCLiPQIBbqISI+wuDbJN7M5oNDkp48C8xGW02l6+f3pvXWvXn5/3fTesu7e8Kqy2AJ9N8xs0t0n4q6jVXr5/em9da9efn+98t605CIi0iMU6CIiPaJbA/1i3AW0WC+/P7237tXL768n3ltXrqGLiMi9urVDFxGROl0Z6GaWMLNvmtmX464lSmaWN7M/NbMXzGwy7nqiZmaHzOzzZvZdM3vJzH4i7pqiYGZvrv6dBX9eM7N/FHddUTGzf2xmV83s22b2WTMbjLumKJnZr1bf29Vu/3sLtdtiB/pV4CXgQNyFtMDPuHu3zMPu1L8BnnX391f31k/HXVAU3P0a8DbYvKn6y8CXYi0qImZ2DPgV4LS7L5rZ56jcE+EzsRYWETP788Dfp3Lv5BXgWTP7irv/n3gra07Xdehmdhz4BeDTcdci4ZnZAeCdwO8CuPuKu78ab1Ut8W7g/7p7sxfNdaIkMGRmSSrfhO+5G1kX+3PA19297O5rwNeA98VcU9O6LtCB3wJ+DdiIu5AWcOCrZvZ89f6rveSHgTng31eXyz5tZsNxF9UC54DPxl1EVNz9ZeA3gSkqN32/7e5fjbeqSH0beKeZZcwsTeVGPV17I9quCnQz+0Xgprs/H3ctLfIOd38IeBT4qJm9M+6CIpQEHgJ+x93/IlACnoy3pGhVl5HeC/yXuGuJipkdBs4CJ4GjwLCZ/a14q4qOu78EfAL4b8CzwLeAtViL2oWuCnTgHcB7zSwPXAL+spn9x3hLio67z1b/e5PKGuyZeCuK1Aww4+5/Uj3+PJWA7yWPAt9w9/8XdyER+ivA9919zt1XgS8CfynmmiLl7r/r7g+5+zuBBaAr18+hywLd3X/d3Y+7e47Kj7Z/6O490S2Y2bCZ7Q8+Bn6Wyo+DPcHdXwGmzezN1YfeDXwnxpJa4TF6aLmlagr4cTNLm5lR+Xt7KeaaImVmP1T97zjw1+niv8NunXLpRQ8AX6r8P0MS+M/u/my8JUXul4H/VF2auEEP3Uy8uv76HuAfxF1LlNz9T8zs88A3qCxFfJMeuaqyxhfMLAOsAh9191txF9QsXSkqItIjumrJRUREtqZAFxHpEQp0EZEeoUAXEekRCnQRkR6hQBcR6REKdBGRHqFAFxHpEf8fOPsXGcH/G/YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.2080635908265571e-57, 1.4774685646480428e-50, 2.927549110228349e-42, 2.0723760293438062e-32, 8.80211621737463e-21, 2.1235971268731145e-08, 0.7671296791633029, 2.97710641011874e-07, 1.6669010569660399e-19, 2.6682967439642807e-31, 2.501526909114919e-41, 9.090047576810763e-50]\n" + ] + } + ], + "source": [ + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The p-value tells us something about the probability that the mean of our distribution is exactly a given value. However, it's not the probabiltiy of the mean being exactly this value, because the p-value has something to do with the given value AND with the given distribution:" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A different sample" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAQBElEQVR4nO3df6zddX3H8efLVoIoDLRXJy1dcenQxgjiFZ3LGMqmrdusGnXgFMfGOhJxuv0Df80tzkyjJlOHNg0iskTIpqjVdaBhmWxhbJSJSGHVDhWuRSjij0UzsfjeH+dU7k5Py+nt/d5vD5/nIzm55/v5fu45r94299Xvz5OqQpLUrsf1HUCS1C+LQJIaZxFIUuMsAklqnEUgSY1b3neAQ7VixYpas2ZN3zEkaarccsstD1TVzLh1U1cEa9asYfv27X3HkKSpkuSbB1rnriFJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUuM6KIMnlSe5PcvsB1ifJB5LsSnJbktO7yiJJOrAutwiuANYfZP0GYO3wsQn4cIdZJEkH0FkRVNUNwIMHmbIRuLIGbgKOT/L0rvJIksbr88rilcA985bnhmP3jk5MsonBVgOrV69e8BuuueQffvb8G+/6zQW/zpHosfxnm+9Q/5xL/XNZrPdbytyt/Ns5VEfKv52lyNHnweKMGRv7cWlVtaWqZqtqdmZm7K0yJEkL1GcRzAEnzVteBezuKYskNavPItgKnDc8e+iFwPerar/dQpKkbnV2jCDJVcBZwIokc8DbgccDVNVmYBvwcmAX8CPg/K6ySJIOrLMiqKpzH2V9AW/u6v0lSZPxymJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4zotgiTrk+xMsivJJWPW/1ySzyb5cpIdSc7vMo8kaX+dFUGSZcClwAZgHXBuknUj094M3FFVpwJnAe9LclRXmSRJ++tyi+AMYFdV3VVVDwFXAxtH5hRwbJIATwIeBPZ2mEmSNKLLIlgJ3DNveW44Nt/fAM8CdgNfAd5aVT8dfaEkm5JsT7J9z549XeWVpCZ1WQQZM1Yjyy8DbgVOBE4D/ibJcft9U9WWqpqtqtmZmZnFTypJDeuyCOaAk+Ytr2LwP//5zgeuqYFdwNeBZ3aYSZI0ossiuBlYm+Tk4QHgc4CtI3PuBs4GSPI04BTgrg4zSZJGLO/qhatqb5KLgOuAZcDlVbUjyYXD9ZuBdwBXJPkKg11JF1fVA11lkiTtr7MiAKiqbcC2kbHN857vBl7aZQZJ0sF5ZbEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcZ0WQZL1SXYm2ZXkkgPMOSvJrUl2JPlil3kkSftb3tULJ1kGXAr8BjAH3Jxka1XdMW/O8cCHgPVVdXeSp3aVR5I0XpdbBGcAu6rqrqp6CLga2Dgy5/XANVV1N0BV3d9hHknSGF0WwUrgnnnLc8Ox+X4JOCHJPye5Jcl5HeaRJI3R2a4hIGPGasz7Pw84G3gC8G9Jbqqqr/6/F0o2AZsAVq9e3UFUSWpXl1sEc8BJ85ZXAbvHzLm2qn5YVQ8ANwCnjr5QVW2pqtmqmp2ZmekssCS1qMsiuBlYm+TkJEcB5wBbR+Z8BvjVJMuTHAO8ALizw0ySpBGd7Rqqqr1JLgKuA5YBl1fVjiQXDtdvrqo7k1wL3Ab8FLisqm7vKpMkaX8TFUGS66vq7EcbG1VV24BtI2ObR5bfA7xnsriSpMV20CJIcjRwDLAiyQk8cgD4OODEjrNJkpbAo20R/BHwNga/9G/hkSL4AYOLxSRJU+6gRVBV7wfen+QtVfXBJcokSVpCEx0jqKoPJnkRsGb+91TVlR3lkiQtkUkPFv8t8IvArcDDw+ECLAJJmnKTnj46C6yrqtErgyVJU27SC8puB36+yyCSpH5MukWwArgjyX8AP943WFWv6CSVJGnJTFoEf95lCElSfyY9a8hPDpOkx6hJzxr6Hx65hfRRwOOBH1bVcV0FkyQtjUm3CI6dv5zklQw+gUySNOUWdBvqqvo08JJFziJJ6sGku4ZePW/xcQyuK/CaAkl6DJj0rKHfnvd8L/AN9v8geknSFJr0GMH5XQeRJPVjomMESVYl+VSS+5Pcl+STSVZ1HU6S1L1JDxZ/lMHnDZ8IrAQ+OxyTJE25SYtgpqo+WlV7h48rgJkOc0mSlsikRfBAkjckWTZ8vAH4TpfBJElLY9Ii+H3gdcC3gXuB1wAeQJakx4BJTx99B/CmqvouQJInA+9lUBCSpCk26RbBc/aVAEBVPQg8t5tIkqSlNGkRPC7JCfsWhlsEk25NSJKOYJP+Mn8fcGOSTzC4tcTrgHd2lkqStGQmvbL4yiTbGdxoLsCrq+qOTpNJkpbExLt3hr/4/eUvSY8xC7oNtSTpscMikKTGWQSS1DiLQJIaZxFIUuMsAklqXKdFkGR9kp1JdiW55CDznp/k4SSv6TKPJGl/nRVBkmXApcAGYB1wbpJ1B5j3buC6rrJIkg6syy2CM4BdVXVXVT0EXM34D7x/C/BJ4P4Os0iSDqDLIlgJ3DNveW449jNJVgKvAjYf7IWSbEqyPcn2PXv2LHpQSWpZl0WQMWM1svzXwMVV9fDBXqiqtlTVbFXNzsz4CZmStJi6vJX0HHDSvOVVwO6RObPA1UkAVgAvT7K3qj7dYS5J0jxdFsHNwNokJwPfAs4BXj9/QlWdvO95kiuAz1kCkrS0OiuCqtqb5CIGZwMtAy6vqh1JLhyuP+hxAUnS0uj0U8aqahuwbWRsbAFU1e91mUWSNJ5XFktS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIa12kRJFmfZGeSXUkuGbP+d5PcNnzcmOTULvNIkvbXWREkWQZcCmwA1gHnJlk3Mu3rwK9V1XOAdwBbusojSRqvyy2CM4BdVXVXVT0EXA1snD+hqm6squ8OF28CVnWYR5I0RpdFsBK4Z97y3HDsQP4A+MdxK5JsSrI9yfY9e/YsYkRJUpdFkDFjNXZi8mIGRXDxuPVVtaWqZqtqdmZmZhEjSpKWd/jac8BJ85ZXAbtHJyV5DnAZsKGqvtNhHknSGF1uEdwMrE1ycpKjgHOArfMnJFkNXAO8saq+2mEWSdIBdLZFUFV7k1wEXAcsAy6vqh1JLhyu3wz8GfAU4ENJAPZW1WxXmSRJ++ty1xBVtQ3YNjK2ed7zC4ALuswgSTo4ryyWpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGWQSS1DiLQJIaZxFIUuMsAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGmcRSFLjLAJJapxFIEmNswgkqXEWgSQ1ziKQpMZZBJLUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikKTGdVoESdYn2ZlkV5JLxqxPkg8M19+W5PQu80iS9tdZESRZBlwKbADWAecmWTcybQOwdvjYBHy4qzySpPG63CI4A9hVVXdV1UPA1cDGkTkbgStr4Cbg+CRP7zCTJGlEqqqbF05eA6yvqguGy28EXlBVF82b8zngXVX1r8Pl64GLq2r7yGttYrDFAHAKsLOT0Au3Anig7xALNM3ZYbrzm70/05x/odl/oapmxq1Yfnh5DipjxkZbZ5I5VNUWYMtihOpCku1VNdt3joWY5uww3fnN3p9pzt9F9i53Dc0BJ81bXgXsXsAcSVKHuiyCm4G1SU5OchRwDrB1ZM5W4Lzh2UMvBL5fVfd2mEmSNKKzXUNVtTfJRcB1wDLg8qrakeTC4frNwDbg5cAu4EfA+V3l6dgRu9tqAtOcHaY7v9n7M835Fz17ZweLJUnTwSuLJalxFoEkNc4iOAxJvpHkK0luTbL90b/jyJLk+CSfSPJfSe5M8st9Z5pEklOGP/N9jx8keVvfuSaV5E+S7Ehye5Krkhzdd6ZDkeStw+w7puHnnuTyJPcnuX3e2JOTfCHJ14ZfT+gz44EcIPtrhz/7nyZZlNNILYLD9+KqOm1Kz0l+P3BtVT0TOBW4s+c8E6mqncOf+WnA8xicaPCpnmNNJMlK4I+B2ap6NoMTKc7pN9Xkkjwb+EMGdw44FfitJGv7TfWorgDWj4xdAlxfVWuB64fLR6Ir2D/77cCrgRsW600sgkYlOQ44E/gIQFU9VFXf6zfVgpwN/HdVfbPvIIdgOfCEJMuBY5iua2eeBdxUVT+qqr3AF4FX9ZzpoKrqBuDBkeGNwMeGzz8GvHJJQ01oXPaqurOqFvXuChbB4Sng80luGd4GY5o8A9gDfDTJl5JcluSJfYdagHOAq/oOMamq+hbwXuBu4F4G1858vt9Uh+R24MwkT0lyDIPTv096lO85Ej1t3zVLw69P7TlPryyCw/MrVXU6g7uovjnJmX0HOgTLgdOBD1fVc4EfcuRuHo81vFDxFcDf951lUsN90RuBk4ETgScmeUO/qSZXVXcC7wa+AFwLfBnY22soHTaL4DBU1e7h1/sZ7KM+o99Eh2QOmKuqfx8uf4JBMUyTDcB/VtV9fQc5BL8OfL2q9lTVT4BrgBf1nOmQVNVHqur0qjqTwW6Lr/WdaQHu23en4+HX+3vO0yuLYIGSPDHJsfueAy9lsNk8Farq28A9SU4ZDp0N3NFjpIU4lynaLTR0N/DCJMckCYOf+1QcpN8nyVOHX1czOGg5bX8HMLi9zZuGz98EfKbHLL3zyuIFSvIMHjlTZTnw8ap6Z4+RDlmS04DLgKOAu4Dzq+q7/aaazHD/9D3AM6rq+33nORRJ/gL4HQa7VL4EXFBVP+431eSS/AvwFOAnwJ9W1fU9RzqoJFcBZzG4ffN9wNuBTwN/B6xmUM6vrarRA8q9O0D2B4EPAjPA94Bbq+plh/U+FoEktc1dQ5LUOItAkhpnEUhS4ywCSWqcRSBJjbMIJKlxFoEkNc4ikA5TkucnuS3J0cMrzncMb9csTQUvKJMWQZK/BI4GnsDgHk5/1XMkaWIWgbQIhndCvRn4X+BFVfVwz5GkiblrSFocTwaeBBzLYMtAmhpuEUiLIMlW4GoGnzPw9Kq6qOdI0sSW9x1AmnZJzgP2VtXHkywDbkzykqr6p76zSZNwi0CSGucxAklqnEUgSY2zCCSpcRaBJDXOIpCkxlkEktQ4i0CSGvd/od8p3HUvcwAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# we change our sample-set distribution: still the same mean, but less samples\n", + "x = random.normal(loc=7, scale=2, size=10)\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(x, bins=100)\n", + "ax.set_ylabel(\"count\")\n", + "ax.set_xlabel(\"x\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean of the sample is 8.119529116048758\n", + "Standard deviation of the sample is 2.0204845095615167\n" + ] + } + ], + "source": [ + "# Descriptive statistics\n", + "mean = np.mean(x)\n", + "print(\"Mean of the sample is \" + str(mean)) \n", + "\n", + "standard_deviation = np.std(x)\n", + "print(\"Standard deviation of the sample is \" + str(standard_deviation)) " + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p-value of or mean being 5.0: p = 0.0012334275352099738\n", + "p-value of or mean being 5.25: p = 0.002109113565393285\n", + "p-value of or mean being 5.5: p = 0.0036779985289670967\n", + "p-value of or mean being 5.75: p = 0.006533286207939051\n", + "p-value of or mean being 6.0: p = 0.011793208822144456\n", + "p-value of or mean being 6.25: p = 0.021546001246203775\n", + "p-value of or mean being 6.5: p = 0.039593910627630714\n", + "p-value of or mean being 6.75: p = 0.07252704549826716\n", + "p-value of or mean being 7.0: p = 0.13082302205953084\n", + "p-value of or mean being 7.25: p = 0.2288536626571357\n", + "p-value of or mean being 7.5: p = 0.38163334982616415\n", + "p-value of or mean being 7.75: p = 0.5965754653989805\n", + "p-value of or mean being 8.0: p = 0.8630646511353139\n", + "p-value of or mean being 8.25: p = 0.8506951082698209\n", + "p-value of or mean being 8.5: p = 0.5859313467823023\n", + "p-value of or mean being 8.75: p = 0.3736492963758953\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de3xU9Z3/8dcnN5IgSbgECAQCKnKRBJUAotYbWgW0blvbH6xK1XZdurXtr92Ltr9etpfd7m67j8dura0/13brtdaqtQpRdG1r+6tyVxMCIncIBEi4JBByn+/vj5lJ4xjICDlzzsy8n49HHpk5c2by9hjmk/mc7/l+zTmHiIikrwy/A4iIiL9UCERE0pwKgYhImlMhEBFJcyoEIiJpLsvvAB/UiBEj3IQJE/yOISKSVNatW9fonCvu67GkKwQTJkxg7dq1fscQEUkqZrbrZI+pNSQikuZUCERE0pwKgYhImlMhEBFJcyoEIiJpToVARCTNqRCIiKS5pLuOQETk95sPsr2hhQkj8ikbPpjSoXkMysr0O1bSUiEQkaTS3tXN5594k2PtXT3bzGBMYV5PYZgwPPy9bHg+ZcMGk5ejInEqKgQiklT++G4jx9q7+M9FF1A6NJ9dh1rYeegEuyPfX6yp58iJzvc8Z1TBoPcViAmR70Nys336LwkOFQIRSSpVNfUU5GYxf3oJOVkZzCwb+r59mlo72X3oBDsPtfQqFCf4/eYGDh6re8++wwfnUDY8n8smFfPla89L1H9GoKgQiEjSaO/q5pWNB7hu+mhysk4+1qUwL5vy0kLKSwvf91hLexe7D59g16ETPUXi7T1H+eGrW7j5olLGD8/38j8hkFQIRCRp/L8t4bbQwvKS036NwYOymFpSwNSSgp5tdUdOcNm//o6qDfUsveKcgYiaVDR8VESSxvJIW+jSc0cM6OuWDs1nxrgillfXD+jrJgsVAhFJCtG20LXTTt0WOl03lJdQs7eJ3YdODPhrB50KgYgkhT9tbeRYWxcLK0Z78vrzy8Ovu7wm/T4VqBCISFJYXr2fIblZXHZun4tsnbHSoflcMK6I5TX7PHn9IFMhEJHA6+gK8crG/Vw7bZQnbaGoheUlbNjbzK5DLZ79jCBSIRCRwPvT1kaa285stFA80rU9pEIgIoG3vKaeIYOyuGzSwI4WilU6NJ8LxxdRpUIwcMzsejPbbGZbzezePh4vNLMXzOxtM6s1szu8zCMiyaejK8TLteG2UCImlkvH9pBnhcDMMoH7gfnANGCxmU2L2e1zwEbn3AzgSuDfzSzHq0wiknz+tC3cFlrgcVsoan7k56RTe8jLTwSzga3Oue3OuQ7gSeCmmH0cMMTMDDgLOAx0ISISUVUdbgt96Dxv20JRY4vyuHB8el1c5mUhGAvs6XW/LrKttx8BU4F9QA3wRedcKPaFzOwuM1trZmsbGhq8yisiAdPZHeLljQe4JkFtoaiF5SXU7mtmZ2N6tIe8LATWxzYXc/864C1gDHAB8CMzK3jfk5x70DlX6ZyrLC72ZgyxiATPn7Y20tTambC2UNSCNGsPeVkI6oBxve6XEv7Lv7c7gGdd2FZgBzDFw0wikkSqauo5a1AWH/J4tFCsMUV5XJRG7SEvC8EaYJKZTYycAF4EPB+zz25gHoCZjQImA9s9zCQiSaKnLTR1JLnZiV9hbEF5CRvrm9mRBu0hzwqBc64LuBtYAWwCnnLO1ZrZUjNbGtntO8AlZlYDvArc45xr9CqTiCSP17cd4uiJxLeFoqI/Nx2uKfB0PQLnXBVQFbPtgV639wEf9jKDiCSnqupwW+jy8/w5L9i7PfS5q871JUOi6MpiEQmczu4QKzbuZ55PbaGohRVj0qI9pEIgIoHzhs9toagFkbmHUr09pEIgIoFTVVPP4JxMrvCpLRRVUpjHzLKhLEvx0UMqBCISKJ3dIVbU7mfe1FG+toWiFpaXsKm+me0Nx/2O4hkVAhEJlJXbD3EkAG2hqPlp0B5SIRCRQIm2ha6cHIxZBEoK86hM8faQCoGIBEZXd4gVtQe4OiBtoagF5SW8s/8Y21K0PaRCICKBsXL7YQ63dLCw3JsF6k9Xz8VlKfqpQIVARAJjeU09+TmZXDl5pN9R3mN0YS6VZUNTdhI6FQIRCYSuyGihq6f4exHZySysSN32kAqBiATCqh3RtlAwRgvFmj89ddtDKgQiEgjLa+rJyw5eWyhqdGEusyakZntIhUBEfNfVHWLFhv1cPXUkeTnBawtFRUcPbT2YWu0hFQIR8d3qHYc5FOC2UNT86SWYpd7FZSoEIuK7aFvoqoC2haJ6Rg+l2HkCFQIR8VV3yPWMFgpyWyhqYXkJmw8cY+vBY35HGTAqBCLiq1U7DtF4vCMwcwv1Z355uD20vHq/31EGjAqBiPiqqqae3OwMrpoSjLmF+jOqIJdZZcNS6jyBCoGI+KY75HhpwwGunjKS/BxPV84dUAsrUqs9pEIgIr5ZveMwjcfbk6YtFDV/+uiUag+pEIiIb6JtoaunBHu0UKyRBbnMmjCM5TX7/I4yIFQIRMQX3SHHixv2c9Xk5GoLRS0sL+HdA8fZciD520MqBCLiizU7k7MtFNXTHkqBk8YqBCLii6qaegZlJV9bKKqnPZQCF5epEIhIwvVuCw0elHxtoagbKkrYcvA47yZ5e0iFQEQSbu3OwzQca2dBRXK2haKu7xk9lNyfClQIRCThom2heUnaFooaOSSX2ROS/+IyFQIRSahQpC105eTipG4LRS1MgfaQCoGIJNTaXUc4eCx5RwvFSoX2kAqBiCRUVU09OVkZzJs6yu8oAyLaHkrmYaQqBCKSMOG2UD1XnlfMWSnQFoq6oaKErUncHlIhEJGEWbf7CAea21mY5KOFYl03fTQZBsuStD2kQiAiCbO8OrXaQlEjh+Qye+Iwllfvwznnd5wPTIVARBIi2ha6IsXaQlELK8awraGFdw8k38L2KgQikhDro22hFBktFOv688PtoeXVyTcjqQqBiCTE8p7RQsl9EdnJFA8ZxJyJw1leU5907SFPC4GZXW9mm81sq5nde5J9rjSzt8ys1sxe8zKPiPgjFHK8WLOfyycVMyQ32+84nllQUcK2hhY2J9noIc8KgZllAvcD84FpwGIzmxazTxHwY+AjzrnzgU94lUdE/PPmniPsb25jYcVov6N4Ktoeqkqy0UNefiKYDWx1zm13znUATwI3xezzl8CzzrndAM65gx7mERGfLK/eT05m6o0WihVtDy1LsvaQl4VgLLCn1/26yLbezgOGmtnvzWydmS3xMI+I+CA6Wujy80ZQkMJtoaiFFSVsT7L2kJeFwPrYFlsis4CZwELgOuDrZnbe+17I7C4zW2tmaxsaGgY+qYh4ZuWOQ9Q3taXcRWQnc/306Oih5GkPeVkI6oBxve6XArHjquqAl5xzLc65RuAPwIzYF3LOPeicq3TOVRYXF3sWWEQG3uMrd1OYl8386elRCEacNYiLz06u0UNeFoI1wCQzm2hmOcAi4PmYfX4DfMjMsswsH5gDbPIwk4gk0MHmNlbU7ucTM0vJzc70O07CLCgPt4dq9zX7HSUunhUC51wXcDewgvCb+1POuVozW2pmSyP7bAJeAqqB1cBDzrkNXmUSkcT65Zo9dIUct1xc5neUhLqhooRBWRk8sXq331Hi4ul13s65KqAqZtsDMfe/D3zfyxwiknhd3SGeWL2bD00awcQRg/2Ok1BF+Tl8ZMYYnntzL/fOnxL4k+S6slhEPPHbdw5S39TGLXPS69NA1G1zyzjR0c2z6+r8jtIvFQIR8cSjK3cxuiCXa1J0Son+VJQWMWNcEY+u3BX4k8YqBCIy4HY2tvDHLY0snj2erMz0fZtZcnEZ2xpaeH3bIb+jnFL6/h8SEc88sXo3WRnGotnj+t85hS2sKGFofjaPvrHL7yinpEIgIgOqrbObp9bu4cPnj2JUQa7fcXyVm53JJ2eN45VNB6hvavU7zkmpEIjIgFpeXc/RE53cmqYniWPdOqeMkHM8sSq4Q0lVCERkQD22ahdnFw9m7jnD/Y4SCOOG5XPV5JH8YvUeOrpCfsfpkwqBiAyYDXubeHP3UW6dU4ZZX9ONpafb5pbReLydl2r3+x2lTyoEIjJgHl+1i9zsDD4+s9TvKIFyxaRiyobn8+gbO/2O0icVAhEZEM1tnTz35j5umjGWwrxgX0mbaBkZxq1zyliz8wib6oM3/5AKgYgMiGfX1dHa2c2taTavULw+UVnKoKwMHl0ZvKGkKgQicsacczy2ajczSgspLy30O04g9Z5/qLmt0+8476FCICJnbOX2w2w9eFyfBvqxZO6EQM4/pEIgImfssVW7KMzL5sYZY/yOEmjlpYWBnH9IhUBEzsjBY22s2JB+i8+criDOP6RCICJn5Jer03PxmdMVxPmHVAhE5LR1hxy/WL2by85Nv8VnTlcQ5x+KuxCY2WVmdkfkdrGZTfQulogkg9++c5B9TW06SfwBBW3+obgKgZl9E7gH+EpkUzbwmFehRCQ5pPviM6dr3LB8rg7Q/EPxfiL4KPARoAXAObcPGOJVKBEJvl2HWvjDuw0smj0urRefOV23Bmj+oXj/73W48FgnB2BmagaKpLknVu0mM8NYPHu831GSUpDmH4q3EDxlZv8XKDKzvwL+B/gv72KJSJD1LD4zTYvPnK4gzT8UVyFwzv0AeBp4BpgMfMM5d5+XwUQkuKpq6jlyolMnic9QUOYfyop3R+fcK8ArHmYRkSTx6Mrw4jOXaPGZM9J7/qF750+hINefWVvjHTV0zMyaI19tZtZtZsGbS1VEPFe7L7z4zC1afGZABGH+oXhbQ0OccwWRr1zg48CPvI0mIkH02Mrd5GZncPNFWnxmIJSXFnKBz/MPndaYL+fcc8DVA5xFRAIuvPjMXj4yYwyF+Vp8ZqDc5vP8Q3GdIzCzj/W6mwFUEhlKKiLp49fr92rxGQ8srCjhn6o28egbu7j03BEJ//nxniy+sdftLmAncNOApxGRwHLO8djKXcwoLaSitMjvOCklNzuTT1aO47/+uJ36plZKCvMS+vPjPUdwR6+vv3LO/ZNz7qDX4UQkOFbtOMyWg8c1y6hHbpkz3rf5h075icDM7uMULSDn3BcGPJGIBNJjK3dRkJvFjRVafMYLvecf+vzVk8jJSty0Hf21htYmJIWIBNrBY22sqN3PkrkTyMvR4jNeuW1uGa/+9xpeqt3PRxK42tspC4Fz7uFEBRGR4HpqzR46ux23zNG8Ql66vNf8Q4ksBPFeUFZsZj8wsyoz+230y+twIuK/8OIze7j03OGcXXyW33FSml/zD8XbhHoc2ARMBL5FeNTQGo8yiUiA/O6dg+w92sptOkmcEH7MPxRvIRjunPsp0Omce805dydwsYe5RCQgHl25i1EFg7hm6ii/o6SF3vMPNbd1JuRnxlsIomnqzWyhmV0I6PpykRS361ALf9jSwOLZ47X4TAIlev6heP/PftfMCoG/Bf4OeAj4Un9PMrPrzWyzmW01s3tPsd+syER2N8eZR0QS4IlVu8kwY9EsnSROpETPPxRvIVjlnGtyzm1wzl3lnJvpnHv+VE8ws0zgfmA+MA1YbGbTTrLfvwIrPmB2EfFQdPGZa6eOYnShFp9JtETOPxRvIXjdzF42s0+b2dA4nzMb2Oqc2+6c6wCepO9pKT5PeMEbXaksEiAvbggvPnPbXJ0k9sPCihKGDc7h0Te8P2kc7xQTk4CvAecD68xsmZnd2s/TxgJ7et2vi2zrYWZjgY8CD5zqhczsLjNba2ZrGxoa4oksImfo0Td2cfYILT7jl+j8Q69sOkB9U6unPyvusz/OudXOuS8T/kv/MNDfxWZ9rVgR2+z6D+Ae51x3Pz/7QedcpXOusri4ON7IInKaNu5rZv3uo/zlnPFafMZHiZp/KN4LygrM7FNm9iLwOlBPuCCcSh0wrtf9UmBfzD6VwJNmthO4Gfixmf1FPJlExDuPrdpFbnYGn5g5rv+dxTO95x/q6Ap59nPi/UTwNnAB8G3n3HnOuXucc+v6ec4aYJKZTTSzHGAR8J4TzM65ic65Cc65CcDTwN9EFr0REZ8ciyw+c2OFFp8JgtvmltF4vJ2Xavd79jPiLQRnO+e+5Jx7w8xuiOcJzrku4G7Co4E2AU8552rNbKmZLT3NvCLisV+s3s2JDi0+ExS95x/ySlwL07j3DmT9NrAszudVAVUx2/o8Meycuz2e1xQR7zQeb+e+V7dyxXnFzBinxWeCIDr/0D9VbWJTfTNTSwoG/mecxnN05kgkRf37y5tp7ezm6ze875If8VF0/iGvThrHu2ZxLvA3wGXAETP7EvAT51ybJ6lEJOE27G3iyTV7+PSlEzl3pGYZDZKi/Bx++qlZVIwr9OT1412z+BHgGHBf5P5i4FHgE16EEpHEcs7xrRdqGZafw+fnTfI7jvThskneLWofbyGY7Jyb0ev+78zsbS8CiUjiLauuZ83OI3zvY+UU5mmkULqJ9xzBm2bWM+20mc0B/uRNJBFJpNaObr5XtYnzxxTwyUpdN5CO4v1EMAdYYmbRMxXjgU1mVkN4UFGFJ+lExHMPvLaNfU1t/MeiC8nM0FiQdBRvIbje0xQi4ou9R1t54LVt3FBRwuyJw/yOIz6J9zqCxK2ZJiIJ872qTQB8ZcFUn5OIn7TkkEiaWr3jMMuq61l6xTmMLcrzO474SIVAJA11hxz/+HwtYwpzWXrFOX7HEZ+pEIikoafW7mFjfTNfWTCVvJxMv+OIz1QIRNJMU2snP1ixmVkThnJDRYnfcSQA4h01JCIp4r5Xt3D4RAcP3zhbi84IoE8EImll68Hj/Pz1nSyaNY7pY72Zt0aSjwqBSBr57vKN5GVn8rcfnux3FAkQFQKRNPG7dw7y+80NfPGaSYw4a5DfcSRAVAhE0kBHV4jvLNvI2cWDWTJ3gt9xJGBUCETSwMOv72R7Ywtfv2EaOVn6Zy/vpd8IkRTXcKydH766hasmF3PV5JF+x5EAUiEQSXHR5Se/puUn5SRUCERS2Ia9Tfxy7R5uv2QC5xRr+UnpmwqBSIrqvfzkF67R8pNycioEIinqhcjyk39/3WQKcrX8pJycCoFICuq9/OQntPyk9EOFQCQFPfDaNuqb2vjmjedr+UnplwqBSIqJLj9544wxWn5S4qJCIJJi/rlqE2Zw7/wpfkeRJKFCIJJCVm0/xHItPykfkAqBSIroDjm+9cJGxhTm8teXa/lJiZ8KgUiKiC4/+dWFWn5SPhgVApEU0NTayfdXbGb2hGEsLNfyk/LBqBCIpIAfvrqFIyc6+MaN07T8pHxgKgQiSW7rweM8rOUn5QyoEIgksbbObu55ppq8nEz+TstPymnK8juAiJye7pDji0++yfrdR7hv8YUM1/KTcpr0iUAkCTnn+PpvNrCi9gDfuGEaN1SM8TuSJDEVApEk9J+vbuGJVbv57JXncMelE/2OI0nO00JgZteb2WYz22pm9/bx+C1mVh35et3MZniZRyQVPL5qF//xP1u4eWYp/3CdzgvImfOsEJhZJnA/MB+YBiw2s9i18nYAVzjnKoDvAA96lUckFayo3c/Xn9vAVZOL+d7HyjVUVAaEl58IZgNbnXPbnXMdwJPATb13cM697pw7Erm7Eij1MI9IUlu94zCf/8WbVJQWcf8tF5Gdqc6uDAwvf5PGAnt63a+LbDuZTwMv9vWAmd1lZmvNbG1DQ8MARhRJDpv3H+MzD6+hdGgeP7t9Fvk5GvAnA8fLQtDXZ1bX545mVxEuBPf09bhz7kHnXKVzrrK4uHgAI4oE396jrXzqZ6vJy8nkkTtnM2xwjt+RJMV4+WdFHdB7jbxSYF/sTmZWATwEzHfOHfIwj0jSOdLSwZKfrqKlo4tfLZ1L6dB8vyNJCvLyE8EaYJKZTTSzHGAR8HzvHcxsPPAscJtz7l0Ps4gkndaObu58eA17jrTy0JJKpowu8DuSpCjPPhE457rM7G5gBZAJ/Mw5V2tmSyOPPwB8AxgO/Dgy+qHLOVfpVSaRZNHVHeLuJ9bz9p6j/PiWi5hz9nC/I0kK8/SMk3OuCqiK2fZAr9ufAT7jZQaRZOOc46u/ruHVdw7y3b+YzvXTNa20eEvjz0QC5gcvb+aptXV8Yd4kbr24zO84kgZUCEQC5Od/2sH9v9vG4tnj+dI1k/yOI2lChUAkIJZV7+Nbyzby4Wmj+M5N5+uqYUkYFQKRAHh9WyNf/uXbzCobxg8XX0iWrhqWBNJvm4jPavc1cdcj65g4YjD/taSS3GwtPC+JpUIg4qM9h09w+3+voSA3i5/fOYvC/Gy/I0kaUiEQ8cmh4+0s+dlqOrtDPPLp2ZQU5vkdSdKUCoGID1rau7jz52uob2rlp5+axbkjh/gdSdKYpjAUSbCOrhCffXw9G/Y18+BtM5lZNtTvSJLm9IlAJIHaOrv5u1+9zR/ebeB7Hytn3tRRfkcS0ScCkURZs/Mw//B0NTsaW7jn+il8snJc/08SSQAVAhGPnejo4t9e2szDb+ykdGgeT3xmDpecO8LvWCI9VAhEPPT6tkbueaaaPYdbuf2SCfz9dZMZPEj/7CRY9Bsp4oFjbZ38y4vv8Piq3UwcMZin/nousycO8zuWSJ9UCEQG2GvvNvCVZ6rZ39zGX31oIl++djJ5ObpaWIJLhUBkgDS1dvLdZRv51bo6zh15Fk9/9hIuGq+hoRJ8KgQiA+DVTQf46q9raDzewd9ceQ5fmDdJcwZJ0lAhEDkDR1o6+NYLtTz31j6mjB7CQ0tmUV5a6HcskQ9EhUDkNL20oZ6vPVfL0RMdfHHeJD531bnkZOkaTUk+KgQiH1Dj8Xa++ZtaltfUc/6YAh65czbTxhT4HUvktKkQiMTJOccL1fX84/O1HG/r4u+vm8xdl59NthaRkSSnQiASh4PNbfyf5zbwysYDzBhXxPdvruC8UZoxVFKDCoHIKYRCjl+/uZdvL9tIW2c3X10whTsvnailJCWlqBCI9GFnYwvPrK/j2fV72Xu0lcqyofzbzRWcXXyW39FEBpwKgUhEc1sny6vreXpdHet2HSHD4LJJxdw7fwoLykvIzDC/I4p4QoVA0lp3yPHHLQ08s34vL9fup70rxKSRZ3Hv/Cl89MKxjCrI9TuiiOdUCCQtbTlwjKfX1/Hcm3s50NxOYV42/2vWOD5+USkVpYWY6a9/SR8qBJI2jrR08EL1Pp5ZV8fbdU1kZhhXTS7mH28s5eqpIxmUpSkhJD2pEEhK6+wO8drmBp5ZX8f/bDpAZ7djakkBX1s4lZsuGEvxkEF+RxTxnQqBpKSN+5p5Zn0dv3lrL43HOxg+OIfbLp7Ax2eO5fwxmgtIpDcVAkl6zjkONLfzdt1RauqaePWdg2yqbyY705g3ZRQ3zyzlisnFugJY5CRUCCTpNB5vp6auqeeNv3pvEw3H2gHIzDDKxxby7ZvO58aKMQwdnONzWpHgUyGQQDt6ooOavU1U1zVRHXnj39fUBoAZnFt8Fh+aNIIZpUWUlxYyraRA6wCIfEAqBBIYx9o62bC3mZq9R3m7romauiZ2Hz7R8/jEEYOpnDCMitJCKkqLOH9MgRaCFxkA+lckCdXe1c3B5nbqm9qob2qlvqmNzfuP8XbdUbY3tPTsVzo0j4rSQhbPHk9FaSHTxxRSmJ/tY3KR1KVCIAOmrbObA81t1De1sb+p7T1v9tH7jcfb3/e8UQWDqCgt4qMXjKW8tJDysYUMP0vDOkUSRYVATqmzO8Sxti6OtXVyrK2LptbOnjf7+qbWnjf4/U1tHGrpeN/zC3KzKCnMY3RhLtPHFjC6II+SwlxGF+b2fB+Sq7/0RfzkaSEws+uB/wQygYecc/8S87hFHl8AnABud86t9zJTunDO0dntaO3opjnyJn6srZPmXm/qve+Hv3fR3NrZ6/EuWju7T/ozivKzGV0QfkOfMa6IkoLoG3weJUW5jC7IVQ9fJAl49q/UzDKB+4FrgTpgjZk975zb2Gu3+cCkyNcc4CeR74EVCjlCztHtHM5BV8jR1R2KfHd0dofoDjm6Qn/eFrtPVyj05+29b3eH6OwO0d4V/mrr7A7fjnzvud8Vor2rm7bO8Pf2zj62dYVwrv//nkFZGRTkZTMkN4shudkU5GYxpiiXgtw/b+v9WEFeNqMKwm/yeTkanSOSCrz8c202sNU5tx3AzJ4EbgJ6F4KbgEeccw5YaWZFZlbinKsf6DC/33yQ7yzbiHPQ7cJv5qEQ4Tf1yJt7yPHn26HIfedwPfsMdKpTMwu/UedmZzIoK4NBWZnkZoe/h7dnUJSXzaD3bIvum8Gg7ExyszMZkptFQc+befSNPXxfi62LiJeFYCywp9f9Ot7/135f+4wF3lMIzOwu4C6A8ePHn1aYIbnZTBldQEaGkWGQaYaZkZkBGWbv2R6+bWRmGBbd1sc+ZpCdkUFmhpGdaWRmZJCVaWRlGFmZGeHvGUZ2Znif8GO99unjdnZmRs+bfXamaRZMEfGcl4Wgr3ew2L+p49kH59yDwIMAlZWVp/V3+cyyocwsG3o6TxURSWle9gXqgHG97pcC+05jHxER8ZCXhWANMMnMJppZDrAIeD5mn+eBJRZ2MdDkxfkBERE5Oc9aQ865LjO7G1hBePjoz5xztWa2NPL4A0AV4aGjWwkPH73DqzwiItI3Twd5O+eqCL/Z9972QK/bDviclxlEROTUNHZQRCTNqRCIiKQ5FQIRkTSnQiAikubMxTMhTYCYWQOw6zSfPgJoHMA4XlDGMxf0fBD8jEHPB8HPGLR8Zc654r4eSLpCcCbMbK1zrtLvHKeijGcu6Pkg+BmDng+CnzHo+XpTa0hEJM2pEIiIpLl0KwQP+h0gDsp45oKeD4KfMej5IPgZg56vR1qdIxARkfdLt08EIiISQ4VARCTNpWQhMLOdZlZjZm+Z2do+Hjcz+6GZbTWzajO7KIAZrzSzpsjjb5nZNxKcr8jMnjazd8xsk5nNjXk8CMewv4x+H8PJvX72W2bWbGb/O2Yf345jnPl8PYaRDF8ys1oz22BmvzCz3JjHff1djCOf78ewXy6yJm8qfQE7gRGneHwB8CLhFdIuBmJchMkAAAOMSURBVFYFMOOVwDIfj+HDwGcit3OAogAew/4y+noMY7JkAvsJX9QTqOPYTz6/fw/HAjuAvMj9p4Dbg3IM48wXmN/Dk32l5CeCONwEPOLCVgJFZlbid6igMLMC4HLgpwDOuQ7n3NGY3Xw9hnFmDJJ5wDbnXOxV8UH5XTxZviDIAvLMLAvI5/2rGPp9DPvLF3ipWggc8LKZrYssfB9rLLCn1/26yLZE6i8jwFwze9vMXjSz8xOY7WygAfhvM3vTzB4ys8Ex+/h9DOPJCP4dw1iLgF/0sd3v4xh1snzg4zF0zu0FfgDsBuoJr2L4csxuvh3DOPNBcH4P+5SqheBS59xFwHzgc2Z2eczj1sdzEj2Otr+M6wl/TJ8B3Ac8l8BsWcBFwE+ccxcCLcC9Mfv4fQzjyejnMexh4aVaPwL8qq+H+9iW0N/FfvL5egzNbCjhv/gnAmOAwWZ2a+xufTw1IccwznyB+D08lZQsBM65fZHvB4FfA7NjdqkDxvW6X0qCP871l9E51+ycOx65XQVkm9mIBMWrA+qcc6si958m/KYbu4+fx7DfjD4fw97mA+udcwf6eMzv4winyBeAY3gNsMM51+Cc6wSeBS6J2cfPY9hvvgAcw36lXCEws8FmNiR6G/gwsCFmt+eBJZHRBhcT/jhXH6SMZjbazCxyezbh/1eHEpHPObcf2GNmkyOb5gEbY3bz9RjGk9HPYxhjMSdvu/h6HCNOmi8Ax3A3cLGZ5UdyzAM2xezj5zHsN18AjmG/PF2z2CejgF9HjnsW8IRz7iUzWwo9ayZXER5psBU4AdwRwIw3A581sy6gFVjkIkMQEuTzwOORtsF24I6AHcN4Mvp9DDGzfOBa4K97bQvMcYwjn6/H0Dm3ysyeJtxe6QLeBB4MyjGMM5/vv4f90RQTIiJpLuVaQyIi8sGoEIiIpDkVAhGRNKdCICKS5lQIRETSnAqBiEiaUyEQEUlzKgQiZ8jMZkXmwc+NXDVea2bT/c4lEi9dUCYyAMzsu0AukEd4DqTv+RxJJG4qBCIDIDLNxRqgDbjEOdftcySRuKk1JDIwhgFnAUMIfzIQSRr6RCAyAMzseeBJwvPSlzjn7vY5kkjcUnH2UZGEMrMlQJdz7gkzywReN7OrnXO/9TubSDz0iUBEJM3pHIGISJpTIRARSXMqBCIiaU6FQEQkzakQiIikORUCEZE0p0IgIpLm/j9yCkMlgV5evwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.0012334275352099738, 0.002109113565393285, 0.0036779985289670967, 0.006533286207939051, 0.011793208822144456, 0.021546001246203775, 0.039593910627630714, 0.07252704549826716, 0.13082302205953084, 0.2288536626571357, 0.38163334982616415, 0.5965754653989805, 0.8630646511353139, 0.8506951082698209, 0.5859313467823023, 0.3736492963758953]\n" + ] + } + ], + "source": [ + "range = np.arange(5, 9, 0.25)\n", + "results = []\n", + "for value in range:\n", + " results = results + [test_if_mean_is(value)]\n", + " \n", + " \n", + "fig, ax = plt.subplots()\n", + "ax.plot(range, results)\n", + "ax.set_ylabel(\"p-value\")\n", + "ax.set_xlabel(\"x\")\n", + "plt.show()\n", + "\n", + "print(results)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p-value of or mean being 6.0: p = 0.023914983809892813\n" + ] + }, + { + "ename": "TypeError", + "evalue": "can only concatenate list (not \"NoneType\") to list", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mvalue\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m6\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m8\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m0.25\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mresults\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mtest_if_mean_is\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m: can only concatenate list (not \"NoneType\") to list" + ] + } + ], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "null-hypothesis: there is no effect, distributions are equal\n", + "alternative hypothesis: mean is greater in sample2 compared sample1\n", + "\n", + "set threshold: significance level (alpha): How different does it have to be in order to be \"significantly different\": 1%, 5%, 100%\n", + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/Testing curation time.ipynb b/11_Hypothesis_testing/Testing curation time.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..de404da5b12f81f2abb17d5efbe6257ff1afe81f --- /dev/null +++ b/11_Hypothesis_testing/Testing curation time.ipynb @@ -0,0 +1,273 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Setting up a dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 7.27011443 9.85465087 6.95141023 9.24500459 8.90495633 5.79813565\n", + " 9.9992094 4.28286738 5.0511571 6.01641775 7.83666669 8.28679017\n", + " 8.34411823 8.40852419 6.08060269 7.51628825 5.25725523 8.04858072\n", + " 8.15182518 8.12191271 6.55381928 3.33632874 6.31461858 4.6032308\n", + " 4.94019806 13.35032912 6.03333339 1.85193828 8.1009366 4.87296902\n", + " 6.66458631 5.30685262 6.8634381 6.76577551 6.91485281 8.45594048\n", + " 10.96326062 8.2848168 5.35423583 6.08847733 5.79986437 11.02288371\n", + " 6.2350441 5.7274503 7.28870892 4.80090545 8.14478415 10.16106687\n", + " 8.38779289 8.5303685 5.60679502 6.46821253 9.13004099 10.87366831\n", + " 8.78542611 10.33541741 3.51638379 6.02953238 5.65259087 4.61802449\n", + " 7.2299876 4.78301236 5.37869989 7.48787149 6.38289068 7.19154068\n", + " 9.27137051 5.54527698 10.65534957 5.08766764 7.02866932 9.05415527\n", + " 7.6600142 9.267061 8.19955612 6.33452432 9.4027188 9.7310974\n", + " 6.48210483 6.26928475 5.27401951 6.74515644 0.68122265 8.18065681\n", + " 9.15268339 7.74697703 10.28201112 7.71229436 7.63087416 7.09212867\n", + " 4.14195812 3.42643788 2.43797867 6.96902512 5.80804667 4.03700635\n", + " 4.8747575 4.7259411 5.56147663 7.57001294]\n", + "[ 5.13524566 8.1089771 7.57939463 6.47165697 5.19815039 8.55567731\n", + " 1.83529688 9.70428483 8.13301694 9.97211549 7.73281157 8.07545269\n", + " 6.40288602 9.04946821 8.48383013 10.20897295 6.94660508 11.64089259\n", + " 8.44294434 10.59686178 8.12008165 10.34050033 6.58178866 6.34215898\n", + " 8.12158417 5.21995735 3.42094155 6.25153858 6.80850307 6.38487336\n", + " 7.77958492 8.04584323 5.16018103 5.32055156 3.2750884 4.74092265\n", + " 8.47644018 8.38169422 6.54200936 4.66342594 7.3811708 5.96611443\n", + " 2.5391737 5.80949073 8.43909846 8.35925088 7.73026043 8.92385488\n", + " 4.42756307 5.43570972 4.37772115 7.20869488 8.61585258 6.95059967\n", + " 5.36276821 8.55683181 5.63832339 8.98418562 9.40877157 7.10719578\n", + " 6.81846318 6.30936051 1.59327067 6.51518219 6.64126646 6.94963272\n", + " 6.16910104 8.44546918 7.27876465 6.3617845 5.65081483 4.77328228\n", + " 5.8978814 12.09305192 9.00288095 7.58249317 7.93682524 7.95180752\n", + " 6.61845776 5.44036616 8.23451973 8.40993964 7.10424768 5.81649113\n", + " 9.93482548 4.05564067 11.28050143 8.55349791 7.61527436 7.59975485\n", + " 8.71477125 5.0134487 9.63238054 3.53756252 6.05610185 6.78353894\n", + " 8.28886174 8.29957261 5.26320487 8.89943049]\n" + ] + } + ], + "source": [ + "import patients\n", + "\n", + "number_of_patients = 100\n", + "\n", + "curation_time_treatment = patients.treatment_group(number_of_patients)\n", + "curation_time_placebo = patients.placebo_group(number_of_patients)\n", + "\n", + "print(curation_time_treatment)\n", + "print(curation_time_placebo)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Descriptive statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def do_descriptive_statistics(x):\n", + " mean_x = np.mean(x)\n", + " standard_deviation_x = np.std(x)\n", + "\n", + " print(\"Mean: \" + str(mean_x) + \" +- \" + str(standard_deviation_x))" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Treatment group\n", + "Mean: 6.966549057422408 +- 2.138934068447365\n", + "Placebo group\n", + "Mean: 7.10598565233434 +- 1.998905769266872\n" + ] + } + ], + "source": [ + "print(\"Treatment group\")\n", + "do_descriptive_statistics(curation_time_treatment)\n", + "\n", + "print(\"Placebo group\")\n", + "do_descriptive_statistics(curation_time_placebo)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZ+klEQVR4nO3deZhcVZ3G8e8LYU9YMokIBGhBBgTUgAFRRkVQBgQh+CCgyARkjM6II+ooUUEjLpMZFXUEcQAhgGFTFkEcB0QBdQBNQiQsKgKBhIQsrAkOS8hv/jinoFJ0d6o7feum+7yf5+mn6y517q/qVr1176l7bykiMDOzcqxVdwFmZtZZDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+A1J35d0SoeW9d+SJnRiWauo4zBJcyUtk7Rb3fUMFElHS7qu7jrWdJL2kTSv7jrq4uBfA0h6v6TpOYQW5HD8u4qWdayk3zSPi4iPRMSXK1jWZEk/bFnWgRFx/kAvqx++AZwQEcMj4vbWiZK+LGm2pOWSJncz/f2SHpT0tKSrJI1smraepHMlPSXpEUmfrOIBSOqSFJKGNcZFxLSI2H+A2g9Jr+70fdtsf6qkr1TV/lDn4K9ZDoVvA18DNge2Ab4HHNqPtoatei7LtgXu6mX6X4DPANe2TpC0C/BfwDGkdfZX0jprmAzskJfxduAzkg4YkKqHCL9WaxYR/qvpD9gEWAa8t5d5pgJfaRreB5jXNDwHOAm4A3gWGAZMAu4DlgJ3A4fleV8DPAO8kJf7RA/L+BAp+B4Drga2bJoWwEeAe4HHgTMAdVP3AcBzwPN5WX/I428E/jHfPhb4LfAt4AngfuDNefxcYBEwoanN9Uhb6g8BC4HvAxv08LytBZwMPJjbuSA/3+vlegJ4GrhvFevoh8DklnFfAy5qGt4+P9YRefhhYP+m6V8GLumh/X2AecDngCV5fR7dNP0g4HbgqfycTG6a9lB+HMvy35vyc/ebpnl2Aq7P6/JPwBEtr60zSB9uS4HbgO3ztJubnqNlwJHAKOCneV09BvwaWKubx9TdfRuP8yTgEeDCvI4ar9VHgcuAkU3t/CjP+2Ruc5c8fiLpdfVcbv+aPH5L4HJgMfAA8C9NbW2QH+/jpPfEp2l6H5X2V3sBJf+RwnE5MKyXeaay6uCfBWxNDkHgvflNsFZ+0z0NbJGnrRQMrcsA9s0BtDspJL8L3Nw0b+Q3/6akvZPFwAE91D4Z+GHLuBtZOfiXA8cBawNfIYXZGXnZ++dAGp7n/zbpg2gkMAK4Bvi3Hpb9QdKH13bAcOAK4MKWx/HqNtZRd8H/E+CklnHLgDcAm+W2N2+adjgwu4f298nPwWn5Mb8tr68dm6a/Nq/L15E+8MbnaV15WcOa2ntx/QIbkT4sjiNtEOye120jQKeSAnzPPH0aTR9Qrc8R8G+kD9t18t9b6OZDv4f7Nh7nv+fHuQFwInArMCaP+y/g4pZ1OCJP+zYwq5f3xVrADOALwLp5vd8P/H2ePoX0QTWS9F65k4KD31099fobYElELF/Ndv4zIuZGxP8BRMSPImJ+RKyIiEtJW+d7ttnW0cC5ETEzIp4FPgu8SVJX0zxTIuKJiHgI+BUwdjVqfyAizouIF4BLSW/KUyPi2Yi4jrRV92pJIu2JfCIiHouIpaQt76N6eRynRcT9EbEsP46jBqiLYThpK7TZk6SQGt403DqtN6fkx3wTaQv8CICIuDEiZud1eQdwMenDoR0HA3Py87s8ImaStogPb5rnioj4XX4NTqP3dfk8sAWwbUQ8HxG/jpyqbVoBfDE/zv8DPgx8PiLm5dfaZODwxjqKiHMjYmnTtNdL2qSHtvcARkfEqRHxXETcD5zNS6+PI4Cv5tfOXOA/+1D3kON+tno9CoySNGw1w39u84CkfwA+SdoihBRGo9psa0tgZmMgIpZJehTYirR3AWn3u+GvvBR2/bGw6Xbjg6t13HBgNLAhMCN9BgAg0p5Cd7YkdfM0PEh6vW9O6opZHcuAjVvGbUzaO1nWNPxMy7SePB4RT7fUuiWApDeStlZ3JW3JrkfqAmnHtsAbJT3RNG4YqZuloS/r8uukAL4ur4OzImJKm7UALI6IZ5qGtwWulLSiadwLwOaSHgG+Stp7HU360ID0Om790G20tWXLY12btJUP6flsfp80vzaK4y3+et1CCofxvczzNCnwGl7ZzTwvbnVJ2pa0pXMC8DcRsSlpt1at8/ZgPulN1GhvI9KeSX/CciAv/bqE9CGwS0Rsmv82iYiegmqlx0HqllrOyh80/XUX8PrGgKTtSIH854h4HFjQPD3f7u2L5M3y89xc6/x8+yJS99bWEbEJqaul3XU5F7ip6fnaNNJRTP+0ivt1K299fyoitgPeDXxS0n59aaKb+g5sqW/9iHgYeD/pAId3kL6b6cr36emxzyXtPTa3NSIi3pWnLyDtTTZs04e6hxwHf40i4klSn+QZksZL2lDSOpIOlPQfebZZwLskjZT0SlK/aG82Ir0pFgNIOo60tdiwEBgjad0e7n8RcJyksZLWI3Wn3BYRc/rxEBcCXZJW+3UWEStIH2jfkvQKAElbSfr7Hu5yMfAJSa+SNJz0OC5td88qr4f1Se+RYZLWl9TYu5gGvFvSW3Jgn0rqMmls1V8AnCxpM0k7kbqopq5ikV+StK6kt5C6aBpb9SOAxyLiGUl7kgKxYTFpS3i7Htr8KfC3ko7Jj2cdSXtIek07zwFp/b3YtqSDJTW63Z4ibZ2/0M59e/B94Kt5YwVJoyU1jmYbQTpY4VHShs/XVtH+74CnJJ0kaQNJa0vaVdIeefplwGfzOhkDfGwVtQ1pDv6aRcRppG6Zk0lv5LmkrfWr8iwXAn8gdbNcR+oH7629u4FvkvYmFpK+GPxt0yy/JG19PiJpSTf3vwE4hdQXvIB0xEpP/eir0givRyXN7HXO9pxE+sL2VklPAb8Aduxh3nNJz93NpCM8nqFvb/azSXsY7wM+n28fAxARd5GObJpGOmJoBPDPTff9IulIlQeBm4CvR8TPe1nWI6SjTebnNj8SEX/M0/4ZOFXSUtJGwmWNO0XEX0ndIb+V9ISkvZobzR9E+5PW3/y8nMaXq+2YDJyf2z6CdIjqL0jdWbcA34uIG9u8b3e+Q9qbuS4/vluBN+ZpF5Cev4dJR+Hc2nLfHwA75/avyt8RvZv0HcUDpD3Ec0h7CwBfyu09QHofXUjB1LfvZsxsIEnah3Tk05i6a7FyeIvfzKwwDn4zs8K4q8fMrDDe4jczK8ygOIFr1KhR0dXVVXcZZmaDyowZM5ZExOjW8YMi+Lu6upg+fXrdZZiZDSqSuj1D2V09ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFGRRn7pqtSteka2tZ7pwpB9WyXLPV4S1+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PC+Be4zFZDXb/8Bf71L+s/b/GbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRWmsuCXtLWkX0m6R9Jdkj6ex4+UdL2ke/P/zaqqwczMXq7KLf7lwKci4jXAXsBHJe0MTAJuiIgdgBvysJmZdUhlwR8RCyJiZr69FLgH2Ao4FDg/z3Y+ML6qGszM7OU6cgKXpC5gN+A2YPOIWADpw0HSK3q4z0RgIsA222zTiTJtNdV5MpOZta/yL3clDQcuB06MiKfavV9EnBUR4yJi3OjRo6sr0MysMJUGv6R1SKE/LSKuyKMXStoiT98CWFRlDWZmtrIqj+oR8APgnog4rWnS1cCEfHsC8JOqajAzs5erso9/b+AYYLakWXnc54ApwGWSjgceAt5bYQ1mZtaisuCPiN8A6mHyflUt18zMeuczd83MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrzLC6CzCz/umadG0ty50z5aBalmsDx1v8ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFqSz4JZ0raZGkO5vGTZb0sKRZ+e9dVS3fzMy6V+UW/1TggG7Gfysixua/n1W4fDMz60ZlwR8RNwOPVdW+mZn1Tx19/CdIuiN3BW3W00ySJkqaLmn64sWLO1mfmdmQ1ungPxPYHhgLLAC+2dOMEXFWRIyLiHGjR4/uVH1mZkNeR4M/IhZGxAsRsQI4G9izk8s3M7MOB7+kLZoGDwPu7GleMzOrRmUXaZN0MbAPMErSPOCLwD6SxgIBzAE+XNXyzcyse5UFf0S8r5vRP6hqeWZm1h6fuWtmVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVpi2gl/SDe2MMzOzNV+vl2yQtD6wIel6O5sBypM2BrasuDYzM6vAqq7V82HgRFLIz+Cl4H8KOKPCuszMrCK9Bn9EfAf4jqSPRcR3O1STmZlVqK2rc0bEdyW9Gehqvk9EXFBRXWZmVpG2gl/ShaSfTJwFvJBHB+DgNzMbZNq9Hv84YOeIiCqLMTOz6rV7HP+dwCurLMTMzDqj3S3+UcDdkn4HPNsYGRGHVFKVmZlVpt3gn1xlEWZm1jntHtVzU9WFmJlZZ7R7VM9S0lE8AOsC6wBPR8TGVRVmZmbVaHeLf0TzsKTxwJ6VVGRmZpXq19U5I+IqYN8BrsXMzDqg3a6e9zQNrkU6rt/H9JuZDULtHtXz7qbby4E5wKEDXo2ZmVWu3T7+46ouxMzMOqPdH2IZI+lKSYskLZR0uaQxVRdnZmYDr90vd88DriZdl38r4Jo8zszMBpl2g390RJwXEcvz31RgdIV1mZlZRdoN/iWSPiBp7fz3AeDRKgszM7NqtBv8HwSOAB4BFgCHA/7C18xsEGr3cM4vAxMi4nEASSOBb5A+EMzMbBBpd4v/dY3QB4iIx4DdqinJzMyq1G7wryVps8ZA3uJvd2/BzMzWIO2G9zeB/5X0Y9KlGo4AvlpZVWZmVpl2z9y9QNJ00oXZBLwnIu6utDIzM6tE2901OejbDntJ5wIHA4siYtc8biRwKdBFut7PEc3fHZiZWfX6dVnmNk0FDmgZNwm4ISJ2AG7Iw2Zm1kGVBX9E3Aw81jL6UOD8fPt8YHxVyzczs+5VucXfnc0jYgFA/v+KnmaUNFHSdEnTFy9e3LECzcyGuk4Hf9si4qyIGBcR40aP9mWBzMwGSqeDf6GkLQDy/0UdXr6ZWfE6HfxXAxPy7QnATzq8fDOz4lUW/JIuBm4BdpQ0T9LxwBTgnZLuBd6Zh83MrIMqu+xCRLyvh0n7VbVMMzNbtTX2y10zM6uGg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyvMsLoLMLPBpWvStbUte86Ug2pb9lDiLX4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwPoFrCKrzBBszW/N5i9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDC1HNUjaQ6wFHgBWB4R4+qow8ysRHUezvn2iFhS4/LNzIrkrh4zs8LUFfwBXCdphqSJ3c0gaaKk6ZKmL168uMPlmZkNXXUF/94RsTtwIPBRSW9tnSEizoqIcRExbvTo0Z2v0MxsiKol+CNifv6/CLgS2LOOOszMStTx4Je0kaQRjdvA/sCdna7DzKxUdRzVszlwpaTG8i+KiJ/XUIeZWZE6HvwRcT/w+k4v18zMEh/OaWZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFabO39w1M+uTrknX1rLcOVMOqmW5VfEWv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVpghfwJXXSd8wNA76cPMhgZv8ZuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoUZ8idw1anOk8fMbOAMtRNBvcVvZlYYB7+ZWWEc/GZmhXHwm5kVxsFvZlaYWoJf0gGS/iTpL5Im1VGDmVmpOh78ktYGzgAOBHYG3idp507XYWZWqjq2+PcE/hIR90fEc8AlwKE11GFmVqQ6TuDaCpjbNDwPeGPrTJImAhPz4DJJf+pAbVUYBSypu4jV4Prr5frrVXv9+vfVuvu23Y2sI/jVzbh42YiIs4Czqi+nWpKmR8S4uuvoL9dfL9dfr8Fef0/q6OqZB2zdNDwGmF9DHWZmRaoj+H8P7CDpVZLWBY4Crq6hDjOzInW8qycilks6AfgfYG3g3Ii4q9N1dNBg765y/fVy/fUa7PV3SxEv6143M7MhzGfumpkVxsFvZlYYB38FJG0t6VeS7pF0l6SP111Tf0haW9Ltkn5ady39IWlTST+W9Me8Lt5Ud03tkvSJ/Nq5U9LFktavu6ZVkXSupEWS7mwaN1LS9ZLuzf83q7PG3vRQ/9fz6+cOSVdK2rTOGgeKg78ay4FPRcRrgL2Ajw7Sy1J8HLin7iJWw3eAn0fETsDrGSSPRdJWwL8A4yJiV9JBEEfVW1VbpgIHtIybBNwQETsAN+ThNdVUXl7/9cCuEfE64M/AZztdVBUc/BWIiAURMTPfXkoKnK3qrapvJI0BDgLOqbuW/pC0MfBW4AcAEfFcRDxRb1V9MgzYQNIwYEMGwbkuEXEz8FjL6EOB8/Pt84HxHS2qD7qrPyKui4jlefBW0nlHg56Dv2KSuoDdgNvqraTPvg18BlhRdyH9tB2wGDgvd1edI2mjuotqR0Q8DHwDeAhYADwZEdfVW1W/bR4RCyBtEAGvqLme1fFB4L/rLmIgOPgrJGk4cDlwYkQ8VXc97ZJ0MLAoImbUXctqGAbsDpwZEbsBT7NmdzO8KPeDHwq8CtgS2EjSB+qtqmySPk/qwp1Wdy0DwcFfEUnrkEJ/WkRcUXc9fbQ3cIikOaSrp+4r6Yf1ltRn84B5EdHY0/ox6YNgMHgH8EBELI6I54ErgDfXXFN/LZS0BUD+v6jmevpM0gTgYODoGCInPjn4KyBJpL7leyLitLrr6auI+GxEjImILtKXir+MiEG1xRkRjwBzJe2YR+0H3F1jSX3xELCXpA3za2k/BskX0924GpiQb08AflJjLX0m6QDgJOCQiPhr3fUMFAd/NfYGjiFtKc/Kf++qu6gCfQyYJukOYCzwtZrraUveS/kxMBOYTXqfrvGXDpB0MXALsKOkeZKOB6YA75R0L/DOPLxG6qH+04ERwPX5ffz9WoscIL5kg5lZYbzFb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/1UbSKyVdIuk+SXdL+pmkvx2gtsc3XxhP0qmS3jEA7Y5tPjRX0iGSKjkjWNKbJJ29inmmSjq8iuXb0OXgt1rkE5OuBG6MiO0jYmfgc8DmfWhj7V4mjwdeDP6I+EJE/KK/9TYZC7wY/BFxdURUdWz6AcDPK2rbCubgt7q8HXg+Il48ISYiZkXEryXt0/wbAJJOl3Rsvj1H0hck/QZ4r6QPSfq9pD9Iujyf7fpm4BDg6/mkm+2bt4wl7Zcv3DY7X4N9vaa2vyRpZp62U3PBktYFTgWOzO0eKelYSafn6VMlnan0Wwz3S3pbbv8eSVOb2tlf0i15OT/K13Tqzn7ASh9WSk7Pe0jX0nTRs/y8/F7pGv5n5Xm3lzSzaZ4dJM3It6fkdu6Q9I0215sNAQ5+q8uuQH8vAvdMRPxdRFwCXBERe0RE43r7x0fE/5IuFfDpiBgbEfc17qj0gyZTgSMj4rWki7n9U1PbSyJid+BM4F+bFxoRzwFfAC7N7V7aTW2bAfsCnwCuAb4F7AK8NncTjQJOBt6RlzMd+GRrI3m+5yPiyZZJhwE7Aq8FPsTK1/A5PT8XuwIbAAfnx/6kpLF5nuOAqZJG5rZ2ydea/0o3j8WGKAe/DUbNgburpF9Lmg0cTQrZ3uxIugDan/Pw+aTr9jc0Lqg3A+jqR23X5At5zQYWRsTsiFgB3JXb24vUBfVbSbNI16/Ztpt29ge6uxTzW4GLI+KFiJgP/LJp2tsl3Zafi3156bk4Bzgud40dCVwEPAU8A5wj6T3AkLkOja2ag9/qchfwhh6mLWfl12brzw4+3XR7KnBC3nr/UjfzttIqpj+b/79A2hvoq8b9VzTdbgwPy8u/Pu8xjI2InSPi+G7aOZCe+/dfdp2VvCfzPeDw/FyczUvPxeW5vYOBGRHxaP5xkT3ztPG9LMuGIAe/1eWXwHqSPtQYIWkPSW8DHgR2lrSepE1Ifd09GQEsULoM9tFN45fmaa3+CHRJenUePga4qQ9199Ruu24F9m4sP38nsdKRTPmL79cBs7q5/83AUUq/h7wF6bsSeCnkl+TvDF480icingH+h9R9dV5exnBgk4j4GXAi6UtrK4SD32qRu0MOI1258T5JdwGTgfkRMRe4DLiD9MMXt/fS1CmkXze7nhTqDZcAn85f4m7ftNxnSP3cP8pdIiuAvlxx8VekD6VZko7sw/0ay18MHAtcrHTV0FuBnVpmewNwew/Xfr8SuJfUlXQm+UMr/6zk2Xn8VcDvW+43jbSn0Og+GgH8NNdwE+k7CSuEr85ptoaRdDLwl/zl9UC1+a+kLfxTBqpNG7wc/GZDnKQrge2BfSNiSd31WP0c/GZmhXEfv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYf4fBgjC5aqv0rMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAckUlEQVR4nO3debgcVZ3G8e8LYU+EIJE1cDUyLAIGjQiCiiAMmxB4ZBOZsCii4ogyo1FRIyjDjAjyCIJsBjSAyKIILiCrCDImGNmioBggEELCGmBQA7/545wbKp3uezuXW93knvfzPPe51VXV55zqqnq76lR3tSICMzMrxzLdboCZmXWWg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAO/i6QdKakL3eorl9ImtCJuvppx96SHpb0nKQtu92ewSLpIEnXdLsdnZLX35vamO+Lks7pRJteDUkh6c01lr+9pFl1lT9QRQa/pA9Jmpo34tk5HLerqa5DJN1SHRcRR0bE8TXUNUnSDxvq2jUizh/sugbgJOCoiBgeEX9onCjpeEl3SVogaVKT6R+S9KCk5yX9RNLqlWkrSDpP0rOSHpP02ToWQFJPDophveMiYkpE7DxI5dcaQoMhr78H2pjvhIj4SCfaZEuuuODPofBt4ARgTWB94LvAXgMoa1j/c1m2AXBPH9P/AnwOuLpxgqS3AN8DDiatsxdI66zXJGDDXMf7gM9J2mVQWr0U8nZp/YqIYv6AVYHngH37mGcy8PXK4+2BWZXHM4HPA3cCfweGAROBvwLzgXuBvfO8mwAvAi/lep9uUcdHScH3JHAlsE5lWgBHAvcDTwGnA2rS7l2AfwD/zHX9MY+/EfhIHj4E+C1wCvA08ADwrjz+YeBxYEKlzBVIR+oPAXOAM4GVWrxuywDHAg/mci7Ir/cKuT0BPA/8tZ919ENgUsO4E4ALK4/H5GUdkR8/AuxcmX48cHGL8rcHZgFfBObl9XlQZfruwB+AZ/NrMqky7aG8HM/lv23ya3dLZZ6NgWvzuvwzsF/DtnU66c1tPnA7MCZPu7nyGj0H7A+sAVyV19WTwG+AZVosVwCfzNvJ3/K4PYDp+fm3AltU5h8NXA7MBZ4ATqtMOwyYQdrefgVs0FDPm4GtgceAZSvT9gbuzMOTgB/m4Z78vAn5NZwHfKnyvJWA83N9M0gHALOaLWee/9S8bp4FpgHv7md/PjOvk/nATc2Wp791n6dvl1/Hp/P0Q/rbT+h/e1uVtK/MJe07x7Zax4OahXVX8Fr6I4XjAmBYPxtKf8E/Pe84vSt3X2AdUvjtT9p5187TDqESDI11ADvkDeJteQP6DnBzw4Z5FbAa6exkLrBLi7Yv3Nkq425k0eBfABwKLAt8PW+sp+e6d847x/A8/7dJb0SrAyOAnwH/1aLuw0hvXm8ChpNC5QfNdrB+1lGz4P8p8PmGcc8BbwdG5rLXrEz7IHBXi/K3z6/ByXmZ35vX10aV6ZvndbkFaUcen6f15LqGVcpbuH6BVUiBcCjpgOBted2+pbLenwS2ytOnUHmDanyNgP8ihchy+e/dNHnTrzz32ryuVsp1Pw68M6/rCaRtd4X8+I+kA4BVgBWB7XI54/N63CS38Vjg1mZtJB3s7FSZ9mNgYuO2WHndzs5teyvpoGmTPP1EUiCPBNYjHVT1FfwfBl6f23cM6Q1oxT725/nAe/Kyn8qib9TV5elr3a+fyzkwr4vXA2P720/of3u7gLR9j8iv033A4bVnYd0VvJb+gIOAx/qZZzL9B/9h/ZQxHdgrDx9C38F/LvA/lWnDSUftPZUNc7vK9Et6d64m9S7c2SrjbmTR4L+/Mm1zFg/NJ4CxgPIGOqYybRvy0WSTuq8DPlF5vFFejmGV5Rho8F8HHNkw7pG8bkbnslesTNsJmNmi/N4dcZWG1/TLLeb/NnBKHu6h7+DfH/hNw/O/B3y1st7PqUzbDfhT5XFj8B9HCoV2XrcAdqg8PgM4vmGeP5OCZxvSAcRiB0DAL6gEDykEXyAfJbNoUH4dOC8Pj8jbS+98C7fFyuu2XqXc/wUOyMMPAP9amfYR+gj+Jm1+Cnhri2mTWfTNdTjpDHx0f9tlw7r/AnBFk3n63E/62t5Ib8B/BzatTPsYcGO7yz7Qv9L6+J8A1hiEPtCHqw8k/Zuk6ZKelvQ0sBnpNL0d65BO8QCIiOdyO9etzPNYZfgF0sY7UHMqw/+X62wcNxwYBawMTKss1y/z+GYWWY48PIzUJ/9qPQe8rmHc60hHYM9VHjdOa+WpiHi+8vhBUvuR9E5JN0iaK+kZUjdbu+tyA+Cdva9Xfs0OAtaqzLMk6/KbpKPvayQ9IGliP/VXt8sNgGMa2jKatJyjgQcjYkGLZTi18pwnSeG2bpN5LwT2kbQCsA9wR0Q82GS+Xq2WfZ2Gti+yfzWSdIykGZKeyW1clb7X0cLy8v71ZK6zsdy+1v1o0hlOo3b2k1bb2xrA8iy+3zR7rQdVacF/G6nPfXwf8zxPWpG91moyT/QOSNqAdAp7FPD6iFgNuJu0sywybwuPkna23vJWIZ1GPtLP85rpr64lMY/0JvCWiFgt/60aEa2CapHlIJ0aL2DRN5qBuofUPQBA/jjhCsB9EfEUMLs6PQ/3dSF5ZH6dq219NA9fSDptHx0Rq5K6Wtpdlw8DN1Ver9UifQrm4/08r6mImB8Rx0TEm4APAJ+VtGNfT2loyzca2rJyRFyUp63f4gDoYeBjDc9bKSJubdK+e0lBtSvwIdJrNxCzSV08vUa3mlHSu0nX2PYDRub97RleWUfNLCxP0nBSl8yjTebra90/TLq21Kid/aTV9jaPdFbcuN8MZN9fIkUFf0Q8A3wFOF3SeEkrS1pO0q6S/ifPNh3YTdLqktYCju6n2FVIO9xcAEmHko74e80B1pO0fIvnXwgcKmlsPnI6Abg9ImYOYBHnAD2SXvV6jYiXSW9op0h6A4CkdSX9a4unXAR8RtIb8851AvCjFkeVi8nrYUXSNjlM0oqSls2TpwAfkPTuvAMdB1weEb1H9RcAx0oaKWlj0sXyyf1U+TVJy+cg2YPUPw2py+LJiHhR0lakQOs1F3iZdB2jmauAf5F0cF6e5SS9Q9Im7bwGpPW3sGxJe0h6sySRLji+lP/acTZwZD6KlaRVJO0uaQSpm2U2cGIev6KkbfPzzgS+kD9JhaRVJe3bRz0XAv9O6kP/cR/z9eWSXOdISeuSDqJaGUE6oJhL2k6+wuJng412k7Rd3gePJ+1fzc4q+lr3U4D3S9pP0jBJr5c0dgn2k8W2t4h4KS/7NySNyAeRnyV1d9aqqOAHiIiTSS/usaSN52HShvaTPMsPSBe+ZgLXAD/qp7x7gW+RzibmkPrNf1uZ5XrS0edjkuY1ef51pP6+y0g74xjggAEt3Cs73hOS7hhgGVWfJ3U1/E7Ss8CvSX33zZxHeu1uBv5GOrP61BLUdTbpyOlA4Et5+GCAiLiHdNo9hXTBcgTwicpzv0o6DX+QdJHwmxHxyz7qeozUL/xoLvPIiPhTnvYJ4DhJ80kHCZf0PikiXgC+Afw2n9ZvXS00vxHtTFp/j+Z6/pt0dtKOScD5uez9SB9R/TWpO+s24LsRcWM7BUXEVNIb4Gl5Wf9Cuh5BDpwPkD6d8xDpUyf752lX5DZfnNf53aQj+lYuIvVjXx8Ri23fbTout+FvpOW9lNT33cyvSNch7iOt7xfpp2uI9Ob0VVIXz9tJ3W/N9LXuHyJdkzkmlzOdV84y+9tP+trePkXqZXgAuCW39bx+ludVU76gYFYESduTLjqu19+81h2SPk668PveQShrMulC8bGvumFDSHFH/Gb22iJpbUnbSlpG0kako+orut2uoczf8DOzblue9LHXN5K+HHUxi34z2waZu3rMzArjrh4zs8IsFV09a6yxRvT09HS7GWZmS5Vp06bNi4jFvnS5VAR/T08PU6dO7XYzzMyWKpKafpPaXT1mZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVZKr65a2aL65l4dVfqnXni7l2p1waPj/jNzArj4DczK4yD38ysMA5+M7PC1Bb8kkZLukHSDEn3SPp0Hj9J0iOSpue/3epqg5mZLa7OT/UsAI6JiDskjQCmSbo2TzslIk6qsW4zM2uhtuCPiNnA7Dw8X9IMYN266jMzs/Z0pI9fUg+wJXB7HnWUpDslnSdpZIvnHCFpqqSpc+fO7UQzzcyKUHvwSxoOXAYcHRHPAmcAY4CxpDOCbzV7XkScFRHjImLcqFGL/WSkmZkNUK3BL2k5UuhPiYjLASJiTkS8FBEvA2cDW9XZBjMzW1Sdn+oRcC4wIyJOroxfuzLb3sDddbXBzMwWV+enerYFDgbukjQ9j/sicKCksUAAM4GP1dgGMzNrUOenem4B1GTSz+uq08zM+udv7pqZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWmGHdboDZYOiZeHVX6p154u5dqdfs1fARv5lZYRz8ZmaFcfCbmRWmtuCXNFrSDZJmSLpH0qfz+NUlXSvp/vx/ZF1tMDOzxdV5xL8AOCYiNgG2Bj4paVNgInBdRGwIXJcfm5lZh9QW/BExOyLuyMPzgRnAusBewPl5tvOB8XW1wczMFteRPn5JPcCWwO3AmhExG9KbA/CGTrTBzMyS2oNf0nDgMuDoiHh2CZ53hKSpkqbOnTu3vgaamRWm1uCXtBwp9KdExOV59BxJa+fpawOPN3tuRJwVEeMiYtyoUaPqbKaZWVHq/FSPgHOBGRFxcmXSlcCEPDwB+GldbTAzs8XVecuGbYGDgbskTc/jvgicCFwi6XDgIWDfGttgZmYNagv+iLgFUIvJO9ZVr5mZ9c3f3DUzK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PC1Bb8ks6T9LikuyvjJkl6RNL0/LdbXfWbmVlzdR7xTwZ2aTL+lIgYm/9+XmP9ZmbWRG3BHxE3A0/WVb6ZmQ3MsHZmknRdROzY37g2HSXp34CpwDER8VSLOo8AjgBYf/31B1CNWf16Jl7d7SaYLbE+j/glrShpdWANSSMlrZ7/eoB1BlDfGcAYYCwwG/hWqxkj4qyIGBcR40aNGjWAqszMrJn+jvg/BhxNCvlpgPL4Z4HTl7SyiJjTOyzpbOCqJS3DzMxenT6DPyJOBU6V9KmI+M6rrUzS2hExOz/cG7i7r/nNzGzwtdXHHxHfkfQuoKf6nIi4oNVzJF0EbE/qJpoFfBXYXtJYIICZpDMKMzProHYv7v6A1Dc/HXgpjw6gZfBHxIFNRp+7pA00M7PB1VbwA+OATSMi6myMmZnVr93P8d8NrFVnQ8zMrDPaPeJfA7hX0v8Cf+8dGRF71tIqMzOrTbvBP6nORpiZWee0+6mem+puiJmZdUa7n+qZT/oUD8DywHLA8xHxuroaZmZm9Wj3iH9E9bGk8cBWtbTIzMxqNaC7c0bET4AdBrktZmbWAe129exTebgM6XP9/ky/mdlSqN1P9XygMryAdLuFvQa9NWZmVrt2+/gPrbshtvTzvenNlg5t9fFLWk/SFfk3dOdIukzSenU3zszMBl+7F3e/D1xJui//usDP8jgzM1vKtBv8oyLi+xGxIP9NBvyzWGZmS6F2g3+epA9LWjb/fRh4os6GmZlZPdoN/sOA/YDHSL+V+0HAF3zNzJZC7X6c83hgQkQ8BZB/gP0k0huCmZktRdo94t+iN/QBIuJJYMt6mmRmZnVqN/iXkTSy90E+4m/3bMHMzF5D2g3vbwG3SrqUdKuG/YBv1NYqMzOrTbvf3L1A0lTSjdkE7BMR99baMjMzq0Xb3TU56B32ZmZLuQHdltnMzJZeDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwtQW/pPPyb/TeXRm3uqRrJd2f/4/sqwwzMxt8dR7xTwZ2aRg3EbguIjYErsuPzcysg2oL/oi4GXiyYfRewPl5+HxgfF31m5lZc53u418zImYD5P9vaDWjpCMkTZU0de7cuR1roJnZUPeavbgbEWdFxLiIGDdq1KhuN8fMbMjodPDPkbQ2QP7/eIfrNzMrXqeD/0pgQh6eAPy0w/WbmRWvzo9zXgTcBmwkaZakw4ETgZ0k3Q/slB+bmVkH1faD6RFxYItJO9ZVp5mZ9e81e3HXzMzq4eA3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MytMbbdsMLOhqWfi1V2re+aJu3et7qHER/xmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhuvJj65JmAvOBl4AFETGuG+0wMytRV4I/e19EzOti/WZmRXJXj5lZYbp1xB/ANZIC+F5EnNU4g6QjgCMA1l9//Q43b+nWM/HqbjfBzF7DunXEv21EvA3YFfikpPc0zhARZ0XEuIgYN2rUqM630MxsiOpK8EfEo/n/48AVwFbdaIeZWYk6HvySVpE0oncY2Bm4u9PtMDMrVTf6+NcErpDUW/+FEfHLLrTDzKxIHQ/+iHgAeGun6zUzs8Qf5zQzK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMN38Ba6O8L3pzYaOEvfnmSfuPuhl+ojfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrTFeCX9Iukv4s6S+SJnajDWZmpep48EtaFjgd2BXYFDhQ0qadboeZWam6ccS/FfCXiHggIv4BXAzs1YV2mJkVaVgX6lwXeLjyeBbwzsaZJB0BHJEfPifpzx1oG8AawLwO1dVNXs6hxcs5tCxcTv33qypng2YjuxH8ajIuFhsRcRZwVv3NWZSkqRExrtP1dpqXc2jxcg4tdS9nN7p6ZgGjK4/XAx7tQjvMzIrUjeD/PbChpDdKWh44ALiyC+0wMytSx7t6ImKBpKOAXwHLAudFxD2dbkcfOt691CVezqHFyzm01Lqcilise93MzIYwf3PXzKwwDn4zs8I4+DNJoyXdIGmGpHskfbrbbaqLpGUl/UHSVd1uS10krSbpUkl/yut0m263qQ6SPpO317slXSRpxW63abBIOk/S45LuroxbXdK1ku7P/0d2s42DocVyfjNvu3dKukLSaoNZp4P/FQuAYyJiE2Br4JND+FYSnwZmdLsRNTsV+GVEbAy8lSG4vJLWBf4dGBcRm5E+LHFAd1s1qCYDuzSMmwhcFxEbAtflx0u7ySy+nNcCm0XEFsB9wBcGs0IHfxYRsyPijjw8nxQU63a3VYNP0nrA7sA53W5LXSS9DngPcC5ARPwjIp7ubqtqMwxYSdIwYGWG0HdiIuJm4MmG0XsB5+fh84HxHW1UDZotZ0RcExEL8sPfkb7vNGgc/E1I6gG2BG7vbktq8W3gc8DL3W5Ijd4EzAW+n7u0zpG0SrcbNdgi4hHgJOAhYDbwTERc091W1W7NiJgN6WANeEOX29MJhwG/GMwCHfwNJA0HLgOOjohnu92ewSRpD+DxiJjW7bbUbBjwNuCMiNgSeJ6h0SWwiNy/vRfwRmAdYBVJH+5uq2wwSfoSqRt6ymCW6+CvkLQcKfSnRMTl3W5PDbYF9pQ0k3RX1B0k/bC7TarFLGBWRPSesV1KeiMYat4P/C0i5kbEP4HLgXd1uU11myNpbYD8//Eut6c2kiYAewAHxSB/4crBn0kSqU94RkSc3O321CEivhAR60VED+ki4PURMeSOECPiMeBhSRvlUTsC93axSXV5CNha0sp5+92RIXgRu8GVwIQ8PAH4aRfbUhtJuwCfB/aMiBcGu3wH/yu2BQ4mHQVPz3+7dbtRNmCfAqZIuhMYC5zQ5fYMunxGcylwB3AXaX8eMrc0kHQRcBuwkaRZkg4HTgR2knQ/sFN+vFRrsZynASOAa3MWnTmodfqWDWZmZfERv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYRz81jWS1pJ0saS/SrpX0s8l/csglT2+epM9ScdJev8glDu2+jFfSXtKquVbwZK2kXR2P/NMlvTBOuq3ocvBb12Rv3B0BXBjRIyJiE2BLwJrLkEZy/YxeTywMPgj4isR8euBtrdiLLAw+CPiyoio67PkuwC/rKlsK5iD37rlfcA/I2LhF1MiYnpE/EbS9tXfCpB0mqRD8vBMSV+RdAuwr6SPSvq9pD9Kuix/i/VdwJ7AN/OXX8ZUj4wl7Zhv3nZXvhf6CpWyvybpjjxt42qDJS0PHAfsn8vdX9Ihkk7L0ydLOkPpdx0ekPTeXP4MSZMr5ews6bZcz4/z/aGa2RFY5M1KyWn5DOlqKjcpy6/L75XuzX9WnneMpDsq82woaVoePjGXc6ekk9pcbzYEOPitWzYDBnqzuBcjYruIuBi4PCLeERG999w/PCJuJX21/z8jYmxE/LX3iUo/VDIZ2D8iNifd0O3jlbLnRcTbgDOA/6hWGhH/AL4C/CiX+6MmbRsJ7AB8BvgZcArwFmDz3E20BnAs8P5cz1Tgs42F5Pn+GRHPNEzaG9gI2Bz4KIvem+e0/FpsBqwE7JGX/RlJY/M8hwKTJa2ey3pLvuf715ssiw1RDn5bGlUDdzNJv5F0F3AQKWT7shHpxmb35cfnk+7d36v35nzTgJ4BtO1n+YZadwFzIuKuiHgZuCeXtzWpC+q3kqaT7jezQZNydgaa3WL5PcBFEfFSRDwKXF+Z9j5Jt+fXYgdeeS3OAQ7NXWP7AxcCzwIvAudI2gcY9PvB2GuXg9+65R7g7S2mLWDRbbPx5wSfrwxPBo7KR+9fazJvI/Uz/e/5/0uks4El1fv8lyvDvY+H5fqvzWcMYyNi04g4vEk5u9K6f3+x+6zkM5nvAh/Mr8XZvPJaXJbL2wOYFhFP5B/52CpPG99HXTYEOfitW64HVpD00d4Rkt4h6b3Ag8CmklaQtCqpr7uVEcBspVtqH1QZPz9Pa/QnoEfSm/Pjg4GblqDdrcpt1++AbXvrz9ckFvkkU77wvQUwvcnzbwYOUPrd5LVJ10rglZCfl68ZLPykT0S8CPyK1H31/VzHcGDViPg5cDTporUVwsFvXZG7Q/Ym3Wnxr5LuASYBj0bEw8AlwJ2kH6D4Qx9FfZn0S2nXkkK918XAf+aLuGMq9b5I6uf+ce4SeRlYkjsf3kB6U5ouaf8leF5v/XOBQ4CLlO4c+jtg44bZ3g78ocU92K8A7id1JZ1BftPKPy15dh7/E+D3Dc+bQjpT6O0+GgFcldtwE+mahBXCd+c0e42RdCzwl3zxerDK/A/SEf6XB6tMW3o5+M2GOElXAGOAHSJiXrfbY93n4DczK4z7+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCvP/RTEG8+ncYi4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(curation_time_treatment, bins=10)\n", + "ax.set_title('Curation time of ' + str(len(curation_time_treatment)) + ' patients treated')\n", + "ax.set_ylabel(\"count\")\n", + "ax.set_xlabel(\"Curation time / days\")\n", + "plt.show()\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(curation_time_placebo, bins=10)\n", + "ax.set_title('Curation time of ' + str(len(curation_time_placebo)) + ' patients receiving a placebo')\n", + "ax.set_ylabel(\"count\")\n", + "ax.set_xlabel(\"Curation time / days\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAActUlEQVR4nO3deZgcZbn+8e8NYV+DRGSTUURkUaJGRHFBEGRTgpcsHvRE9AfqUY8oR43rQdxyfq4cQRQUExUCsikKKogKrmiCkS0qgoEgIQthCWiUwHP+eN8hlU73TM9kqisz7/25rrmmu6q66umq6ruq3qquVkRgZmblWKfpAszMrLcc/GZmhXHwm5kVxsFvZlYYB7+ZWWEc/GZmhXHw10TSlyV9uEfT+oGkKb2Y1iB1HClpvqSHJD276XpGiqTjJF3ZdB29kpffU7sY7gOSvtqLmmyERcSY/AP+DZgFPAQsAH4AvKimab0B+EWP3tcpwLeanr8darsNOGKA/h8DbgRWAKd0WGZ3AA8D3wG2qvTbADgHeBC4B3h3Te+hDwhgXE3jD+BpTS+rsfQHTAc+XuP49wPuavD9/Qz4fyM5zjG5xy/p3cAXgE8C2wBPBr4EHDGMcY0b2erGtJ2Amwfo/xfgvcDlrT0k7QF8BXg9aZn9nbTM+p0C7JKn8TLgvZIOHpGqRyGvl93zvGqj6a11DVvHLUh7+UcNMMx0KnsItGzRgXnA+4AbgH8C44CppD3aZcAtwJF52N2A5cCjebr3d5jGCaTgWwpcBmxX6RfAW4BbgfuAMwC1qftg4F/AI3laf2jdIyAdffwS+DxwP3A78MLcfT6wCJhSGecGwGeAO4GFwJeBjTrMt3WAD5H2yhcB38jze4NcT5D21m8bZBl9i5Y9ftJG+rzK853ze90sP/8bcFCl/8eA8zuMfz/gLuADwJK8PI+r9D8M+D3p6GF+tZY8HyK/n4eAF9ByRAc8A7gqL8s/AUe3rFtnkDZuy4DrgJ1zv2sr8+gh4Bhga+D7eVktBX4OrNPhfQXwtrye/DV3OxyYk1//K+BZleF3BC4BFgP3AqdX+r0RmEta334E7NQynacB+5COrtat9DsSuCE/PoV89MnKI6UpeR4uAT5Yed1GwIw8vbmkHYCOe9HAaXnZPAjMBl7cYbgTSZ+Hf+V5+r0BPsP75Hl0P/AHYL/KeI7PdS0jfWbenLtvAvwDeKyyTmyX3/uFpHV5GelI9unA+0mfjfmsur5uAXyN1PrwN+Dj/fOVvH6RPof3AX8FDsn9PkHKluV52qd3mmdDysmRGMna9EcKxxUMcKhOd8E/J39wNsrdjsoLfB3SB/ZhYNvqgus0DWD//EF4Dikkvwhc2/JB+z6wJenoZDFwcIfaT6GlqYfVg39FXpHXzSvYnaQw2gA4KK+om+bhv0DaEG0FbAZ8D/hUh2m/kbTxeiqwKSlUvtnyPgZtxqB98H8XeF9Lt4eA5wLj87i3qfR7DXBjh/Hvl+fB5/J7fmleXrtW+j8zL8tnkTZ4k3O/PlqaeqrLlxQE8/P8HZeX6RJgj8pyXwrsnfufS2UD1TqPgE+RNrbr5b8X02ajX3ntVXlZbZSnvQh4fl7WU0jr7gb5+R9IOwCbABuSmzqByXk57pZr/BDwq3Y1knZ2Dqz0uxCY2rouVubb2bm2vUiBu1vuPw24Ji/LHUiBPFDwvw54Qq7vZNIGaMNuPs/tPsPA9qSN36F5uR+Yn0/Iwx9G2tkQaX35O/CcdvlQee/LgVfkGr9BCuwP5uV4AnnjnIf/DumIdhPgicBvWblxeQNp43VCXm5vBe7uXw9wU09XngAsiYgVazie/42I+RHxD4CIuDAi7o6IxyLiAtJe195djus44JyIuD4i/knaK3iBpL7KMNMi4v6IuBP4KTBxDWr/a0R8PSIeBS4grfynRsQ/I+JK0t7R0ySJtLK9KyKWRsQy0p73sQO8j89FxO0R8VB+H8eO0KH0psADLd0eIG2MNq08b+03kA/n93wNaQ/8aICI+FlE3JiX5Q3ATNKHvRuHA/Py/F0REdcDF5M2RP0uiYjf5nXwXAZelo8A25L2uB+JiJ9H/rR38Km8rP5BWnZfiYjrIuLRiJhBCtt9SOvmdsB7IuLhiFgeEb/I43hzHs/cXOMngYmSdmozvZnAawEkbUYKzpkD1PfRiPhHRPyBtOHZK3c/GvhkRNwXEXcB/zvAOIiIb0XEvXkef5a0Mdt1oNe0Uf0Mvw64IiKuyMv9KtI5wEPz9C6PiNsiuQa4krQRHsjPI+JHeR5eCEwgfY4fAc4H+iRtKWkb4BDgpLwsFpE2yNXP2R0RcXb+zM4grRPbDPH9dm0sBv+9wNYjEEbzq08k/bukOZLul3Q/sCfpML0b25GaRwDIoXkvaS+k3z2Vx39nZdgNx8LK4/4NV2u3TUkr6sbA7Mr7+mHu3s4q7yM/HsfIrKAPAZu3dNucdHTyUOV5a79O7ouIhyvP7yDVj6TnS/qppMWSHiA1s3W7LHcCnt8/v/I8Ow54UmWYoSzLT5P2vq+UdLukqYNMv7pe7gSc3FLLjqT3uSMpTNrtAO0EnFZ5zVLSnu72bYY9D3i1pA2AVwPXR8QdbYbr1+m9b9dS+yqfr1aSTpY0V9IDucYt6H4ZtZvGTsBRLfPqRaSARdIhkn4jaWnud2gX02v9TC3Jwd3/HNL734l0FLCgMu2vkPb8+z0+3yLi75XX1mIsBv+vSYdgkwcY5mFS4PV7UpthHt/ryntCZwNvB54QEVsCN5E+LKsM28HdpIXfP75NSEcmfxvkde0MNq2hWEJaQfeIiC3z3xYR0WmFW+V9kJqlVrDqB2C4bmbl3iH5csINgD9HxH2kttG9KsPvxcAnksfn+Vyt9e78+DxS89aOEbEFqaml22U5H7imMr+2jIhNI+Ktg7yurYhYFhEnR8RTgVcC75Z0wEAvaanlEy21bBwRM3O/J3fYAZpPamaovm6jiPhVm/puIW00DyFddXXecN4nafntUHm+Y6cBJb2Y1D5/NDA+f94eYOUyWq3MLrrPJzVLVt/zJhExLW/ULia1sW+Tp3cF3a8Tg5lPOhLbujLtzSNijy5fP5KfeWAMBn9EPAB8BDhD0mRJG0taL2/R/38ebA5wqKStJD0JOGmQ0W5CmvmLASQdT9rj77cQ2EHS+h1efx5wvKSJeSX7JHBdRMwbxltcSDqEXONlFxGPkTZon5f0RABJ20t6RYeXzATeJekpkjYlvY8Lum1Wy8thQ9J6N07ShpLWzb3PBV4p6cU5sE8lNZn079V/A/iQpPGSnkFq5pg+yCQ/Kmn9HCSHkw7HITURLY2I5ZL2JgVav8WkE3mdrmP/PvB0Sa/P72c9Sc+TtFs384C0/B4ft6TDJfU3uz1IOpH3aKcXtzgbeEs+gpGkTSQdlptkfksK22m5+4aS9s2v+zLw/nwlFZK2kHTUANM5D/hP4CWsnIdD9e08zfGStiftRHWyGWmHYjFpPfkIqx8NVq0yTzv4Fmn9eoWkdfP82E/SDsD6pJ2MxcAKSYeQzoVVx/8ESVsMMo22ImIBqenos5I2l7SOpJ0lddu82M37G5IxF/wAEfE54N2kk1aLSVvct5NOsAB8k9T+OI+0QC4YZHy3AJ8lHU0sJJ0Y/GVlkJ+Q9j7vkbSkzeuvBj5M2qtYQDqJ1KkdfTD9H7x7JV0/zHFUvY/U1PAbSQ8CP6ZzW+o5pHl3LelE1nLgHUOY1tmkI4zXkk6C/YN0+SYRcTOpyeVc0gnLzYD/qLz2v0knGu8gnST8dET8cIBp3UO6QuLuPM63RMQfc7//AE6VtIy0k/Dt/hflw+xPAL/Mh+X7VEeaN0QHkZbf3Xk6/0MKjm6cAszI4z6adInqj0nNWb8GvhQRP+tmRBExi7QBPD2/17+QThSSmxxeSbo6507SVU7H5H6X5prPz8v8JtIefSczSSc4fxIRq63fXTo11/BX0vu9iLQX3M6PSN+7+TNpeS9n4KahrwG753n6nXYDRMR80uXcH2BlJryHdAXVMtKG7duk+fhvpCPC/tf+kTQPbs/T2K6bN9zi30kbmFvyNC4iNzN14TTgNZLukzTguZFu9Z81NhszJO1Hutpkh8GGtWZIeitwbER0u9drI2hM7vGb2dpF0raS9s3NHLuSLtG8tOm6SuVvtJlZL6xPupLlKaQvUJ3Pqt/Mth5yU4+ZWWHc1GNmVphR0dSz9dZbR19fX9NlmJmNKrNnz14SEat9IXNUBH9fXx+zZs1qugwzs1FFUttvWbupx8ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMKPim7tmg+mbenkj05037bBGpmu2JrzHb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGP8Cl9kaaOqXv8C//mXD5z1+M7PCOPjNzArj4DczK4yD38ysMA5+M7PC1Bb8knaU9FNJcyXdLOmduftWkq6SdGv+P76uGszMbHV17vGvAE6OiN2AfYC3SdodmApcHRG7AFfn52Zm1iO1BX9ELIiI6/PjZcBcYHvgCGBGHmwGMLmuGszMbHU9+QKXpD7g2cB1wDYRsQDSxkHSEzu85kTgRIAnP/nJvSjT1lCTX2Yys+7VfnJX0qbAxcBJEfFgt6+LiLMiYlJETJowYUJ9BZqZFabW4Je0Hin0z42IS3LnhZK2zf23BRbVWYOZma2qzqt6BHwNmBsRn6v0ugyYkh9PAb5bVw1mZra6Otv49wVeD9woaU7u9gFgGvBtSW8C7gSOqrEGMzNrUVvwR8QvAHXofUBd0zUzs4H5m7tmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFWZc0wWY2fD0Tb28kenOm3ZYI9O1keM9fjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwtQW/JLOkbRI0k2VbqdI+pukOfnv0Lqmb2Zm7dW5xz8dOLhN989HxMT8d0WN0zczszZqC/6IuBZYWtf4zcxseJpo43+7pBtyU9D4TgNJOlHSLEmzFi9e3Mv6zMzGtF4H/5nAzsBEYAHw2U4DRsRZETEpIiZNmDChV/WZmY15PQ3+iFgYEY9GxGPA2cDevZy+mZn1OPglbVt5eiRwU6dhzcysHrXdpE3STGA/YGtJdwH/DewnaSIQwDzgzXVN38zM2qst+CPitW06f62u6ZmZWXf8zV0zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8J0FfySru6mm5mZrf0GvGWDpA2BjUn32xkPKPfaHNiu5trMzKwGg92r583ASaSQn83K4H8QOKPGuszMrCYDBn9EnAacJukdEfHFHtVkZmY16urunBHxRUkvBPqqr4mIb9RUl5mZ1aSr4Jf0TdJPJs4BHs2dA3Dwm5mNMt3ej38SsHtERJ3FmJlZ/bq9jv8m4El1FmJmZr3R7R7/1sAtkn4L/LO/Y0S8qpaqzMysNt0G/yl1FmFmZr3T7VU919RdiJmZ9Ua3V/UsI13FA7A+sB7wcERsXldhZmZWj273+DerPpc0Gdi7lorMzKxWw7o7Z0R8B9h/hGsxM7Me6Lap59WVp+uQruv3Nf1mZqNQt1f1vLLyeAUwDzhixKsxM7PaddvGf3zdhZiZWW90+0MsO0i6VNIiSQslXSxph7qLMzOzkdftyd2vA5eR7su/PfC93M3MzEaZboN/QkR8PSJW5L/pwIQa6zIzs5p0G/xLJL1O0rr573XAvXUWZmZm9eg2+N8IHA3cAywAXgP4hK+Z2SjU7eWcHwOmRMR9AJK2Aj5D2iCYmdko0u0e/7P6Qx8gIpYCz66nJDMzq1O3wb+OpPH9T/Ief7dHC2ZmthbpNrw/C/xK0kWkWzUcDXyitqrMzKw23X5z9xuSZpFuzCbg1RFxS62VmZlZLbpurslB33XYSzoHOBxYFBF75m5bARcAfaT7/RxdPXdgZmb1G9Ztmbs0HTi4pdtU4OqI2AW4Oj83M7Meqi34I+JaYGlL5yOAGfnxDGByXdM3M7P26tzjb2ebiFgAkP8/sdOAkk6UNEvSrMWLF/esQDOzsa7Xwd+1iDgrIiZFxKQJE3xbIDOzkdLr4F8oaVuA/H9Rj6dvZla8Xgf/ZcCU/HgK8N0eT9/MrHi1Bb+kmcCvgV0l3SXpTcA04EBJtwIH5udmZtZDtd12ISJe26HXAXVN08zMBrfWntw1M7N6OPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCjGu6ADMbXfqmXt7YtOdNO6yxaY8l3uM3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4y9wjUFNfsHGzNZ+3uM3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MytMI1f1SJoHLAMeBVZExKQm6jAzK1GTl3O+LCKWNDh9M7MiuanHzKwwTQV/AFdKmi3pxHYDSDpR0ixJsxYvXtzj8szMxq6mgn/fiHgOcAjwNkkvaR0gIs6KiEkRMWnChAm9r9DMbIxqJPgj4u78fxFwKbB3E3WYmZWo58EvaRNJm/U/Bg4Cbup1HWZmpWriqp5tgEsl9U//vIj4YQN1mJkVqefBHxG3A3v1erpmZpb4ck4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwTf7mrpnZkPRNvbyR6c6bdlgj062L9/jNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCjPkvcDX1hQ8Ye1/6MLOxwXv8ZmaFcfCbmRXGwW9mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYcb8F7ia1OSXx8xs5Iy1L4J6j9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDCNBL+kgyX9SdJfJE1togYzs1L1PPglrQucARwC7A68VtLuva7DzKxUTezx7w38JSJuj4h/AecDRzRQh5lZkZr4Atf2wPzK87uA57cOJOlE4MT89CFJf+pBbXXYGljSdBFrwPU3y/U3q/H69T9r9PKd2nVsIvjVplus1iHiLOCs+supl6RZETGp6TqGy/U3y/U3a7TX30kTTT13ATtWnu8A3N1AHWZmRWoi+H8H7CLpKZLWB44FLmugDjOzIvW8qSciVkh6O/AjYF3gnIi4udd19NBob65y/c1y/c0a7fW3pYjVmtfNzGwM8zd3zcwK4+A3MyuMg78GknaU9FNJcyXdLOmdTdc0HJLWlfR7Sd9vupbhkLSlpIsk/TEvixc0XVO3JL0rrzs3SZopacOmaxqMpHMkLZJ0U6XbVpKuknRr/j++yRoH0qH+T+f15wZJl0rasskaR4qDvx4rgJMjYjdgH+Bto/S2FO8E5jZdxBo4DfhhRDwD2ItR8l4kbQ/8JzApIvYkXQRxbLNVdWU6cHBLt6nA1RGxC3B1fr62ms7q9V8F7BkRzwL+DLy/10XVwcFfg4hYEBHX58fLSIGzfbNVDY2kHYDDgK82XctwSNoceAnwNYCI+FdE3N9sVUMyDthI0jhgY0bBd10i4lpgaUvnI4AZ+fEMYHJPixqCdvVHxJURsSI//Q3pe0ejnoO/ZpL6gGcD1zVbyZB9AXgv8FjThQzTU4HFwNdzc9VXJW3SdFHdiIi/AZ8B7gQWAA9ExJXNVjVs20TEAkg7RMATG65nTbwR+EHTRYwEB3+NJG0KXAycFBEPNl1PtyQdDiyKiNlN17IGxgHPAc6MiGcDD7N2NzM8LreDHwE8BdgO2ETS65qtqmySPkhqwj236VpGgoO/JpLWI4X+uRFxSdP1DNG+wKskzSPdPXV/Sd9qtqQhuwu4KyL6j7QuIm0IRoOXA3+NiMUR8QhwCfDChmsaroWStgXI/xc1XM+QSZoCHA4cF2Pki08O/hpIEqlteW5EfK7peoYqIt4fETtERB/ppOJPImJU7XFGxD3AfEm75k4HALc0WNJQ3AnsI2njvC4dwCg5Md3GZcCU/HgK8N0GaxkySQcD7wNeFRF/b7qekeLgr8e+wOtJe8pz8t+hTRdVoHcA50q6AZgIfLLherqSj1IuAq4HbiR9Ttf6WwdImgn8GthV0l2S3gRMAw6UdCtwYH6+VupQ/+nAZsBV+XP85UaLHCG+ZYOZWWG8x29mVhgHv5lZYRz8ZmaFcfCbmRXGwW9mVhgHvzVG0pMknS/pNkm3SLpC0tNHaNyTqzfGk3SqpJePwHgnVi/NlfQqSbV8I1jSCySdPcgw0yW9po7p29jl4LdG5C8mXQr8LCJ2jojdgQ8A2wxhHOsO0Hsy8HjwR8RHIuLHw623YiLwePBHxGURUde16QcDP6xp3FYwB7815WXAIxHx+BdiImJORPxc0n7V3wCQdLqkN+TH8yR9RNIvgKMknSDpd5L+IOni/G3XFwKvAj6dv3Szc3XPWNIB+cZtN+Z7sG9QGfdHJV2f+z2jWrCk9YFTgWPyeI+R9AZJp+f+0yWdqfRbDLdLemke/1xJ0yvjOUjSr/N0Lsz3dGrnAGCVjZWS0/MR0uVUbnqW58vvlO7hf1YedmdJ11eG2UXS7Px4Wh7PDZI+0+VyszHAwW9N2RMY7k3glkfEiyLifOCSiHheRPTfb/9NEfEr0q0C3hMREyPitv4XKv2gyXTgmIh4Julmbm+tjHtJRDwHOBP4r+pEI+JfwEeAC/J4L2hT23hgf+BdwPeAzwN7AM/MzURbAx8CXp6nMwt4d+tI8nCPRMQDLb2OBHYFngmcwKr38Dk9z4s9gY2Aw/N7f0DSxDzM8cB0SVvlce2R7zX/8TbvxcYoB7+NRtXA3VPSzyXdCBxHCtmB7Eq6Adqf8/MZpPv29+u/od5soG8YtX0v38jrRmBhRNwYEY8BN+fx7UNqgvqlpDmk+9fs1GY8BwHtbsX8EmBmRDwaEXcDP6n0e5mk6/K82J+V8+KrwPG5aewY4DzgQWA58FVJrwbGzH1obHAOfmvKzcBzO/RbwarrZuvPDj5ceTwdeHvee/9om2FbaZD+/8z/HyUdDQxV/+sfqzzufz4uT/+qfMQwMSJ2j4g3tRnPIXRu31/tPiv5SOZLwGvyvDiblfPi4jy+w4HZEXFv/nGRvXO/yQNMy8YgB7815SfABpJO6O8g6XmSXgrcAewuaQNJW5DaujvZDFigdBvs4yrdl+V+rf4I9El6Wn7+euCaIdTdabzd+g2wb//08zmJVa5kyie+nwXMafP6a4FjlX4PeVvSuRJYGfJL8jmDx6/0iYjlwI9IzVdfz9PYFNgiIq4ATiKdtLZCOPitEbk55EjSnRtvk3QzcApwd0TMB74N3ED64YvfDzCqD5N+3ewqUqj3Ox94Tz6Ju3NlustJ7dwX5iaRx4Ch3HHxp6SN0hxJxwzhdf3TXwy8AZipdNfQ3wDPaBnsucDvO9z7/VLgVlJT0pnkjVb+Wcmzc/fvAL9red25pCOF/uajzYDv5xquIZ2TsEL47pxmaxlJHwL+kk9ej9Q4/4u0h//hkRqnjV4OfrMxTtKlwM7A/hGxpOl6rHkOfjOzwriN38ysMA5+M7PCOPjNzArj4DczK4yD38ysMP8H5hl2QeWMs2kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAckUlEQVR4nO3debgcVZ3G8e8LYU+EIJE1cDUyLAIGjQiCiiAMmxB4ZBOZsCii4ogyo1FRIyjDjAjyCIJsBjSAyKIILiCrCDImGNmioBggEELCGmBQA7/545wbKp3uezuXW93knvfzPPe51VXV55zqqnq76lR3tSICMzMrxzLdboCZmXWWg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAO/i6QdKakL3eorl9ImtCJuvppx96SHpb0nKQtu92ewSLpIEnXdLsdnZLX35vamO+Lks7pRJteDUkh6c01lr+9pFl1lT9QRQa/pA9Jmpo34tk5HLerqa5DJN1SHRcRR0bE8TXUNUnSDxvq2jUizh/sugbgJOCoiBgeEX9onCjpeEl3SVogaVKT6R+S9KCk5yX9RNLqlWkrSDpP0rOSHpP02ToWQFJPDophveMiYkpE7DxI5dcaQoMhr78H2pjvhIj4SCfaZEuuuODPofBt4ARgTWB94LvAXgMoa1j/c1m2AXBPH9P/AnwOuLpxgqS3AN8DDiatsxdI66zXJGDDXMf7gM9J2mVQWr0U8nZp/YqIYv6AVYHngH37mGcy8PXK4+2BWZXHM4HPA3cCfweGAROBvwLzgXuBvfO8mwAvAi/lep9uUcdHScH3JHAlsE5lWgBHAvcDTwGnA2rS7l2AfwD/zHX9MY+/EfhIHj4E+C1wCvA08ADwrjz+YeBxYEKlzBVIR+oPAXOAM4GVWrxuywDHAg/mci7Ir/cKuT0BPA/8tZ919ENgUsO4E4ALK4/H5GUdkR8/AuxcmX48cHGL8rcHZgFfBObl9XlQZfruwB+AZ/NrMqky7aG8HM/lv23ya3dLZZ6NgWvzuvwzsF/DtnU66c1tPnA7MCZPu7nyGj0H7A+sAVyV19WTwG+AZVosVwCfzNvJ3/K4PYDp+fm3AltU5h8NXA7MBZ4ATqtMOwyYQdrefgVs0FDPm4GtgceAZSvT9gbuzMOTgB/m4Z78vAn5NZwHfKnyvJWA83N9M0gHALOaLWee/9S8bp4FpgHv7md/PjOvk/nATc2Wp791n6dvl1/Hp/P0Q/rbT+h/e1uVtK/MJe07x7Zax4OahXVX8Fr6I4XjAmBYPxtKf8E/Pe84vSt3X2AdUvjtT9p5187TDqESDI11ADvkDeJteQP6DnBzw4Z5FbAa6exkLrBLi7Yv3Nkq425k0eBfABwKLAt8PW+sp+e6d847x/A8/7dJb0SrAyOAnwH/1aLuw0hvXm8ChpNC5QfNdrB+1lGz4P8p8PmGcc8BbwdG5rLXrEz7IHBXi/K3z6/ByXmZ35vX10aV6ZvndbkFaUcen6f15LqGVcpbuH6BVUiBcCjpgOBted2+pbLenwS2ytOnUHmDanyNgP8ihchy+e/dNHnTrzz32ryuVsp1Pw68M6/rCaRtd4X8+I+kA4BVgBWB7XI54/N63CS38Vjg1mZtJB3s7FSZ9mNgYuO2WHndzs5teyvpoGmTPP1EUiCPBNYjHVT1FfwfBl6f23cM6Q1oxT725/nAe/Kyn8qib9TV5elr3a+fyzkwr4vXA2P720/of3u7gLR9j8iv033A4bVnYd0VvJb+gIOAx/qZZzL9B/9h/ZQxHdgrDx9C38F/LvA/lWnDSUftPZUNc7vK9Et6d64m9S7c2SrjbmTR4L+/Mm1zFg/NJ4CxgPIGOqYybRvy0WSTuq8DPlF5vFFejmGV5Rho8F8HHNkw7pG8bkbnslesTNsJmNmi/N4dcZWG1/TLLeb/NnBKHu6h7+DfH/hNw/O/B3y1st7PqUzbDfhT5XFj8B9HCoV2XrcAdqg8PgM4vmGeP5OCZxvSAcRiB0DAL6gEDykEXyAfJbNoUH4dOC8Pj8jbS+98C7fFyuu2XqXc/wUOyMMPAP9amfYR+gj+Jm1+Cnhri2mTWfTNdTjpDHx0f9tlw7r/AnBFk3n63E/62t5Ib8B/BzatTPsYcGO7yz7Qv9L6+J8A1hiEPtCHqw8k/Zuk6ZKelvQ0sBnpNL0d65BO8QCIiOdyO9etzPNYZfgF0sY7UHMqw/+X62wcNxwYBawMTKss1y/z+GYWWY48PIzUJ/9qPQe8rmHc60hHYM9VHjdOa+WpiHi+8vhBUvuR9E5JN0iaK+kZUjdbu+tyA+Cdva9Xfs0OAtaqzLMk6/KbpKPvayQ9IGliP/VXt8sNgGMa2jKatJyjgQcjYkGLZTi18pwnSeG2bpN5LwT2kbQCsA9wR0Q82GS+Xq2WfZ2Gti+yfzWSdIykGZKeyW1clb7X0cLy8v71ZK6zsdy+1v1o0hlOo3b2k1bb2xrA8iy+3zR7rQdVacF/G6nPfXwf8zxPWpG91moyT/QOSNqAdAp7FPD6iFgNuJu0sywybwuPkna23vJWIZ1GPtLP85rpr64lMY/0JvCWiFgt/60aEa2CapHlIJ0aL2DRN5qBuofUPQBA/jjhCsB9EfEUMLs6PQ/3dSF5ZH6dq219NA9fSDptHx0Rq5K6Wtpdlw8DN1Ver9UifQrm4/08r6mImB8Rx0TEm4APAJ+VtGNfT2loyzca2rJyRFyUp63f4gDoYeBjDc9bKSJubdK+e0lBtSvwIdJrNxCzSV08vUa3mlHSu0nX2PYDRub97RleWUfNLCxP0nBSl8yjTebra90/TLq21Kid/aTV9jaPdFbcuN8MZN9fIkUFf0Q8A3wFOF3SeEkrS1pO0q6S/ifPNh3YTdLqktYCju6n2FVIO9xcAEmHko74e80B1pO0fIvnXwgcKmlsPnI6Abg9ImYOYBHnAD2SXvV6jYiXSW9op0h6A4CkdSX9a4unXAR8RtIb8851AvCjFkeVi8nrYUXSNjlM0oqSls2TpwAfkPTuvAMdB1weEb1H9RcAx0oaKWlj0sXyyf1U+TVJy+cg2YPUPw2py+LJiHhR0lakQOs1F3iZdB2jmauAf5F0cF6e5SS9Q9Im7bwGpPW3sGxJe0h6sySRLji+lP/acTZwZD6KlaRVJO0uaQSpm2U2cGIev6KkbfPzzgS+kD9JhaRVJe3bRz0XAv9O6kP/cR/z9eWSXOdISeuSDqJaGUE6oJhL2k6+wuJng412k7Rd3gePJ+1fzc4q+lr3U4D3S9pP0jBJr5c0dgn2k8W2t4h4KS/7NySNyAeRnyV1d9aqqOAHiIiTSS/usaSN52HShvaTPMsPSBe+ZgLXAD/qp7x7gW+RzibmkPrNf1uZ5XrS0edjkuY1ef51pP6+y0g74xjggAEt3Cs73hOS7hhgGVWfJ3U1/E7Ss8CvSX33zZxHeu1uBv5GOrP61BLUdTbpyOlA4Et5+GCAiLiHdNo9hXTBcgTwicpzv0o6DX+QdJHwmxHxyz7qeozUL/xoLvPIiPhTnvYJ4DhJ80kHCZf0PikiXgC+Afw2n9ZvXS00vxHtTFp/j+Z6/pt0dtKOScD5uez9SB9R/TWpO+s24LsRcWM7BUXEVNIb4Gl5Wf9Cuh5BDpwPkD6d8xDpUyf752lX5DZfnNf53aQj+lYuIvVjXx8Ri23fbTout+FvpOW9lNT33cyvSNch7iOt7xfpp2uI9Ob0VVIXz9tJ3W/N9LXuHyJdkzkmlzOdV84y+9tP+trePkXqZXgAuCW39bx+ludVU76gYFYESduTLjqu19+81h2SPk668PveQShrMulC8bGvumFDSHFH/Gb22iJpbUnbSlpG0kako+orut2uoczf8DOzblue9LHXN5K+HHUxi34z2waZu3rMzArjrh4zs8IsFV09a6yxRvT09HS7GWZmS5Vp06bNi4jFvnS5VAR/T08PU6dO7XYzzMyWKpKafpPaXT1mZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVZKr65a2aL65l4dVfqnXni7l2p1waPj/jNzArj4DczK4yD38ysMA5+M7PC1Bb8kkZLukHSDEn3SPp0Hj9J0iOSpue/3epqg5mZLa7OT/UsAI6JiDskjQCmSbo2TzslIk6qsW4zM2uhtuCPiNnA7Dw8X9IMYN266jMzs/Z0pI9fUg+wJXB7HnWUpDslnSdpZIvnHCFpqqSpc+fO7UQzzcyKUHvwSxoOXAYcHRHPAmcAY4CxpDOCbzV7XkScFRHjImLcqFGL/WSkmZkNUK3BL2k5UuhPiYjLASJiTkS8FBEvA2cDW9XZBjMzW1Sdn+oRcC4wIyJOroxfuzLb3sDddbXBzMwWV+enerYFDgbukjQ9j/sicKCksUAAM4GP1dgGMzNrUOenem4B1GTSz+uq08zM+udv7pqZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWmGHdboDZYOiZeHVX6p154u5dqdfs1fARv5lZYRz8ZmaFcfCbmRWmtuCXNFrSDZJmSLpH0qfz+NUlXSvp/vx/ZF1tMDOzxdV5xL8AOCYiNgG2Bj4paVNgInBdRGwIXJcfm5lZh9QW/BExOyLuyMPzgRnAusBewPl5tvOB8XW1wczMFteRPn5JPcCWwO3AmhExG9KbA/CGTrTBzMyS2oNf0nDgMuDoiHh2CZ53hKSpkqbOnTu3vgaamRWm1uCXtBwp9KdExOV59BxJa+fpawOPN3tuRJwVEeMiYtyoUaPqbKaZWVHq/FSPgHOBGRFxcmXSlcCEPDwB+GldbTAzs8XVecuGbYGDgbskTc/jvgicCFwi6XDgIWDfGttgZmYNagv+iLgFUIvJO9ZVr5mZ9c3f3DUzK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PC1Bb8ks6T9LikuyvjJkl6RNL0/LdbXfWbmVlzdR7xTwZ2aTL+lIgYm/9+XmP9ZmbWRG3BHxE3A0/WVb6ZmQ3MsHZmknRdROzY37g2HSXp34CpwDER8VSLOo8AjgBYf/31B1CNWf16Jl7d7SaYLbE+j/glrShpdWANSSMlrZ7/eoB1BlDfGcAYYCwwG/hWqxkj4qyIGBcR40aNGjWAqszMrJn+jvg/BhxNCvlpgPL4Z4HTl7SyiJjTOyzpbOCqJS3DzMxenT6DPyJOBU6V9KmI+M6rrUzS2hExOz/cG7i7r/nNzGzwtdXHHxHfkfQuoKf6nIi4oNVzJF0EbE/qJpoFfBXYXtJYIICZpDMKMzProHYv7v6A1Dc/HXgpjw6gZfBHxIFNRp+7pA00M7PB1VbwA+OATSMi6myMmZnVr93P8d8NrFVnQ8zMrDPaPeJfA7hX0v8Cf+8dGRF71tIqMzOrTbvBP6nORpiZWee0+6mem+puiJmZdUa7n+qZT/oUD8DywHLA8xHxuroaZmZm9Wj3iH9E9bGk8cBWtbTIzMxqNaC7c0bET4AdBrktZmbWAe129exTebgM6XP9/ky/mdlSqN1P9XygMryAdLuFvQa9NWZmVrt2+/gPrbshtvTzvenNlg5t9fFLWk/SFfk3dOdIukzSenU3zszMBl+7F3e/D1xJui//usDP8jgzM1vKtBv8oyLi+xGxIP9NBvyzWGZmS6F2g3+epA9LWjb/fRh4os6GmZlZPdoN/sOA/YDHSL+V+0HAF3zNzJZC7X6c83hgQkQ8BZB/gP0k0huCmZktRdo94t+iN/QBIuJJYMt6mmRmZnVqN/iXkTSy90E+4m/3bMHMzF5D2g3vbwG3SrqUdKuG/YBv1NYqMzOrTbvf3L1A0lTSjdkE7BMR99baMjMzq0Xb3TU56B32ZmZLuQHdltnMzJZeDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwtQW/pPPyb/TeXRm3uqRrJd2f/4/sqwwzMxt8dR7xTwZ2aRg3EbguIjYErsuPzcysg2oL/oi4GXiyYfRewPl5+HxgfF31m5lZc53u418zImYD5P9vaDWjpCMkTZU0de7cuR1roJnZUPeavbgbEWdFxLiIGDdq1KhuN8fMbMjodPDPkbQ2QP7/eIfrNzMrXqeD/0pgQh6eAPy0w/WbmRWvzo9zXgTcBmwkaZakw4ETgZ0k3Q/slB+bmVkH1faD6RFxYItJO9ZVp5mZ9e81e3HXzMzq4eA3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MyuMg9/MrDAOfjOzwjj4zcwK4+A3MytMbbdsMLOhqWfi1V2re+aJu3et7qHER/xmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhHPxmZoVx8JuZFcbBb2ZWGAe/mVlhuvJj65JmAvOBl4AFETGuG+0wMytRV4I/e19EzOti/WZmRXJXj5lZYbp1xB/ANZIC+F5EnNU4g6QjgCMA1l9//Q43b+nWM/HqbjfBzF7DunXEv21EvA3YFfikpPc0zhARZ0XEuIgYN2rUqM630MxsiOpK8EfEo/n/48AVwFbdaIeZWYk6HvySVpE0oncY2Bm4u9PtMDMrVTf6+NcErpDUW/+FEfHLLrTDzKxIHQ/+iHgAeGun6zUzs8Qf5zQzK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMA5+M7PCOPjNzArj4DczK4yD38ysMN38Ba6O8L3pzYaOEvfnmSfuPuhl+ojfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCuPgNzMrTFeCX9Iukv4s6S+SJnajDWZmpep48EtaFjgd2BXYFDhQ0qadboeZWam6ccS/FfCXiHggIv4BXAzs1YV2mJkVaVgX6lwXeLjyeBbwzsaZJB0BHJEfPifpzx1oG8AawLwO1dVNXs6hxcs5tCxcTv33qypng2YjuxH8ajIuFhsRcRZwVv3NWZSkqRExrtP1dpqXc2jxcg4tdS9nN7p6ZgGjK4/XAx7tQjvMzIrUjeD/PbChpDdKWh44ALiyC+0wMytSx7t6ImKBpKOAXwHLAudFxD2dbkcfOt691CVezqHFyzm01Lqcilise93MzIYwf3PXzKwwDn4zs8I4+DNJoyXdIGmGpHskfbrbbaqLpGUl/UHSVd1uS10krSbpUkl/yut0m263qQ6SPpO317slXSRpxW63abBIOk/S45LuroxbXdK1ku7P/0d2s42DocVyfjNvu3dKukLSaoNZp4P/FQuAYyJiE2Br4JND+FYSnwZmdLsRNTsV+GVEbAy8lSG4vJLWBf4dGBcRm5E+LHFAd1s1qCYDuzSMmwhcFxEbAtflx0u7ySy+nNcCm0XEFsB9wBcGs0IHfxYRsyPijjw8nxQU63a3VYNP0nrA7sA53W5LXSS9DngPcC5ARPwjIp7ubqtqMwxYSdIwYGWG0HdiIuJm4MmG0XsB5+fh84HxHW1UDZotZ0RcExEL8sPfkb7vNGgc/E1I6gG2BG7vbktq8W3gc8DL3W5Ijd4EzAW+n7u0zpG0SrcbNdgi4hHgJOAhYDbwTERc091W1W7NiJgN6WANeEOX29MJhwG/GMwCHfwNJA0HLgOOjohnu92ewSRpD+DxiJjW7bbUbBjwNuCMiNgSeJ6h0SWwiNy/vRfwRmAdYBVJH+5uq2wwSfoSqRt6ymCW6+CvkLQcKfSnRMTl3W5PDbYF9pQ0k3RX1B0k/bC7TarFLGBWRPSesV1KeiMYat4P/C0i5kbEP4HLgXd1uU11myNpbYD8//Eut6c2kiYAewAHxSB/4crBn0kSqU94RkSc3O321CEivhAR60VED+ki4PURMeSOECPiMeBhSRvlUTsC93axSXV5CNha0sp5+92RIXgRu8GVwIQ8PAH4aRfbUhtJuwCfB/aMiBcGu3wH/yu2BQ4mHQVPz3+7dbtRNmCfAqZIuhMYC5zQ5fYMunxGcylwB3AXaX8eMrc0kHQRcBuwkaRZkg4HTgR2knQ/sFN+vFRrsZynASOAa3MWnTmodfqWDWZmZfERv5lZYRz8ZmaFcfCbmRXGwW9mVhgHv5lZYRz81jWS1pJ0saS/SrpX0s8l/csglT2+epM9ScdJev8glDu2+jFfSXtKquVbwZK2kXR2P/NMlvTBOuq3ocvBb12Rv3B0BXBjRIyJiE2BLwJrLkEZy/YxeTywMPgj4isR8euBtrdiLLAw+CPiyoio67PkuwC/rKlsK5iD37rlfcA/I2LhF1MiYnpE/EbS9tXfCpB0mqRD8vBMSV+RdAuwr6SPSvq9pD9Kuix/i/VdwJ7AN/OXX8ZUj4wl7Zhv3nZXvhf6CpWyvybpjjxt42qDJS0PHAfsn8vdX9Ihkk7L0ydLOkPpdx0ekPTeXP4MSZMr5ews6bZcz4/z/aGa2RFY5M1KyWn5DOlqKjcpy6/L75XuzX9WnneMpDsq82woaVoePjGXc6ekk9pcbzYEOPitWzYDBnqzuBcjYruIuBi4PCLeERG999w/PCJuJX21/z8jYmxE/LX3iUo/VDIZ2D8iNifd0O3jlbLnRcTbgDOA/6hWGhH/AL4C/CiX+6MmbRsJ7AB8BvgZcArwFmDz3E20BnAs8P5cz1Tgs42F5Pn+GRHPNEzaG9gI2Bz4KIvem+e0/FpsBqwE7JGX/RlJY/M8hwKTJa2ey3pLvuf715ssiw1RDn5bGlUDdzNJv5F0F3AQKWT7shHpxmb35cfnk+7d36v35nzTgJ4BtO1n+YZadwFzIuKuiHgZuCeXtzWpC+q3kqaT7jezQZNydgaa3WL5PcBFEfFSRDwKXF+Z9j5Jt+fXYgdeeS3OAQ7NXWP7AxcCzwIvAudI2gcY9PvB2GuXg9+65R7g7S2mLWDRbbPx5wSfrwxPBo7KR+9fazJvI/Uz/e/5/0uks4El1fv8lyvDvY+H5fqvzWcMYyNi04g4vEk5u9K6f3+x+6zkM5nvAh/Mr8XZvPJaXJbL2wOYFhFP5B/52CpPG99HXTYEOfitW64HVpD00d4Rkt4h6b3Ag8CmklaQtCqpr7uVEcBspVtqH1QZPz9Pa/QnoEfSm/Pjg4GblqDdrcpt1++AbXvrz9ckFvkkU77wvQUwvcnzbwYOUPrd5LVJ10rglZCfl68ZLPykT0S8CPyK1H31/VzHcGDViPg5cDTporUVwsFvXZG7Q/Ym3Wnxr5LuASYBj0bEw8AlwJ2kH6D4Qx9FfZn0S2nXkkK918XAf+aLuGMq9b5I6uf+ce4SeRlYkjsf3kB6U5ouaf8leF5v/XOBQ4CLlO4c+jtg44bZ3g78ocU92K8A7id1JZ1BftPKPy15dh7/E+D3Dc+bQjpT6O0+GgFcldtwE+mahBXCd+c0e42RdCzwl3zxerDK/A/SEf6XB6tMW3o5+M2GOElXAGOAHSJiXrfbY93n4DczK4z7+M3MCuPgNzMrjIPfzKwwDn4zs8I4+M3MCvP/RTEG8+ncYi4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from my_statistics_functions import draw_curation_time_histogram\n", + "\n", + "draw_curation_time_histogram(curation_time_treatment, \n", + " \"patients receiving a treatment\")\n", + "draw_curation_time_histogram(curation_time_placebo, \n", + " \"patients receiving a placebo\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hypothesis testing\n", + "\n", + "* null-hypothesis: Patients receiving the treatment feel better earlier\n", + "\n", + "* alternate hypothesis: Patients receiving the placebo need longer to feel better\n", + "\n", + "## Two-sample T-test of independent samples" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "p-value: 0.6360930181448069\n" + ] + } + ], + "source": [ + "from scipy import stats\n", + "\n", + "presumptive_ripe_time = 25\n", + "\n", + "statistics, p_value = stats.ttest_ind(curation_time_treatment, curation_time_placebo)\n", + "\n", + "print(\"p-value: \" + str(p_value))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/Testing tomato ripen time.ipynb b/11_Hypothesis_testing/Testing tomato ripen time.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..0b6a7b28f57db44e4667205e512b9512866393ad --- /dev/null +++ b/11_Hypothesis_testing/Testing tomato ripen time.ipynb @@ -0,0 +1,187 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Setting up a dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[25.36077192 21.99284607 24.66147459 24.13522414 25.19699394 27.1105588\n", + " 27.21711827 23.99201324 24.62837502 24.00316964 23.97265165 23.69150348\n", + " 23.87474102 24.24951924 22.70964348 27.44811164 23.14164549 23.69577962\n", + " 24.63399963 25.52432004 24.44467109 24.68202734 20.99456432 25.01167432\n", + " 25.31265913 25.98709214 17.59602636 28.80564209 24.74442957 23.09989612\n", + " 24.0190898 22.8590973 22.8516007 25.67153251 25.13355891 26.42321083\n", + " 27.99791641 20.84282366 21.66138292 23.38381399 20.58994995 26.24360199\n", + " 25.36720024 25.46465655 21.03491453 24.78498624 27.36868498 27.48801593\n", + " 25.57688679 25.54842762 26.74737965 22.51636024 25.75046789 20.93175349\n", + " 25.83472988 23.41791145 22.6338715 22.12807181 29.58382288 21.54881035\n", + " 24.60023214 25.09047661 24.75968111 24.64405223 25.7446681 25.201116\n", + " 23.38080789 22.85446879 20.55882516 24.80651406 25.26496377 25.95638214\n", + " 24.69654821 26.11271043 24.57061342 26.21995055 23.57329152 22.38873739\n", + " 23.79337091 25.38534656 24.89694605 22.29055239 23.23316104 26.95960368\n", + " 23.48341966 25.05951226 22.38369459 24.06997003 27.97668846 25.86545142\n", + " 26.85137435 25.39114133 23.21363012 24.38962764 22.08019012 26.99443634\n", + " 24.40998955 26.6712733 25.06958356 27.04129782]\n" + ] + } + ], + "source": [ + "import tomatoes\n", + "\n", + "number_of_tomatoes = 100\n", + "\n", + "ripe_time = tomatoes.ripen(number_of_tomatoes)\n", + "\n", + "print(ripe_time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Descriptive statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "def do_descriptive_statistics(x):\n", + " mean_x = np.mean(x)\n", + " standard_deviation_x = np.std(x)\n", + "\n", + " print(\"Mean: \" + str(mean_x) + \" +- \" + str(standard_deviation_x))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 24.512579751104184 +- 1.9787623359862967\n" + ] + } + ], + "source": [ + "do_descriptive_statistics(ripe_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZAUlEQVR4nO3deZhcVZ3G8e9LCBAJq+lgEsAWBjccDBhxQQUFZ1hkGXUUHtDgOBN1RA0joxFcUFwAEQeQGQ0DBhhEURZhQCUi4gZohwmQGBAHoiwhCXuiLCb85o9zeqgUVZ3qTt+63Tnv53nq6Vv33r7nd6q77nu3uqWIwMzMyrNB3QWYmVk9HABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyANhaSfq6pE+tb22tpY49JN0haaWkQ+qux6wKDgBD0mJJj+eV3f2S5kga3z89It4fESdU0O6Rkn7ROK6qtobgc8DXImJ8RFzWPFHSUZL6JD0paU6L6XtLuk3SnyVdK+n5DdMk6SRJD+bHyZLUqghJvZJC0obD2blO5f+Nfepo26rnALB+B0bEeGAqsCvwiZrrqdvzgYUDTL8P+DxwTvMESROAS4BPAVsDfcB3GmaZARwCvBzYBXgL8L5hqdpsMCLCj8IfwGJgn4bnJwNXNjyfA3w+D+8F3AMcCzyQf/fwhnk3Bk4B/ggsBb4OjGvR5kuAJ4DVwErgkQHa+hiwDFhCWnHuD/wOeAg4tmGZGwCzgP8FHgQuArYeoN//BPw+L+dyYHIe/7/A08DjubaNB1jG54E5TeNmAL9qeL5pXtaL8/NfATMapr8XuKHN8v8IRK5jJfCa3M9PAn/Ir8t5wBZ5/t48/3uAu4GHgfcDrwRuAR4h7dn0L39H4Cf59XoAuADYMk87v+l1+FgefxApHB8Bfgq8pGF5k4GLgeXAXcCHG6btTgrDx/L/xql1/++X/vAegK1B0rbAfqQVYzvPAyYAU4DpwGxJL8rTTgJeSNqT+Ks8z6ebFxARi0grpusjHWbZcoC2NmlYzlnAEcArgNcDn5a0Q573w6SA2JO0InoYOLNNP98EfAl4BzCJtDL9dq5tR9KK98Bc25MDvBat7Azc3NDXP5FCZedW0/PwzrT2hvxzy1zL9cCR+fFGYAdgPPC1pt97FbAT8E7g34DjgH1yO++QtGeeT6TXYTIplLcDjs91v4s1X4eTJb0QuBCYCfQAVwFXSNpI0gbAFbk/U4C9gZmS/ja3dRpwWkRsTgqei9r02brEAWD9LpO0grTVuAz4zFrm/1REPBkR1wFXklYqIm1VHx0RD0XECuCLwKHrUNdfgC9ExF9IK+gJpJXIiohYSNoS3SXP+z7guIi4J6+0jwfe3ub4+eHAORFxU573E8BrJPWuQ639xgOPNo17FNiszfRHgfHtzgO0cDhp6/nOiFhJqv3Qpn6eEBFPRMTVwJ+ACyNiWUTcC/ycdJiPiPh9RMzNf8vlwKmkAG3nnaS9w7n5b3IKMA54LWkvoyciPhcRT0XEnaTA7v/7/wX4K0kTImJlRNzQYX+tIg4A63dIRGxGOuzyYtKKtp2H81Ztvz+QtiB7gOcA8yQ9IukR4Id5/FA9GBGr8/Dj+efShumPk1aokI7bX9rQ9iLSIaZtWix3cq4bgLwifZC05bquVgKbN43bHFjRZvrmwMqI6PTOjGvUnoc3ZM1+Nr9GLV8zSRMlfVvSvZIeA/6Lgf/2za/b06SNhimk139y/+uf/wbHNtT1XtLe4W2SfiPpLR321yriALA15C36OaQtu3a2krRpw/PtSSdFHyCtXHaOiC3zY4tIJ5dbNjccNTe4G9ivoe0tI2KTvNXb7D7SCguA3J/nAq3mHayFpBO8jcvekWdOKq8xPQ+3O+Hc6jVao3bS67+KNVfynfpSbmOXfGjmCNJhoXbtN79uIh02upf0+t/V9PpvFhH7A0TEHRFxGDCRdKjwe03/R9ZlDgBr5d+AN0uaOsA8n83HfV9Puorlu3lr8Czgq5ImAkia0nAMuNlSYFtJGw1T3V8HvtB/yaWkHkkHt5n3W8B7JE2VtDHpUNWNEbG4k4YkbShpE2AMMEbSJg2HYC4FXibpbXmeTwO3RMRtefp5wL/k12Yy8FFS6LaynHQidoeGcRcCR0t6Qb5c94vAdyJiVSe1N9mMfBJe0hTgX5umL21q+yLggHyZ69hc+5OkE9u/Bh6T9HFJ4ySNkfQySa8EkHSEpJ78f/JIXt5qrDYOAHuWfCz4PNJljK3cTzrBeh/pqpH3N6zcPk46gXxDPqTwY+BFLZeSrj5ZCNwv6YFhKP000tU8V+fzGTeQToY+S0RcQ+rfxaSri3ZkcOcqPkna25lF2mp+PI/rf/3eBnyB9Dq9qmnZ3yCdLL0VWEA6h/KNNnX+OS/nl/mwyqtJl56eD/yMdKXNE8CHBlF7o88Cu5HOQ1xJuny10ZeAT+a2j4mI23N/zyDt8R1IOkn8VD5UdyDpAoC78vT/BLbIy9oXWChpJelvdWhEPDHEum0YqPPDjmYgaS/gvyJi27prMbN14z0AM7NCOQDMzArlQ0BmZoXyHoCZWaFqucPgYE2YMCF6e3vrLsPMbFSZN2/eAxHR9oOYoyIAent76evrq7sMM7NRRdIfBpruQ0BmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoUaFZ8ENrNn6511ZS3tLj7xgFrateHnPQAzs0I5AMzMCuUAMDMrlAPAzKxQlQWApO0kXStpkaSFkj6Sxx8v6V5J8/Nj/6pqMDOz9qq8CmgV8NGIuEnSZsA8SXPztK9GxCkVtm1mZmtRWQBExBJgSR5eIWkRMKWq9szMbHC68jkASb3ArsCNwB7AUZLeDfSR9hIebvE7M4AZANtvv303yjQbtLquxTcbDpWfBJY0HrgYmBkRjwH/AewITCXtIXyl1e9FxOyImBYR03p62n6lpZmZDVGlASBpLGnlf0FEXAIQEUsjYnVEPA2cBexeZQ1mZtZalVcBCTgbWBQRpzaMn9Qw298BC6qqwczM2qvyHMAewLuAWyXNz+OOBQ6TNBUIYDHwvgprMDOzNqq8CugXgFpMuqqqNs3MrHP+JLCZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhaosACRtJ+laSYskLZT0kTx+a0lzJd2Rf25VVQ1mZtZelXsAq4CPRsRLgFcDH5T0UmAWcE1E7ARck5+bmVmXVRYAEbEkIm7KwyuARcAU4GDg3DzbucAhVdVgZmbtdeUcgKReYFfgRmCbiFgCKSSAid2owczM1lR5AEgaD1wMzIyIxwbxezMk9UnqW758eXUFmpkVqtIAkDSWtPK/ICIuyaOXSpqUp08ClrX63YiYHRHTImJaT09PlWWamRWpyquABJwNLIqIUxsmXQ5Mz8PTge9XVYOZmbW3YYXL3gN4F3CrpPl53LHAicBFkt4L/BH4+wprMDOzNioLgIj4BaA2k/euql0zM+uMPwlsZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhaosACSdI2mZpAUN446XdK+k+fmxf1Xtm5nZwKrcA5gD7Nti/FcjYmp+XFVh+2ZmNoDKAiAifgY8VNXyzcxs3WzYyUySromIvdc2rkNHSXo30Ad8NCIebtPmDGAGwPbbbz+EZqwkvbOurLsEs1FnwD0ASZtI2hqYIGkrSVvnRy8weQjt/QewIzAVWAJ8pd2METE7IqZFxLSenp4hNGVmZgNZ2x7A+4CZpJX9PEB5/GPAmYNtLCKW9g9LOgv478Euw8zMhseAARARpwGnSfpQRJyxro1JmhQRS/LTvwMWDDS/mZlVp6NzABFxhqTXAr2NvxMR57X7HUkXAnuRDh/dA3wG2EvSVCCAxaQ9DDMzq0GnJ4HPJx27nw+szqMDaBsAEXFYi9FnD7ZAMzOrRkcBAEwDXhoRUWUxZmbWPZ1+DmAB8LwqCzEzs+7qdA9gAvBbSb8GnuwfGREHVVKVmZlVrtMAOL7KIszMrPs6vQrouqoLMTOz7ur0KqAVpKt+ADYCxgJ/iojNqyrMzMyq1ekewGaNzyUdAuxeSUVmZtYVQ7obaERcBrxpmGsxM7Mu6vQQ0Fsbnm5A+lyAPxNgZjaKdXoV0IENw6tIt3E4eNirMTOzrun0HMB7qi7EzMy6q6NzAJK2lXRp/o7fpZIulrRt1cWZmVl1Oj0J/E3gctL3AkwBrsjjzMxslOo0AHoi4psRsSo/5gD+mi4zs1Gs0wB4QNIRksbkxxHAg1UWZmZm1eo0AP4BeAdwP+m7fN8O+MSwmdko1ulloCcA0yPiYYD8RfGnkILBzMxGoU73AHbpX/kDRMRDwK7VlGRmZt3QaQBsIGmr/id5D6DTvQczMxuBOl2JfwX4laTvkW4B8Q7gC5VVZWZmlev0k8DnSeoj3QBOwFsj4reVVmZmZpXq+DBOXuF7pW9mtp4Y0u2gzcxs9HMAmJkVygFgZlYoB4CZWaF8Lb+ZDUrvrCtra3vxiQfU1vb6yHsAZmaFcgCYmRXKAWBmVigHgJlZoSoLAEnn5O8QXtAwbmtJcyXdkX9uNdAyzMysOlXuAcwB9m0aNwu4JiJ2Aq7Jz83MrAaVBUBE/Ax4qGn0wcC5efhc4JCq2jczs4F1+xzANhGxBCD/nNhuRkkzJPVJ6lu+fHnXCjQzK8WIPQkcEbMjYlpETOvp6am7HDOz9U63A2CppEkA+eeyLrdvZmZZtwPgcmB6Hp4OfL/L7ZuZWVblZaAXAtcDL5J0j6T3AicCb5Z0B/Dm/NzMzGpQ2c3gIuKwNpP2rqpNMzPr3Ig9CWxmZtVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFcoBYGZWKAeAmVmhHABmZoVyAJiZFaqyW0FYeXpnXVl3CWY2CN4DMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0L5+wDWQ74vv62v6vrfXnziAbW0WzXvAZiZFcoBYGZWKAeAmVmhHABmZoWq5SSwpMXACmA1sCoiptVRh5lZyeq8CuiNEfFAje2bmRXNh4DMzApVVwAEcLWkeZJmtJpB0gxJfZL6li9f3uXyzMzWf3UFwB4RsRuwH/BBSW9oniEiZkfEtIiY1tPT0/0KzczWc7UEQETcl38uAy4Fdq+jDjOzknU9ACRtKmmz/mHgb4AF3a7DzKx0dVwFtA1wqaT+9r8VET+soQ4zs6J1PQAi4k7g5d1u18zM1uTLQM3MCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCuUAMDMrVB3fCWxmNqr0zrqytrYXn3hAZcv2HoCZWaEcAGZmhXIAmJkVygFgZlYoB4CZWaEcAGZmhXIAmJkVar3/HMD6ev2umdm68h6AmVmhHABmZoVyAJiZFcoBYGZWqFoCQNK+km6X9HtJs+qowcysdF0PAEljgDOB/YCXAodJemm36zAzK10dewC7A7+PiDsj4ing28DBNdRhZla0Oj4HMAW4u+H5PcCrmmeSNAOYkZ+ulHR7xXVNAB4YzgXqpOFc2qAMe19q5L6MTOtLX0Z8PwaxHmnVl+cP9At1BIBajItnjYiYDcyuvpxEUl9ETOtWe1VyX0Ym92XkWV/6AUPrSx2HgO4Btmt4vi1wXw11mJkVrY4A+A2wk6QXSNoIOBS4vIY6zMyK1vVDQBGxStJRwI+AMcA5EbGw23W00LXDTV3gvoxM7svIs770A4bQF0U86/C7mZkVwJ8ENjMrlAPAzKxQRQaApHMkLZO0oGHcVEk3SJovqU/S7nXW2ClJ20m6VtIiSQslfSSP31rSXEl35J9b1V3rQAbox5cl3SbpFkmXStqy7lrXpl1fGqYfIykkTairxk4N1BdJH8q3dFko6eQ66+zEAP9jo+q9L2kTSb+WdHPux2fz+MG/5yOiuAfwBmA3YEHDuKuB/fLw/sBP666zw75MAnbLw5sBvyPdYuNkYFYePws4qe5ah9iPvwE2zONPGun9GKgv+fl2pAsg/gBMqLvWdfi7vBH4MbBxnjax7lrXoS+j6r1P+izV+Dw8FrgRePVQ3vNF7gFExM+Ah5pHA5vn4S0YJZ9NiIglEXFTHl4BLCJ92vpg4Nw827nAIfVU2Jl2/YiIqyNiVZ7tBtLnRka0Af4mAF8FPkaLDz+ORAP05QPAiRHxZJ62rL4qOzNAX0bVez+Slfnp2PwIhvCeLzIA2pgJfFnS3cApwCdqrmfQJPUCu5K2CLaJiCWQ/vGBifVVNjhN/Wj0D8APul3Pumjsi6SDgHsj4uZaixqipr/LC4HXS7pR0nWSXllnbYPV1JdR996XNEbSfGAZMDcihvSedwA84wPA0RGxHXA0cHbN9QyKpPHAxcDMiHis7nqGql0/JB0HrAIuqKu2wWrsC6n244BP11rUELX4u2wIbEU69PCvwEWSWt3mZcRp0ZdR996PiNURMZW0R7y7pJcNZTkOgGdMBy7Jw98l3bV0VJA0lvQPfUFE9PdhqaRJefok0pbCiNamH0iaDrwFODzyAc6RrkVfdgReANwsaTHpjXuTpOfVV2Vn2vxd7gEuyYcjfg08TboZ2YjWpi+j9r0fEY8APwX2ZQjveQfAM+4D9szDbwLuqLGWjuWtrrOBRRFxasOky0n/2OSf3+92bYPRrh+S9gU+DhwUEX+uq77BaNWXiLg1IiZGRG9E9JJWoLtFxP01lrpWA/x/XUZ6nyDphcBGjPS7arbvy6h670vq6b8aTtI4YB/gNobwni/yk8CSLgT2Im2xLAU+A9wOnEbatX0C+OeImFdXjZ2S9Drg58CtpK0wgGNJxzYvArYH/gj8fUQ0n/geMQbox+nAxsCDedwNEfH+7lfYuXZ9iYirGuZZDEyLiJG+0mz3d/kxcA4wFXgKOCYiflJLkR0aoC+PMYre+5J2IZ3kHUPaiL8oIj4n6bkM8j1fZACYmZkPAZmZFcsBYGZWKAeAmVmhHABmZoVyAJiZFcoBYCOepNX5To0LJF3RcA30ZEnfG6Y2Zkp6TsPzq6q686ikH0qaMsD0XjXcqdasKg4AGw0ej4ipEfEy0k38PggQEfdFxNuHqY2ZwP8HQETsnz9lOazyB3e2joh7h3vZZoPlALDR5nrynTUbt5QlHSnp+3nr+nZJn+n/BUlH5Punz5f0DUljGhco6cPAZOBaSdfmcYslTcht3CbpP/MeyAWS9pH0y3zf9d3z/Jsqfc/EbyT9j6SD29S/F+mj+2uQ9Ip8f/fryQHX0MefS7opP16bx5/f2Eau6yBJOzf09RZJOw3+JbZi1H1vaz/8WNsDWJl/jiHdq2Xf/LyX/J0OwJHAEuC5wDhgATANeAlwBTA2z/fvwLtbtLGYhvvz9z/PbawC/pq0wTSP9AlYkW6/e1me/4vAEXl4S9K95jdt0c7pwJtajL8F2DMPf7mhX88BNsnDOwF9eXjPhra3AO4ifZL1DNI9kyDdnmFc3X8/P0buY8OhxYZZV43Lt77tJa2A57aZb25EPAgg6RLgdaSV9yuA3+SbVY5j8DfGuysibs3LXQhcExEh6dZcE6QvrjlI0jH5+Sakj+QvalrWHsAxjSMkbQFsGRHX5VHnA/vl4bHA1yRNBVaTbsNMRFwn6UxJE4G3AhdHxKq8B3GcpG1JN2sb0fe1sXo5AGw0eDwipuYV5X+TDpGc3mK+5vuaBGlL/dyIWJd7vD/ZMPx0w/OneeY9JOBtEXF7u4VI2gG4OyKeap5E+y+IOZp0v6qXk/ZAnmiYdj5wOHAo6bsSiIhvSboROAD4kaR/jBF+jx6rj88B2KgREY8CHwaOybf1bfZmpe9FHUf6NqRfAtcAb89byv3fm/r8Fr+7gvQ1gUP1I+BD/ffEl7Rri3n2A37YPDLSyeZH883KIK3U+20BLImIp4F3kQ6D9ZtDOnlNRCzM7e4A3BkRp5PuDrnLOvTJ1nMOABtVIuJ/gJtJW73NfkHaKp5POiTSFxG/BT4JXC3pFtLho0ktfnc28IP+k8BDcALpcM0t+cT0CS3m2ZcWAZC9BzgzH8J5vGH8vwPTJd1AOvzzp/4JEbGUdIjpmw3zvxNYkA+ZvRg4b2jdsRL4bqC2XpB0JOn2ykfVXUsrkjYGfhkR04Zxmc8h3dp4t7x3ZDYo3gMw64KIeHKYV/79XwJyhlf+NlTeAzAzK5T3AMzMCuUAMDMrlAPAzKxQDgAzs0I5AMzMCvV/rwBefQcD7l8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.hist(ripe_time, bins=10)\n", + "ax.set_title('Ripe time of ' + str(len(ripe_time)) + ' tomatoes')\n", + "ax.set_ylabel(\"count\")\n", + "ax.set_xlabel(\"Ripe time / days\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Hypothesis testing\n", + "\n", + "* null-hypothesis: Tomatoes become ripe after 25 days\n", + "\n", + "* alternate hypothesis: Ripe time of our tomatoes is different from 25 days\n", + "\n", + "## Parametric test: One sample t-test\n", + "Parameter: Presumptive mean of the population: 25" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'ripe_time' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mpresumptive_ripe_time\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m25\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 5\u001b[1;33m \u001b[0mstatistics\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mp_value\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mstats\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mttest_1samp\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mripe_time\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mpresumptive_ripe_time\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 6\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 7\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"p-value: \"\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mp_value\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mNameError\u001b[0m: name 'ripe_time' is not defined" + ] + } + ], + "source": [ + "from scipy import stats\n", + "\n", + "presumptive_ripe_time = 25\n", + "\n", + "statistics, p_value = stats.ttest_1samp(ripe_time, presumptive_ripe_time)\n", + "\n", + "print(\"p-value: \" + str(p_value))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/Using custom libraries.ipynb b/11_Hypothesis_testing/Using custom libraries.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c2ca91805e956affa6173fa668a27931f83a704e --- /dev/null +++ b/11_Hypothesis_testing/Using custom libraries.ipynb @@ -0,0 +1,76 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "import math_library\n", + "\n", + "x = 3\n", + "y = 7\n", + "\n", + "result = math_library.add(x, y)\n", + "print(result)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "-4\n" + ] + } + ], + "source": [ + "from math_library import subtract\n", + "\n", + "\n", + "result = subtract(x, y)\n", + "print(result)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/blobs.tif b/11_Hypothesis_testing/blobs.tif new file mode 100644 index 0000000000000000000000000000000000000000..fd5be7ff4274d197af9732e7a11c64f8e2e3f46b Binary files /dev/null and b/11_Hypothesis_testing/blobs.tif differ diff --git a/11_Hypothesis_testing/distributions.ipynb b/11_Hypothesis_testing/distributions.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..18ba619c680b90c0a8f936d557e39a6270e75170 --- /dev/null +++ b/11_Hypothesis_testing/distributions.ipynb @@ -0,0 +1,1068 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from numpy import random\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Uniform distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "69.3477764428305\n" + ] + } + ], + "source": [ + "# get a single random number between 0 and 100\n", + "x = random.uniform(0, 100)\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[56.84711013 55.34219327 67.14059109 58.00834898 94.01891963 23.84325919\n", + " 8.77782622 37.2162182 70.48293836 34.63782848]\n" + ] + } + ], + "source": [ + "# get 10 random numbers\n", + "x = random.uniform(0, 100, size=10)\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[31.7475544 23.77999003 59.3542624 ... 31.11347844 65.49780918\n", + " 76.55802087]\n" + ] + } + ], + "source": [ + "# improve readability by writing all parameter names\n", + "x = random.uniform(low=0, high=100, size=10000)\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAPhElEQVR4nO3dX4xcZ3nH8e+vNgQShLCbTWTspA6SBQRUGrSiASqEahDhj3AuGslIqaw2klUpLQEhgVMuol5EStUKwUVBspKAVaJEUUgbi6o0lgGhShDqEESTOMEuoY6JiZdWFEqrQODpxZzAdLOLd+fM7O688/1I1sx558yc592Z/c0z7+yMU1VIktryG+tdgCRp/Ax3SWqQ4S5JDTLcJalBhrskNWjzehcAcOGFF9bOnTvXuwxJmioPPvjgD6pqbqnLNkS479y5k2PHjq13GZI0VZL8+3KXuSwjSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDzhnuSW5PcjbJw0Njf5XksSTfSvJ3SV42dNmNSU4meTzJOyZVuCRpeSvp3D8DXLVo7Ajw2qr6beDbwI0ASS4H9gKv6a7zySSbxlatJGlFzvkJ1ar6SpKdi8buH9r8GvAH3fk9wF1V9QzwRJKTwBuAr46lWo1s54F/+OX5797y7nWsRNJaGMea+x8D/9id3w48OXTZ6W7seZLsT3IsybGFhYUxlCFJek6vcE/yUeBZ4I7nhpbYbcn/x6+qDlbVfFXNz80t+b03kqQRjfzFYUn2Ae8Bdtev/iPW08AlQ7vtAJ4avTxpslyuUqtG6tyTXAV8BHhvVf3P0EWHgb1JzktyGbAL+Hr/MiVJq3HOzj3JncBbgQuTnAZuYvDXMecBR5IAfK2q/qSqHklyN/Aog+Wa66vq55MqXpK0tJX8tcz7lhi+7dfsfzNwc5+iJEn9+AlVSWrQhvifmNaab6JpPfi4+xV/FpNn5y5JDZrJzl2aZhux692INc06O3dJalBznbsdhCQ1GO6T4BPG9PM+HL/hn6k2HpdlJKlBdu5TbnH31FJXarc9fmvxePF+2xjs3CWpQXbuE2DnsjR/Lppla/34t3OXpAbZuUtj5isUbQSGew/+EkvaqFyWkaQG2bk3ZhpfTUyiZj9go1ln5y5JDbJz11hM4yuGvmZxzpoehvuQlfyy+nJfS/FxoY3GZRlJalDTnXurL5tX2iVOupu0W9VqzOLjZbk5r0U22blLUoOa7tzVvlZfnWlt/bpXFSt5XG3Ex6GduyQ1yM59g9mIHYA0qhbW2af1d/KcnXuS25OcTfLw0NjWJEeSnOhOtwxddmOSk0keT/KOSRUuSVreSpZlPgNctWjsAHC0qnYBR7ttklwO7AVe013nk0k2ja1aSdKKnHNZpqq+kmTnouE9wFu784eALwMf6cbvqqpngCeSnATeAHx1POVuXC28/FyJWZmnps+0Lp9MyqhvqF5cVWcAutOLuvHtwJND+53uxiRJa2jcb6hmibFacsdkP7Af4NJLLx1zGdoo7PQ3tuXun7XsfCf9raBr/VUiG+UxP2q4P51kW1WdSbINONuNnwYuGdpvB/DUUjdQVQeBgwDz8/NLPgHMio3yYNgI/FlI4zHqssxhYF93fh9w39D43iTnJbkM2AV8vV+JkqTVOmfnnuROBm+eXpjkNHATcAtwd5LrgFPANQBV9UiSu4FHgWeB66vq5xOqXVNsWjv01da9Eea5EWpoxTT9LFfy1zLvW+ai3cvsfzNwc5+iJEn9NPEJ1Wl6NpWmwUZ4o1X9+N0yktSgJjp3Cdp7BeeHcs6ttft8nAx3aQrMYoiNa2loVp8kXZaRpAbNfOc+ix3RSsxqt7PefDxqXOzcJalBM9O52xGtnUn8rH0lIa3OzIS72uET9Wzz/l8Zl2UkqUF27hO23HKC3Yf0fP5ejI+duyQ1yM59BvnmZJu8XzXMcF/GrLw8nJV5DlvJnKclKGfx/tPKuCwjSQ2yc19DdllayqQ/FzANt6vxs3OXpAYZ7pLUIMNdkhrkmrvUcT25fbN0H9u5S1KDDHdJapDhLkkNMtwlqUG+oTol1vONoFl6E2opsz5/TSc7d0lqUK9wT/LBJI8keTjJnUlelGRrkiNJTnSnW8ZVrCRpZUYO9yTbgfcD81X1WmATsBc4ABytql3A0W5bkrSG+i7LbAZenGQzcD7wFLAHONRdfgi4uucxJEmrNPIbqlX1vSR/DZwC/he4v6ruT3JxVZ3p9jmT5KKlrp9kP7Af4NJLLx21jKb5Rl67vG81aX2WZbYw6NIvA14OXJDk2pVev6oOVtV8Vc3Pzc2NWoYkaQl9lmXeBjxRVQtV9TPgXuBNwNNJtgF0p2f7lylJWo0+4X4KuDLJ+UkC7AaOA4eBfd0++4D7+pUoSVqtPmvuDyS5B/gG8CzwEHAQeAlwd5LrGDwBXDOOQiVJK9frE6pVdRNw06LhZxh08ZKkdeInVCWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQb3CPcnLktyT5LEkx5O8McnWJEeSnOhOt4yrWEnSyvTt3D8BfKGqXgW8DjgOHACOVtUu4Gi3LUlaQyOHe5KXAm8BbgOoqp9W1Q+BPcChbrdDwNV9i5QkrU6fzv0VwALw6SQPJbk1yQXAxVV1BqA7vWipKyfZn+RYkmMLCws9ypAkLdYn3DcDrwc+VVVXAD9hFUswVXWwquaran5ubq5HGZKkxfqE+2ngdFU90G3fwyDsn06yDaA7PduvREnSao0c7lX1feDJJK/shnYDjwKHgX3d2D7gvl4VSpJWbXPP6/8ZcEeSFwLfAf6IwRPG3UmuA04B1/Q8hiRplXqFe1V9E5hf4qLdfW5XktSPn1CVpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAb1Dvckm5I8lOTz3fbWJEeSnOhOt/QvU5K0GuPo3G8Ajg9tHwCOVtUu4Gi3LUlaQ73CPckO4N3ArUPDe4BD3flDwNV9jiFJWr2+nfvHgQ8Dvxgau7iqzgB0pxctdcUk+5McS3JsYWGhZxmSpGEjh3uS9wBnq+rBUa5fVQerar6q5ufm5kYtQ5K0hM09rvtm4L1J3gW8CHhpks8CTyfZVlVnkmwDzo6jUEnSyo3cuVfVjVW1o6p2AnuBL1bVtcBhYF+32z7gvt5VSpJWZRJ/534L8PYkJ4C3d9uSpDXUZ1nml6rqy8CXu/P/Aewex+1KkkbjJ1QlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUEjh3uSS5J8KcnxJI8kuaEb35rkSJIT3emW8ZUrSVqJPp37s8CHqurVwJXA9UkuBw4AR6tqF3C025YkraGRw72qzlTVN7rzPwaOA9uBPcChbrdDwNV9i5Qkrc5Y1tyT7ASuAB4ALq6qMzB4AgAuGscxJEkr1zvck7wE+Bzwgar60Squtz/JsSTHFhYW+pYhSRrSK9yTvIBBsN9RVfd2w08n2dZdvg04u9R1q+pgVc1X1fzc3FyfMiRJi/T5a5kAtwHHq+pjQxcdBvZ15/cB941eniRpFJt7XPfNwB8C/5rkm93YnwO3AHcnuQ44BVzTr0RJ0mqNHO5V9c9Alrl496i3K0nqz0+oSlKDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatDEwj3JVUkeT3IyyYFJHUeS9HwTCfckm4C/Ad4JXA68L8nlkziWJOn5JtW5vwE4WVXfqaqfAncBeyZ0LEnSIpsndLvbgSeHtk8Dvzu8Q5L9wP5u87+TPN7jeBcCP+hx/Wkza/MF5zwrZm7O+ctec/6t5S6YVLhnibH6fxtVB4GDYzlYcqyq5sdxW9Ng1uYLznlWOOfxmdSyzGngkqHtHcBTEzqWJGmRSYX7vwC7klyW5IXAXuDwhI4lSVpkIssyVfVskj8F/gnYBNxeVY9M4lidsSzvTJFZmy8451nhnMckVXXuvSRJU8VPqEpSgwx3SWrQVIf7LHzFQZJLknwpyfEkjyS5oRvfmuRIkhPd6Zb1rnWckmxK8lCSz3fbTc8XIMnLktyT5LHu/n5jy/NO8sHuMf1wkjuTvKi1+Sa5PcnZJA8PjS07xyQ3dnn2eJJ39Dn21Ib7DH3FwbPAh6rq1cCVwPXdPA8AR6tqF3C0227JDcDxoe3W5wvwCeALVfUq4HUM5t/kvJNsB94PzFfVaxn84cVe2pvvZ4CrFo0tOcfu93ov8JruOp/scm4kUxvuzMhXHFTVmar6Rnf+xwx+4bczmOuhbrdDwNXrU+H4JdkBvBu4dWi42fkCJHkp8BbgNoCq+mlV/ZC2570ZeHGSzcD5DD4L09R8q+orwH8uGl5ujnuAu6rqmap6AjjJIOdGMs3hvtRXHGxfp1rWRJKdwBXAA8DFVXUGBk8AwEXrV9nYfRz4MPCLobGW5wvwCmAB+HS3HHVrkgtodN5V9T3gr4FTwBngv6rqfhqd7yLLzXGsmTbN4X7OrzhoSZKXAJ8DPlBVP1rveiYlyXuAs1X14HrXssY2A68HPlVVVwA/YfqXJJbVrTPvAS4DXg5ckOTa9a1q3Y0106Y53GfmKw6SvIBBsN9RVfd2w08n2dZdvg04u171jdmbgfcm+S6DpbbfT/JZ2p3vc04Dp6vqgW77HgZh3+q83wY8UVULVfUz4F7gTbQ732HLzXGsmTbN4T4TX3GQJAzWYY9X1ceGLjoM7OvO7wPuW+vaJqGqbqyqHVW1k8F9+sWqupZG5/ucqvo+8GSSV3ZDu4FHaXfep4Ark5zfPcZ3M3g/qdX5DltujoeBvUnOS3IZsAv4+shHqaqp/Qe8C/g28G/AR9e7ngnN8fcYvDT7FvDN7t+7gN9k8E77ie5063rXOoG5vxX4fHd+Fub7O8Cx7r7+e2BLy/MG/gJ4DHgY+FvgvNbmC9zJ4D2FnzHozK/7dXMEPtrl2ePAO/sc268fkKQGTfOyjCRpGYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJatD/AW9mHtya9nm2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(x, bins=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWYElEQVR4nO3dfYxcZ3XH8e+xjQHzIjbxixw7600UFxqQKNiiLqmQU6ciQIRRpSBTUhlq5H9cGhASOEUqaiUk/0Gj5I9QyTIBq6QEKyBsRREkNYkQlWzYBVSSGBM3iY3DEhtiXgQI2/HpH3O3TDYzszNz356X30eydufurue5c+8999zzPPe55u6IiEhaFrXdABERqZ6Cu4hIghTcRUQSpOAuIpIgBXcRkQQtabsBAMuXL/epqam2myEiEpWZmZmfu/uKXj8LIrhPTU0xPT3ddjNERKJiZif7/UxlGRGRBCm4i4gkSMFdRCRBCu4iIglaMLib2d1mdsbMHu1adpmZPWRmTxRfJ7p+dpuZnTCz42b29roaLiIi/Q2TuX8BuHHest3AYXdfDxwuXmNm1wLbgNcXf/NZM1tcWWtFRGQoCwZ3d/8W8Ny8xVuB/cX3+4H3dC2/193/4O5PASeAt1TUVhGJzMzJc9z18AlmTp5ruynZGXec+yp3nwVw91kzW1ksXwMc6fq908WyFzGzncBOgMnJyTGbISKhmjl5jvfvO8L5i5dYumQR93xoExvWTSz8h1KJqjtUrceynhPGu/ted9/o7htXrOh5g5WIROzIk7/g/MVLXHK4cPESR578RdtNysq4wf1ZM1sNUHw9Uyw/DVzZ9XtrgZ+O3zwRidWmqy9n6ZJFLDZ4yZJFbLr68rablJVxyzKHgO3AnuLrwa7l/2lmtwNXAOuB75RtpLzQzMlzHHnyF2y6+nJd5kqwNqyb4J4PbdK+2pIFg7uZfQnYDCw3s9PAp+gE9QNmtgM4BdwM4O6PmdkB4HHgIrDL3Z+vqe1ZUh1TYrJh3YT2z5YsGNzd/X19frSlz+9/Gvh0mUZJf73qmKMePMr8RdIXxKyQMry5OuaFi5fGqmMq8xfJg4J7ZMrWMavI/EUkfAruESpTxyyb+YvkKrZypoJ7ZjSCQWR0MZYzFdxb0HYGoBEMUkbb+28bYixnKrg3LMYMQGROrvtvjOVMBfeGxZgBiMzJdf+NsZyp4N6wGDMAkTk577+xlTPNvee8Xo3auHGjT09Pt92MxuRUs8xpXXOhbRoOM5tx9429fqbMvQWxZQDjyrU+m7pc9t/Y6RmqNcr9QQWa8lWkPcrca6KsNZz6rMoIkiMF95qMOqogxQAUwggDnWQlVwruNRkla005ALVdn8116J6IgntNRslaFYDqE0ppSKRpCu41WihrnSvFTCxbqgBUkxBKQyJtUHCv0Ch18/mlmH++6fWc+915BaAatF0aEmmDgntFRq2bzy/FnPvdeXZdf02DLRaRFAcyzFFwr8iodXPVgkXalfJABlBwr8yowVq1YJF2pT6QQcG9IuMEa9WCRdqT+tWzJg4TkWzFXnPXxGEiIj2kfPWsicNEEpX7xHW5U+YukqDUR4LIwpS5iyRI0y2LgrtIguZGgiw2khwJIgtTWUYkQYOG5sY+QmQcg9Y51c9DwV0kUb1GguRYix+0zil/HirLiGQkx1r8oHVO+fNQcBfJSI61+EHrnPLnUeoOVTP7KPAhwIEfAh8ElgFfBqaAp4H3uvvAgba6Q1WkOanWmAdJteY+6A7VsYO7ma0Bvg1c6+6/N7MDwAPAtcBz7r7HzHYDE+7+iUH/l4J7dWLeUeugz0NSVuf0A0uAl5vZBToZ+0+B24DNxc/3A48AA4O7VCPlzqFx6POQnI1dc3f3Z4DPAKeAWeBX7v4gsMrdZ4vfmQVW9vp7M9tpZtNmNn327NlxmyFdUu4cGoc+D8nZ2MHdzCaArcBVwBXAK8zslmH/3t33uvtGd9+4YsWKcZshXVLpHKpqTpRUPg+RcZQpy9wAPOXuZwHM7KvAW4FnzWy1u8+a2WrgTAXtlCGk8ACQKkspKXweErc2+3zKBPdTwCYzWwb8HtgCTAO/BbYDe4qvB8s2MgahdNzFPoVp1U/Hif3zkHi13eczdnB396Nmdh/wPeAi8H1gL/BK4ICZ7aBzAri5ioaGrO2NmJLUn44j+Wj7MX6lRsu4+6eAT81b/Ac6WXw22t6IKVEpRVLRdqKiuWUq0PZGTI1KKZKCthMVPUO1IqHU3EVylOvxp2eoNiD1bDPXg0fCpz6v3hTcZUE6eCRk6vPqTbNCyoJ0p6eETDer9RZ95q5yQf3UYSwha7vjMlRRd6iqXNAcnURFwjOoQzXqskx3ueD8hUvc8V8/Lj0fifS2Yd0Eu66/RoFdJBJRB/e5csEi4BLw3yd+zvv3HVGAF5HsRR3c52pt161fziJDHX4ShapmvRQZJPoO1Q3rJvjIDX/Cd59+Th1+Ejz1E+UhhD6q6IM7qLdc4qEx2ekL5QSeRHCH9O8QlTRoWGn6QjmBJxPcQxbCJZqEQVeZ6QvlBB71OPcYVH2JphNFmLRdpFtT+4MmDmtRlZdoodTy5IW0XWS+EMrEUQ+FjEGV816kOsdL7EMDU90uEjdl7jWrssYaSi1vThWXnilkvaFtFxFQcG9EVZdoIXXGVRWUQxlZUEZI20VkjoJ7ZEKo5UF1QTmVrDeU7SIyR8E9UKGPvqgqKDed9Yb+uYpURcE9QDHUoasKyk0G2xg+V5GqKLgHqKk6dNnAWrYU0XSwTaG+LzIsBfcANVGHDiGLbTrYLvS5qmQjKVFwD1ATdegQstimO1MHfa4hnOxEqqTgHqi6R1+EMEqljSGE/T7XEE52IlVScM9UKGOzQxlCGMLJTqRKmjhMpKCau8RGE4eJDCGUqwiRKmjiMBGRBCm4iwSirdkxY5+VU3orVZYxs9cA+4A3AA78PXAc+DIwBTwNvNfdtdeIDNDWUEwNAU1X2cz9TuDr7v464I3AMWA3cNjd1wOHi9dSA2Vc6WhrTnjNRZ+usTN3M3s18DbgAwDufh44b2Zbgc3Fr+0HHgE+UaaR8mLKuNLS1lBMDQFNV5myzNXAWeDzZvZGYAa4FVjl7rMA7j5rZit7/bGZ7QR2AkxOTpZoRp50001a2rrvIJT7HaR6ZYL7EuDNwIfd/aiZ3ckIJRh33wvshc449xLtyJIyrvS0NRRTQ0DTVCa4nwZOu/vR4vV9dIL7s2a2usjaVwNnyjZSXkwZl4gMMnZwd/efmdlPzOy17n4c2AI8XvzbDuwpvh6spKXyIsq4RKSfsneofhi4x8yWAk8CH6QzAueAme0ATgE3l3yPkegWchGRksHd3X8A9JrXYEuZ/3dcGkEiItKR1B2qVY3Z1fhxEYldUhOHVTGCpI3sX6UkEalaUsG9ihEkTY8fVylJROqQVHCH8iNImh4/rpuRRKQOyQX3spoeP66bkUSkDnoSUwBUcxeRcehJTIHTzUgiUrWkhkKKiEiHgruISIIU3EVEEqTgLiKSIAV3yYKmlJDcaLSMJE93AUuOlLlnIufMVQ+Bbl7O+1solLlnIPfMVXcBNyv3/S0UCu4ZyGH+mkF3+eqRhL3VdWd0DvtbDBTcM5B65jpMpqi7gF+ozuw69f0tFgruGUg9c1WmOLo6P7PU97dYKLhnIuXMNdVMsc4J5er+zFLe32KhWSFloFhmrIylncNqolMytc8sR5oVUsYS06iH1DLFJkpNqX1m8kIa5y59aXx4e+bKJouNpEpN0hxl7tJXqrXsGKhTUsrKpuau+uJ49LmJhCv7mntMtePQqC4rEqcsau6qHYtIm9qYayeLzF21YxGpwzBly7YqB1kEd3VOiUjVhg3abd1BnUVwB9WORaRawwbttioH2QR3EWlHqiOuhg3abVUOSg+FNLPFwDTwjLvfZGaXAV8GpoCngfe6+8BeBE0/IJKm1EeqtX3iGjQUsorRMrcCx7pe7wYOu/t64HDxWkQylPpItQ3rJth1/TVBnrBKBXczWwu8C9jXtXgrsL/4fj/wnjLvISLx0jQK7Slbc78D+Djwqq5lq9x9FsDdZ81sZa8/NLOdwE6AycnJks2QurV9+Slx0ki19owd3M3sJuCMu8+Y2eZR/97d9wJ7oVNzH7cdUr/U66ZSnV5JgEaqtaNM5n4d8G4zeyfwMuDVZvZF4FkzW11k7auBM1U0VNqjJx3JMJQEhGXsmru73+bua919CtgGfNPdbwEOAduLX9sOHCzdSmmV6qYyjNQ7T2NTxzj3PcABM9sBnAJuruE9pEGqm8owNM1HWLKZ8ldE6qeO92ZlP+WviDRDnafhyGLKXxGR3Ci4y0jamJdaREansowMTUPdROKhzF2GpqFuYdLVlPSizL0P9fq/mIa6hUdXU9KPgnsPqRwwVZ+gNN49PLp7WPpRcO8hhQOmrhOUhrqNr46rQV1NST8K7j2kcMCkcIJKSZ0nW11NSS8K7j2kcMCkcIJKSZ0nW11NSS8K7n3EfsCkcIJKiU620jTNLSPSEI3AkqppbhmRAMR+NZiKXE6yCu4iko1UhjkPQ3eoikjjmrqrdv775HSXtTJ3EWlUU9lzr/fJqWNbwV1EGtXUPRi93mfX9ddkM4pMwV3GlkvHlFSrqey53/vk0rGtoZAylpw6pqR6TSUGqScgGgopldP0BlJGU9lzLll6LxotI2OZu+RdbCTfMSXST8hz6Stzl7FoegPJXeilSWXuMrK5bAVg1/XXBLVDizQl9DHzytxlJKFnK5J+J2IoQh8zr+AuI1FHath08m1O6KVJBXcZ2szJczzzy9+zZPEinn8+zGwldzr5Nivk0TgK7jKU7oxwySJj21sm+Zs3rw12x85V6KUCaY6CuwylOyN8/pJzxWtersAeoNBLBdKc7IK7OpvGo4wwHk2WCnQ8hSur4K7OpvEpI5T5dDyVV+fJMavgrs6mckLuPJLm6Xgqp+6T49g3MZnZlWb2sJkdM7PHzOzWYvllZvaQmT1RfA1ma9d1y3zItyCL1CWmKShCPEbrvgmqTOZ+EfiYu3/PzF4FzJjZQ8AHgMPuvsfMdgO7gU+Ub2p5dZQWdGkaP9WNxxNLqS7UY7Tufqyxg7u7zwKzxfe/MbNjwBpgK7C5+LX9wCMEEtyh+tKCLk3jFuqBH4sYSnWhHqN1nxwrqbmb2RTwJuAosKoI/Lj7rJmt7PM3O4GdAJOTk1U0oxUaRRK3UA98qU7Ix2idJ8fSwd3MXgl8BfiIu//azIb6O3ffC+yFzsM6yrajLbFcmkpvIR/4Uo1cj9FST2Iys5cA9wPfcPfbi2XHgc1F1r4aeMTdXzvo/9GTmKRNqrlLrGp5EpN1UvTPAcfmAnvhELAd2FN8PTjue4g0IYa6scioypRlrgP+Dvihmf2gWPZPdIL6ATPbAZwCbi7XRBFpm65u4lNmtMy3gX4F9i3j/r91004qKWlif9aIojhldYeqdtL+dNKLT1P7s0YUxSmrx+yF/listswFiX978Djv33ckqLv4pL+m9ueY7kSVP8oqc9ewt96UmcWpqf0516GEscsquGsn7U0nvTg1uT9rRFF8So1zr4rGubdPNXeR+NQyzl3SosxMJC1ZdahKeEKcilUkBcrcu6g00SwNTZVR6PgcjYJ7QYGmeRqlI8Pqd3wq4Pen4F5QoGmeRunIsPqN6VfA70/BvaBA0zwNTZVh9To+Rwn4OVJwLyjQtEOjdGQY/Y7PYQJ+nftXyFcJ2QX3QRtDgUYkXPOPz2EDfl1C76fLKriHvjFEZDTDBvw6hN5Pl1VwD31jiEh5TV2Bh95Pl1VwD31jiEg8Qu+ny25umZA7QERERqG5Zbqo01REyoohScwuuIuIlBHLwAxNHCbSgyY0k35ieaKbMneReWLJzKQdsQzMUHAXmUdDZv8ohtpy00IfJTNHwV1knlgys7rpCqa/GAZmKLiLzBNLZlY3XcHETcFdpIeFMrMcyhW6gombgrvIiHIpV+gKJm4K7iPIIVuTheVUroihtiy9ZRPcywbmXLK1ceV04lO5QmKQRXCvIjDnlK2NquoTX+gnCpUrJAZZBPcqAvP8bG1i2VLuevhEdAd3HYGzyhNfLFdIKldI6LII7lVcRndnaxPLlvKv9z8WfACar67AWWWZIvUrpNCvSnKS+raoLbib2Y3AncBiYJ+776nrvRZS1WX0XLZ218MnogxAdQXOKssUKdezY7kqyUEO26KW4G5mi4G7gL8GTgPfNbND7v54He83jCovo2Mt0dQZOKv6fFOuZ6d+VRKTHLZFXZn7W4AT7v4kgJndC2wFWgvuVYq1RBNL4Ey1np3yVUlsctgWdQX3NcBPul6fBv68+xfMbCewE2BycrKmZtQn1hJNqoEzBrGcXHOQw7aoK7hbj2UveJ6fu+8F9kLnMXs1taN2OWQAUh2dXMOR+raoK7ifBq7ser0W+GlN79WqHDIAEYlPXcH9u8B6M7sKeAbYBvxtTe/VutQzABGJTy3B3d0vmtk/AN+gMxTybnd/rI73EhGRF6ttnLu7PwA8UNf/LyIi/ekB2SIiCVJwFxFJkIK7iEiCFNxFRBJk7u3fP2RmZ4GTC/zacuDnDTQnVDmvv9Y9T1r3ha1z9xW9fhBEcB+GmU27+8a229GWnNdf6651z00V666yjIhIghTcRUQSFFNw39t2A1qW8/pr3fOkdS8hmpq7iIgML6bMXUREhqTgLiKSoCiCu5ndaGbHzeyEme1uuz11MrMrzexhMztmZo+Z2a3F8svM7CEze6L4muwcw2a22My+b2b3F6+zWHcze42Z3WdmPyq2/19ktO4fLfb3R83sS2b2spTX3czuNrMzZvZo17K+62tmtxXx77iZvX2Y9wg+uHc9bPsdwLXA+8zs2nZbVauLwMfc/U+BTcCuYn13A4fdfT1wuHidqluBY12vc1n3O4Gvu/vrgDfS+QySX3czWwP8I7DR3d9AZ5rwbaS97l8Abpy3rOf6Fsf/NuD1xd98toiLAwUf3Ol62La7nwfmHradJHefdffvFd//hs4BvobOOu8vfm0/8J52WlgvM1sLvAvY17U4+XU3s1cDbwM+B+Du5939l2Sw7oUlwMvNbAmwjM6T25Jdd3f/FvDcvMX91ncrcK+7/8HdnwJO0ImLA8UQ3Hs9bHtNS21plJlNAW8CjgKr3H0WOicAYGV7LavVHcDHgUtdy3JY96uBs8Dni5LUPjN7BRmsu7s/A3wGOAXMAr9y9wfJYN3n6be+Y8XAGIL7gg/bTpGZvRL4CvARd/912+1pgpndBJxx95m229KCJcCbgX939zcBvyWtMkRfRW15K3AVcAXwCjO7pd1WBWWsGBhDcM/mYdtzzOwldAL7Pe7+1WLxs2a2uvj5auBMW+2r0XXAu83saTrlt78ysy+Sx7qfBk67+9Hi9X10gn0O634D8JS7n3X3C8BXgbeSx7p367e+Y8XAGIL7/z9s28yW0ulYONRym2pjZkan7nrM3W/v+tEhYHvx/XbgYNNtq5u73+bua919is52/qa730Ie6/4z4Cdm9tpi0RbgcTJYdzrlmE1mtqzY/7fQ6WvKYd279VvfQ8A2M3upmV0FrAe+s+D/5u7B/wPeCfwY+F/gk223p+Z1/Us6l1z/A/yg+PdO4HI6PehPFF8va7utNX8Om4H7i++zWHfgz4DpYtt/DZjIaN3/BfgR8CjwH8BLU1534Et0+hcu0MnMdwxaX+CTRfw7DrxjmPfQ9AMiIgmKoSwjIiIjUnAXEUmQgruISIIU3EVEEqTgLiKSIAV3EZEEKbiLiCTo/wDHD4bBPyGD2gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# make a 2 dimensional distribution of random numbers and plot it\n", + "\n", + "x = random.uniform(low=0, high=100, size=100)\n", + "y = random.uniform(low=0, high=100, size=100)\n", + "\n", + "\n", + "plt.plot(x, y, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian / Normal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd3xU15n/8c+jXhBNBTU6mF4tYzCOW1xEM3ZsJzixs7aTJSR26qZ4N5vkt5vsb5NNfinOOrGJU1ySEMcVU0Mcxw0wCAwqVCGaGkgIEKhr5vn9MYM9VkZoJDS6o5nn/XrNazT33jP6AhLP3HPPPUdUFWOMMaajKKcDGGOMCU1WIIwxxvhlBcIYY4xfViCMMcb4ZQXCGGOMXzFOB+hNaWlpOmrUKKdjGGNMv7Fjx45aVU33ty+sCsSoUaMoKChwOoYxxvQbInK0s33WxWSMMcYvKxDGGGP8sgJhjDHGLysQxhhj/LICYYwxxq+gFggRyReR/SJSKiIPX+S4K0TEJSJ3dretMcaY4AhagRCRaOBRYAEwGbhbRCZ3ctwPgI3dbWuMMSZ4gnkfxBygVFXLAERkFbAU2NPhuM8DzwNX9KCtMSHP7VYOnDzHO2V1JMZFM29MKsOHJjkdy5guBbNA5ADHfV6XA1f6HiAiOcDtwA18sEB02dbnPZYDywFGjBhxyaGN6S2vH6jh2YLjbD10ilMNrR/YN3xoIleNSeP+q0cxMXOgQwmNubhgFgjxs63j6kQ/Bb6hqi6RDxweSFvPRtWVwEqAvLw8W/3IOK7N5eZHG/fz+BtlZKTEc+1l6cwbm8rcMak0trrYcqiWzYdOsa6oipd2VfCfS6fw0bzhdPgdMMZxwSwQ5cBwn9e5QGWHY/KAVd5fjDRgoYi0B9jWmJBTfbaZz/9xJ9uPnOaeuSP490WTSYiN/sAxEzJTuG/+aGrPt/ClVbv4xvNFbDt8mu/eNoWkuLCa/cb0c8H8adwOjBeR0UAFsAz4uO8Bqjr6wtci8jtgjaq+JCIxXbU1JtTsOFrH8qd20NTm4mfLZrJ0Zs5Fj08bEM+TD8zhkVcP8sjfDlJUcYbf3j+HnMGJfZTYmIsL2igmVW0HHsIzOmkv8KyqlojIChFZ0ZO2wcpqzKU6XtfIp58sYGBiLKsfurrL4nBBdJTw5Zsu46kH5lB1ppl/frKAplZXkNMaExhRDZ9u+7y8PLXZXE1fa2p18ZFfbqb8dCOrH7qa0WnJPXqfv+07waeeLGDJ9Gx+tmymXZMwfUJEdqhqnr99die1MZdAVfnac7vZV13PI3fP6nFxALhh4jC+evMEVu+u5FdvlvViSmN6xgqEMZfg8TfKWFNYxddumcD1EzIu+f0+d91YFk7L5Pvr9/HGgZpeSGhMz1mBMKaHNh+q5Qcb9rFoWhafvXZsr7yniPDDO2cwPiOFz//xXSrPNPXK+xrTE1YgjOmB1nY333qpmBFDk/jhXdN79XpBcnwMj997Oc1tLv5r3d5ee19jussKhDE98LvNhzlU08B3lkwOyr0Lo9KS+ex1Y1lbWMXmQ7W9/v7GBMIKhDHddLK+mZ/99SAfnpjBDROHBe37rLh2LLlDEvk/q0toc7mD9n2M6YwVCGO66b/X76PNpXx7SXAnGE6Ijebbiydz4MR5ntrS6bryxgSNFQhjumHb4TpefLeC5deMYWRqz4e0BuqmycO45rJ0frrpADXnWoL+/YzxZQXCmAC53Mp3VpeQPSiBz13fO6OWuiIifGfJZJrbXfxgw74++Z7GXGAFwpgAvfhuBXur6vnmouBcmO7M2PQBPHD1aJ7bUc6+6vo++77GWIEwJgAut/KLv5cyKWsgC6dl9vn3/+y1Y0mOi+YXrx3q8+9tIpcVCGMCsLGkmrKaBh68fqwjcyQNTorjnrkjWVNYyZHahj7//iYyWYEwpguqyqOvlTImLZkFU7Mcy/GpD40mJjqKX/7dziJM37ACYUwX/r6/hpLKelZcN5boKOdmWM1ISWDZFcN54d1ym4LD9AkrEMZchKryv6+VkjM4kdtnBbbGQzAtv2YMqrDyDZvt1QRfUAuEiOSLyH4RKRWRh/3sXyoihSKyS0QKRORqn31HRKTowr5g5jSmM1vL6thx9DSfuXYMsdHOf57KHZLEbbNy+OO2Y9Set/siTHAF7SdeRKKBR4EFwGTgbhHpeOvpq8AMVZ0JPAA80WH/9ao6s7PFLIwJtl/8vZS0AfF8NG941wf3kc9eN5ZWl5tfv3XY6SgmzAXzI9EcoFRVy1S1FVgFLPU9QFXP6/tL2iUD4bO8nen39lTW8+bBWj519WgSYqOdjvOesekDWDgti2e2HKWhpd3pOCaMBbNA5ADHfV6Xe7d9gIjcLiL7gLV4ziIuUOAvIrJDRJYHMacxfj299SgJsVF8fM4Ip6P8gwfmj+JcSzsv76p0OooJY8EsEP6Ge/zDGYKqvqiqE4HbgO/67JqvqrPxdFE9KCLX+P0mIsu91y8KampsBS7TO+qb23jp3QqWTM9mUFKs03H+wewRQ5iYmcIzW48STuvKm9ASzAJRDvh23OYCnX7cUdU3gLEikuZ9Xel9Pgm8iKfLyl+7laqap6p56enpvZXdRLgXd1bQ1Obi3nkjnY7il4hw77yR7KmqZ+exM07HMWEqmAViOzBeREaLSBywDFjte4CIjBPvbakiMhuIA06JSLKIpHi3JwM3A8VBzGrMe1SVp7ceZUbuIKbnDnY6Tqdum5nDgPgYntlqU4Gb4AhagVDVduAhYCOwF3hWVUtEZIWIrPAedgdQLCK78Ix4+pj3ovUw4C0R2Q1sA9aq6oZgZTXG19ayOkpPnucTc0Pz7OGC5PgYPjI7h7WFVdQ1tDodx4ShoE5JqarrgHUdtj3m8/UPgB/4aVcGzAhmNmM688w7RxmUGMuS6dlOR+nSPXNH8tSWozxbcJwV1/bNFOQmcjh/548xIeRkfTMbi6u56/JcEuNCZ2hrZy4blsKVo4fy+3eO4nbbxWrTu6xAGOPjT9uP0+7WkO9e8nXP3JEcr2vi9YM2is/0LisQxni53Mofth3jQ+PTGJ0W/OVEe8stUzJJGxDP7+1itellViCM8Xq7tJaqs80suyL0boy7mLiYKO68PJfX9tfYutWmV1mBMMbr+Z3lDEyI4cOTMpyO0m13Xp6Dy628vKvC6SgmjFiBMAY419zGxpJqlszIDql5lwI1LiOFGbmDeH6nFQjTe6xAGAOsL6qmuc3NHZfnOh2lx+64PJe9VfXsqax3OooJE1YgjAGe21nO6LRkZg0P3Tunu7Jkejax0cLzO8udjmLChBUIE/GO1zWy7XAdd8zOwTvzS780JDmOGyZm8PKuCtpcbqfjmDBgBcJEvOd3liMCt8/uv91LF9wxO5fa8628ccDuiTCXzgqEiWiqygs7K5g3JpWcwYlOx7lk103IYGhynHUzmV5hBcJEtO1HTnOsrpE7wuDsATz3RNw6I5u/7jnJmUabwM9cGisQJqI9v6OcpLho8qdmOh2l19x5eS6tLjevFFY5HcX0c1YgTMRqaXexrriK/CmZJMcHdWLjPjUleyCXDRvAartpzlwiKxAmYr2+v4Zzze3cOjP0p/XuDhHh1hnZbD9ymoozTU7HMf2YFQgTsV4prGJIUizzx6U5HaXXLfauZbG2sNNVfo3pUlALhIjki8h+ESkVkYf97F8qIoUisktECkTk6kDbGnMpGlvb+eueEyyYlkVsdPh9ThqVlsz03EG8stuuQ5ieC9pvhohE41lGdAEwGbhbRCZ3OOxVYIaqzgQeAJ7oRltjeuzVvSdpanNx64zw6l7ytWR6NkUVZzlc2+B0FNNPBfOj0xygVFXLVLUVWAUs9T1AVc9716AGSAY00LbGXIrVuysZNjCeK0YNdTpK0CyangXAmt3WzWR6JpgFIgc47vO63LvtA0TkdhHZB6zFcxYRcFtv++Xe7qmCmhq7e9R07WxTG6/vr2HRtGyio/rv1BpdyR6cyJxRQ3nFrkOYHgpmgfD3m/cPi+aq6ouqOhG4Dfhud9p6269U1TxVzUtPT+9xWBM5/lJSTavLzZIZWU5HCbolM7I4cOI8+6vPOR3F9EPBLBDlwHCf17lApx9lVPUNYKyIpHW3rTHd8UphFcOHJjKzH8/cGqgF07KIEnjFuplMDwSzQGwHxovIaBGJA5YBq30PEJFx4p0+U0RmA3HAqUDaGtMTp8638HZpLUumZ/frmVsDlTYgnvnj0li9u5L3L/cZE5igFQhVbQceAjYCe4FnVbVERFaIyArvYXcAxSKyC8+opY+ph9+2wcpqIse64mpcbmVJGI9e6mjJ9GyO1TVSWH7W6Simnwnq/AKqug5Y12HbYz5f/wD4QaBtjblUa3ZXMi5jABMzU5yO0mdumZrJN18qYk1hJTMioFvN9J7wu0PImE7UnGth25E6Fk7LiojupQsGJcZy9bg01hVVWzeT6RYrECZibCypRhUWTQv/0UsdLZyWRcWZJooqrJvJBM4KhIkY64urGJOezGXDBjgdpc/dNHkYMVHC2iKbesMEzgqEiQinzrewtayOhVMjq3vpgsFJcVw1Lo311s1kusEKhIkIf9lzApdbWTAtfBYG6q5F0zI5VtdISWW901FMP2EFwkSEdUVVjEpNYnLWQKejOOamyZlERwnri62byQTGCoQJe6cbWtl86BQLImz0UkdDk+OYNybVRjOZgFmBMGFv015P99LCqZE3eqmjhdOyOFzbwD6bm8kEwAqECXvriqrIHZLI1JzI7V664OYpw4gSWG+jmUwArECYsHa2sY23S2sj7ua4zqQNiOfK0amsLaqybibTJSsQJqz9de8J2lzKwgi8Oa4zC6dncaimgQMnzjsdxYQ4KxAmrK0vriZ7UAIzcgc5HSVk3DJlGCKwobja6SgmxFmBMGHrfEs7bxys4Zapmda95CMjJYG8kUNsuKvpkhUIE7Ze23eS1nY3+VMi9+a4ztwyJZN91ec4UtvgdBQTwqxAmLC1oaSatAFx5I0a6nSUkJM/1VM0N5RYN5PpnBUIE5aa21y8tu/ke3cPmw/KHZLEtJxBdh3CXFRQC4SI5IvIfhEpFZGH/ez/hIgUeh+bRWSGz74jIlIkIrtEpCCYOU34efNgLY2tLhZMte6lzuRPzWTX8TNUnW1yOooJUUErECISjWcZ0QXAZOBuEZnc4bDDwLWqOh34LrCyw/7rVXWmquYFK6cJT+uLqxiYEMO8salORwlZF4rnRjuLMJ0I5hnEHKBUVctUtRVYBSz1PUBVN6vqae/LrUBuEPOYCNHmcvPXPSe4cfIwYqOtF7UzY9IHcNmwAay3AmE6EczfnhzguM/rcu+2znwKWO/zWoG/iMgOEVneWSMRWS4iBSJSUFNTc0mBTXjYcugU9c3tLLC5l7qUPzWL7UfqqD3f4nQUE4ICKhAi8ryILBKR7hQUf1cG/d7bLyLX4ykQ3/DZPF9VZ+PponpQRK7x11ZVV6pqnqrmpaendyOeCVfri6tJiovmQ+PTnI4S8vKnZOJW2LTnhNNRTAgK9D/8XwIfBw6KyPdFZGIAbcqB4T6vc4HKjgeJyHTgCWCpqp66sF1VK73PJ4EX8XRZGXNRLreyaU8110/MICE22uk4IW9SVgojU5NsNJPxK6ACoap/VdVPALOBI8Am76ij+0UktpNm24HxIjJaROKAZcBq3wNEZATwAnCvqh7w2Z4sIikXvgZuBoq790czkajgSB2151vt5rgAiQj5UzLZfKiWs01tTscxISbgLiMRSQXuAz4NvAv8DE/B2OTveFVtBx4CNgJ7gWdVtUREVojICu9h3wZSgV90GM46DHhLRHYD24C1qrqhu384E3k2lFQTFxPF9RMznI7Sb+RPzaTNpfxtn3UzmQ+KCeQgEXkBmAg8DSxR1QuTuPzpYvcoqOo6YF2HbY/5fP1pPAWnY7syYEbH7cZcjKqysbiaa8anMSA+oB9tA8zIHUzmwATWF1Vz+ywbSGjeF+gZxBOqOllV//tCcRCReAC7R8GEisLys1SebSbfRi91S1SUkD81k9cP1NDY2u50HBNCAi0Q3/OzbUtvBjHmUq0vriYmSrhxknUvddctUzJpaXfz9/02VNy876Ln4SKSiefehUQRmcX7Q1cHAklBzmZMwFSVDcVVzBubyuCkOKfj9DtXjBrC0OQ41hdX2+JK5j1dddTegufCdC7wY5/t54B/C1ImY7pt/4lzHDnVyKc/NMbpKP1STHQUN08exiu7K2luc9kQYQN00cWkqk+q6vXAfap6vc/jVlV9oY8yGtOlDcXViMDNU4Y5HaXfumVqJg2tLt4urXU6igkRXXUx3aOqzwCjROQrHfer6o/9NDOmz20oriZv5BAyUhKcjtJvzR+bRkp8DBuKq/nwJCu0puuL1Mne5wFAip+HMY47XNvAvupzNnrpEsXFRPHhSRls2nuCNpfb6TgmBFz0DEJVH/c+/0ffxDGm+y5ME5Fvaz9csvypWby0q5Jth+uYP87msop0XXUxPXKx/ar6hd6NY0z3bSipZnruIHIGJzodpd+79rJ0EmOjWV9cZQXCdDmKaUefpDCmhyrPNLH7+Bm+nj/B6ShhITEumusmpLOx5AT/eetUomy51ojWVRfTk30VxJieeK97ySbn6zX5UzNZX1zNjmOnuWLUUKfjGAd11cX0U1X9koi8gp+1HFT11qAlMyYA64urmJiZwpj0AU5HCRs3TMwgLiaKdUVVViAiXFddTE97n38U7CDGdNeJ+mYKjp7myzde5nSUsJKSEMs149PZUFzNtxZNtm6mCNbVjXI7vM+v45l76TRQB2zxbjPGMRtLqlGFhdOse6m3LZyWSdXZZnaVn3E6inFQoEuOLgIOAY8A/wuUisiCYAYzpivriqoYnzGAcRl2S05v+/CkYcRGC+uLqro+2IStQGdz/X/A9ap6napeC1wP/CR4sYy5uJpzLWw7XMcCm1guKAYlxnL1uDTWFVWj6ncpeRMBAi0QJ1W11Od1GXCyq0Yiki8i+0WkVEQe9rP/EyJS6H1sFpEZgbY1ke0ve6pxW/dSUC2YlkXFmSaKKs46HcU45KIFQkQ+IiIfAUpEZJ2I3Cci/wS8gmfN6Yu1jQYeBRYAk4G7RWRyh8MOA9eq6nTgu8DKbrQ1EWxdURVj0pKZMMy6l4Ll5snDiIkS1hVVOx3FOKSrM4gl3kcCcAK4FrgOqAGGdNF2DlCqqmWq2gqsApb6HqCqm1X1tPflVjzTigfU1kSuU+db2FpWx4JpmYjYCJtgGZwUx7yxqawvrrJupgjV1Y1y91/Ce+cAx31elwNXXuT4TwHru9tWRJYDywFGjBjR06ymH9m05wQut9rCNn1g0bQsHn6hiD1V9UzJHuR0HNPHAh3FlCAiD4rIL0TkNxceXTXzs83vxxARuR5PgfhGd9uq6kpVzVPVvPT09C4imXCwrriakalJTM4a6HSUsHfzlEyio4T11s0UkQK9SP00kIlnhbnX8XQFneuiTTkw3Od1LlDZ8SARmQ48ASxV1VPdaWsiz5nGVjaX1pI/1bqX+sLQ5DjmjhnKuiLrZopEgRaIcar6LaDBOz/TImBaF222A+NFZLSIxAHLgNW+B4jICOAF4F5VPdCdtiYybSyppt2tLJ6W7XSUiLFwWhZltQ3srerqM6EJN4EWiDbv8xkRmQoMAkZdrIGqtgMPARuBvcCzqloiIitEZIX3sG8DqcAvRGSXiBRcrG3gfywTrl7ZXcXI1CSm5lj3Ul9ZMDWL6CjhlUI7iY80Xc3FdMFKERkCfAvPJ/kB3q8vSlXXAes6bHvM5+tPA58OtK2JbLXnW9h8qJbPXTfOupf60NDkOOaPS2NNYSVfv2WC/d1HkIDOIFT1CVU9raqvq+oYVc24sNqcMX1lfbHn5rjFM2z0Ul9bPD2L43VNFJbbTXORJNBRTKki8nMR2SkiO0TkpyKSGuxwxvhas7uScRkD7OY4B9wyOZPYaOGV3dbNFEkCvQaxCs/UGncAdwK1wJ+CFcqYjk7UN7PtSB2Lp2dZF4cDBiV5pgBfW1SF222jmSJFoAViqKp+V1UPex/fAwYHM5gxvtYWVqEKi6fb6CWnLJ6RRdXZZnYeO931wSYsBFogXhORZSIS5X18FFgbzGDG+FpTWMmkrIGMy7CV45xy46RhxMdEsabQpgCPFF1N1ndOROqBzwB/AFq9j1XAl4MfzxioONPEzmNnWDzdLk47KSUhlusnZLC2qAqXdTNFhK5WlEtR1YHe5yhVjfE+olTVBqKbPrHWO/5+iXUvOW7xjCxqzrXwzuFTXR9s+r1Au5gQkVtF5Efex+JghjLG15rCKqbnDmJEapLTUSLeDRMzSIyN5pXd1s0UCQId5vp94IvAHu/ji95txgRVWc15CsvP2tlDiEiKi+GmycNYX1xFa7vb6TgmyAI9g1gI3KSqv1HV3wD53m3GBNVLuyqJErh1phWIUHH7rBzONLbx+oEap6OYIAu4i4kPDmu1ieFN0KkqL71bwfxxaQwbmOB0HON19fg0UpPjeOndCqejmCALtED8X+BdEfmdiDwJ7PBuMyZodh47w7G6RpbOzHE6ivERGx3FkhnZbNp7gvrmtq4bmH6rywIhIlGAG5iLZ2ruF4B5qroqyNlMhHvp3QoSYqO4Zcowp6OYDm6blUNru5sNtpBQWOuyQKiqG3hIVatUdbWqvqyq9lNhgqq13c2awkpumpxJSkKs03FMBzNyBzE6LZkXrZsprAXaxbRJRL4qIsNFZOiFR1CTmYj2xoEaTje2cfssuzgdikSE22bmsPXwKSrPNDkdxwRJoAXiAeBzeJYbLfB5XJSI5IvIfhEpFZGH/eyfKCJbRKRFRL7aYd8RESnyXUjIRI4Xd1UwNDmOD423dcZD1W2zslGF1TbDa9gKtEBMBh4FdgO7gJ8DUy7WQESivW0WeNvfLSKTOxxWB3wB+FEnb3O9qs5U1bwAc5owUN/cxl/3nGDJ9Cxio7sz0M70pZGpycweMdhGM4WxQH/7ngQmAY/gKQ6TvNsuZg5Qqqplqnph/qalvgeo6klV3c77S5oaw4bialra3dw2y0YvhbrbZ+Wwr/oce6vqnY5igiDQAjFBVT+tqq95H8uBCV20yQGO+7wu924LlAJ/8S5QtLwb7Uw/9+LOCkalJjFzuM0oH+oWTc8mJkrsYnWYCrRAvCsicy+8EJErgbe7aONvVZfuTAE5X1Vn4+mielBErvH7TUSWi0iBiBTU1Nidnf3d8bpGtpSd4iOzc21hoH5gaHIc10/M4IWdFbS5bOqNcBNogbgS2Oy9cHwE2AJc672IXNhJm3JguM/rXCDgq1mqWul9Pgm8iKfLyt9xK1U1T1Xz0tPtgmZ/9+eC44jAnZfnOh3FBOhjecOpPd/Ca/tOOh3F9LKYAI/L78F7bwfGi8hooAJYBnw8kIYikgxEqeo579c3A//ZgwymH3G5led2lPOh8elkD050Oo4J0HUT0klPiefZgnJunpLpdBzTiwIqEKp6tLtvrKrtIvIQsBGIBn6jqiUissK7/zERycQzXHYg4BaRL+EZ8ZQGvOjtYogB/qCqG7qbwfQvb5XWUnm2mW8u6jjYzYSymOgo7pidy6/eLONkfTMZNm9W2Aj0DKJHVHUdsK7Dtsd8vq7G0/XUUT0wI5jZTOh5tuA4Q5JiuXFyhtNRTDfdlZfLY68f4oV3K1hx7Vin45heYoPMTUg43dDKppIT3DYrh/iYaKfjmG4amz6AK0YN4dmC46jacqThwgqECQkv7aqg1eXmo3nDuz7YhKS78oZTVtPAjqOnnY5ieokVCOM4VeVP248zPXcQk7JsqfP+atG0LJLjonm24HjXB5t+wQqEcVxxRT37qs9xl5099GvJ8TEsnp7NmsIqzre0Ox3H9AIrEMZxq7YfIz4miltn2Myt/d1HrxhOY6uLNTaBX1iwAmEcda65jZferWDR9CwGJdq6D/3d7BGDmTAshWfeOWoXq8OAFQjjqBd2VtDQ6uKT80Y5HcX0AhHh3nkjKa6o593jZ5yOYy6RFQjjGFXl6a1HmZE7yCbmCyO3z8ohJT6Gp7d0+/5aE2KsQBjHbDl0itKT57nXzh7CSnJ8DHdcnsvawipqz7c4HcdcAisQxjFPbTnKkKRYFk/PcjqK6WX3zB1Jq8vNn7bbkNf+zAqEcUTV2SY27T3BR68YTkKs3TkdbsZlDGD+uFT+8M4xXG67WN1fWYEwjvjDO8dwq3LPlSOdjmKC5N65o6g408Sre084HcX0kBUI0+da2938cdtxbpiQwfChSU7HMUFy46QMsgcl8PRWu1jdX1mBMH1ufbHn4uW98+zsIZzFREfx8StH8ObBWg7VnHc6jukBKxCmT6kqv3qzjDFpyVwz3lYADHfL5owgLiaKJ9487HQU0wNWIEyf2nLoFMUV9Sy/ZgxRUbbmdLhLGxDPnZfn8vzOcmrO2ZDX/iaoBUJE8kVkv4iUisjDfvZPFJEtItIiIl/tTlvTPz32RhnpKfHcNivH6Simj/zzh8bQ5nLz5OYjTkcx3RS0AiEi0cCjwAI8y4jeLSId15KsA74A/KgHbU0/s6eynjcO1HD//FE2tDWCjE5LJn9KJk9tOUKDzfLarwTzDGIOUKqqZaraCqwClvoeoKonVXU70Nbdtqb/WfnGIZLjovmEDW2NOMuvGUN9czur7Ma5fiWYBSIH8P1pKPdu69W2IrJcRApEpKCmpqZHQU3wlZ9u5JXCKu6eM8JmbY1As0YM4crRQ/n1m2W0udxOxzEBCmaB8HcFMtBbKgNuq6orVTVPVfPS021UTKj69VuHEeCBq0c7HcU4ZMW1Y6k828yaQlsror8IZoEoB3yXCMsFAv3JuJS2JsScbmhl1bbj3Dozm+zBiU7HMQ65bkI6E4al8PjrZbZWRD8RzAKxHRgvIqNFJA5YBqzug7YmxPz27cM0tbn4zDVjnY5iHCQiLL9mDPuqz7Fpj02/0R8ErUCoajvwELAR2As8q6olIrJCRFYAiEimiJQDXwH+XUTKRWRgZ22DldUET11DK79+6zCLpmUxITPF6TjGYUtnZjM6LZkfbzqA2ybxC2kHN/8AABFPSURBVHkxwXxzVV0HrOuw7TGfr6vxdB8F1Nb0P4+/foimNhdfvmm801FMCIiJjuJLN47ni6t2sa64isXTbR3yUGZ3UpugOVnfzJNbjnDbzBzGZdjZg/FYPD2by4YN4MebDtBuI5pCmhUIEzS/+Psh2lzKF2+0swfzvugo4Ss3XUZZTQMv77KxJ6HMCoQJisozTfzhnWPcdXkuI1OTnY5jQswtUzKZkj2Qn7160O6LCGFWIExQ/PxvpQB8/sN29mD+kYjw1ZsncKyuked2lDsdx3TCCoTpdYdrG/hzwXHunjOcHLvvwXTiugnpzB4xmEdePUhTq8vpOMYPKxCm131vzR7iY6J48IZxTkcxIUxE+Eb+RKrONvP4G4ecjmP8sAJhetXf95/k1X0n+cKHx5ORkuB0HBPirhyTyqLpWTz2+iEqzjQ5Hcd0YAXC9JrWdjf/uWYPo9OSuX++zblkAvNvCycB8H/X7XU4ienICoTpNU9uPkJZTQPfWjyJuBj70TKByRmcyGevHcfawiq2HDrldBzjw36LTa+oOdfCI68e5LoJ6dwwcZjTcUw/85lrx5AzOJH/eKXEbp4LIVYgTK/44cZ9NLe7+NZiW/jPdF9CbDTfXDSJfdXn+KMtKhQyrECYS/ZO2Sn+vKOc++ePZmz6AKfjmH5qwdRM5o1J5Ycb9nGivtnpOAYrEOYSNba287XnChk+JIkv2ZQa5hKICP91+1Ra2t382wtFtmZECLACYS7J/2zYz7G6Rv7nzukkxQV1cmATAcakD+Dr+RN5dd9JXthZ4XSciGcFwvTY1rJT/G7zEe67ahRzx6Q6HceEifuvGsUVo4bwH6+UUH3WupqcZAXC9EhDSztfe243I1OT+Hr+BKfjmDASFSX88M4ZtLrc/OsLhdbV5KCgFggRyReR/SJSKiIP+9kvIvKId3+hiMz22XdERIpEZJeIFAQzp+m+H2zYR/npJn545wzrWjK9blRaMl+/ZSKv7a/hzzaZn2OCViBEJBp4FFgATAbuFpGOYyAXAOO9j+XALzvsv15VZ6pqXrBymu5bV1TFU1uOcv9Vo5kzeqjTcUyYuu+qUVw5eijfebmEAyfOOR0nIgXzDGIOUKqqZaraCqwClnY4ZinwlHpsBQaLSFYQM5lLdKjmPF/7825mDh/MNxZY15IJnqgo4ed3zyI5PoYVT+/gXHOb05EiTjALRA7ge8dLuXdboMco8BcR2SEiyzv7JiKyXEQKRKSgpqamF2KbzjS0tLPi6R3Ex0bzi0/MJj4m2ulIJsxlDEzg0Y/P4mhdI1/7s12P6GvBLBDiZ1vHf92LHTNfVWfj6YZ6UESu8fdNVHWlquapal56enrP05qLUlUefqGIQzXn+fnds8i2dR5MH7lyTCoP509kQ0k1T7x52Ok4ESWYBaIcGO7zOhfouABtp8eo6oXnk8CLeLqsjEN++/YRXtldyb/cPIH549KcjmMizKc/NJoFUzP5/oZ9bD5U63SciBHMArEdGC8io0UkDlgGrO5wzGrgk97RTHOBs6paJSLJIpICICLJwM1AcRCzmotYV1TFd9fu4abJw/jstWOdjmMikIjwP3dOZ3RaMp95egd7q+qdjhQRglYgVLUdeAjYCOwFnlXVEhFZISIrvIetA8qAUuBXwOe824cBb4nIbmAbsFZVNwQrq+nc5tJavrRqF7NHDOGRZbOIivLXK2hM8KUkxPLkA3NIjovhk7/ZxvG6RqcjhT0Jp4s+eXl5WlBgt0z0lqLysyxbuYXcIUk8+5l5DEqKdTqSMRw8cY47H9vCkKRYnvvsVaQNiHc6Ur8mIjs6u5XA7qQ2fh2ubeC+325jcFIcTz4wx4qDCRnjh6Xwm/uuoLq+mft+u82GvwaRFQjzD/ZW1fPRx7egwNOfmkPmIFtb2oSWy0cO4Zf3XM6+qnN8/FfvcOp8i9ORwpIVCPMB24/U8dHHtxAtwp+Wz2WMre9gQtT1EzJY+cnLOXjyHHc9toXy03ZNordZgTDv+du+E9z763dIHxDPc5+dx/hhKU5HMuaibpg4jGc+dSW151u485dbOGhTcvQqKxAGVeX37xzln5/awfiMFP68Yh65Q5KcjmVMQPJGDeVPn5mHS5W7Ht/C26V2n0RvsQIR4Rpa2vnyn3bxzReLuXpcGn9cPpdUGxVi+plJWQN5foVnRNM9v36Hn796ELc7fEZoOsUKRAQrPXmOpY++zcu7K/nKTZfx2/uuYEC8Td1t+qcRqUm8/OB8ls7I5v9tOsD9v9tOXUOr07H6NSsQEcjlVp7acoRb//dtTje08vQDV/KFD4+3m+BMv5ccH8NPPjaT7902lS2HTrHokTf5274TTsfqt6xARJiSyrN85Jeb+fbLJVw+cghrv/Ahrh5vcyuZ8CEi3DN3JM9/9ioGxMfwwO8K+Nzvd3Ci3pYv7S67kzpCnG1s49G/l/Lrtw4zJCmWby2ezK0zshGxswYTvlrb3fzqzTJ+9upB4qOj+MrNl/GJK0cSF2OfjS+42J3UViDCXH1zG7996whPvFXGueZ27p4znG/kT2RwUpzT0YzpM0dqG/j3l4p5q7SWnMGJfP6GcdxxeS6x0VYorEBEoJpzLfxx2zF+/dZhzja1cfPkYXzpxsuYnD3Q6WjGOEJVef1ADT/560F2Hz/D8KGJfO66cSydmR3R66pbgYgQqso7h+t4ZutRNpZU0+ZSbpiYwZdvvIxpuYOcjmdMSFBVXtt/kp9sOkhRxVlS4mP4yOwcPjF3JJdF4M2hViDCmKpSWH6WDSXVrC+q4sipRgYmxHDn5cP5+JUjGJdhU2UY44+qUnD0NL/fepR1RdW0utzMyB1E/tQsFkzNZFRastMR+4QViDBz6nwLW8vq2FJWy2v7aqg400R0lHDV2FRunZHN4unZJMbZetHGBKquoZXndhxnTWEVheVnAZiYmcJ1EzKYO2YoV4waSnKY3iNkBaIfa25zsa/6HMUVZympPMuOo6c5cOI8AElx0Vw1NpX8qVncOCnDLjwb0wsqzjSxsbiaDSXVvHvsNG0uJSZKmJY7iJnDBzM1exBTcwYxNj2ZmDC4yO1YgRCRfOBnQDTwhKp+v8N+8e5fCDQC96nqzkDa+tNfC0R9cxtVZ5qpPNtExekmjtQ2UFbbwOHaBo7VNeLyThkwOCmWaTmDmDsmlXljU5mWM8hGYRgTRI2t7ew4epqtZad4p6yOksp6mtpcAMTHRDE6Lfm9x6i0ZHIGJ5I1KIHswYkkxPaPs3hHCoSIRAMHgJuAcjxrVN+tqnt8jlkIfB5PgbgS+JmqXhlIW3/6skC43Uqry02by01Lu+fR3Oaipc1NU5uLxtZ2Glo8z+ea2znX3EZ9cztnG9uoa2zl1PkWTjW0UnuuhYZW1wfeOyE2itFpAxiTlsyY9GSmZA9ias5AcgYn2n0LxjjI5VYO156nuKKePVX1lNWcp6y2gWOnGmnvMPfToMRY0gbEkZocT+qAOIYkxzEwIZaBiTGkJMSSEh9DUlw0yd7nhNgLjyjiY6KJi4kiNlqIjYoK6iwHFysQwexUmwOUqmqZN8QqYCng+5/8UuAp9VSprSIyWESygFEBtO01ix55k6Y2F6rgVsXlVlQ9PwwuVdxupd2ttLvcnme3vvepvjsSY6MZmBjDkKQ40gbEM3xoEkOT48galEDWoESyB3s+eQxLSbBpL4wJQdFRwriMFMZlpHDbrJz3tre73FScaaLyTDNVZ5uoOttM9dlm6hpaOdXQwsGT5znT2EZ9UxutLne3v29MlBATLcRERXmfhSgRor3PaSnxvPzg/N78o3q+b6+/4/tygOM+r8vxnCV0dUxOgG0BEJHlwHKAESNG9CjoZcNSaHO5iRIhSjy36nv+8nnvHyA2OoroKHnvHyo2Ooq4mCjioqOIjY4iITaKhNho4mM8zxc+FSTFxZCSEMPAhFi7e9OYMBUTHcXI1GRGpnY98qm5zcXZpjYaWtppbHXR0NJOQ2s7LW1umttdNLe5aWlz0eby9FK0tnt6Klxupc2luNxu2tyeD64XPsQGa5LNYBYIfx+BO37s7uyYQNp6NqquBFaCp4upOwEv+MnHZvakmTHGdNuFrqT+IJgFohwY7vM6F6gM8Ji4ANoaY4wJomD2eWwHxovIaBGJA5YBqzscsxr4pHjMBc6qalWAbY0xxgRR0M4gVLVdRB4CNuIZqvobVS0RkRXe/Y8B6/CMYCrFM8z1/ou1DVZWY4wx/8hulDPGmAh2sWGuNqzGGGOMX1YgjDHG+GUFwhhjjF9WIIwxxvgVVhepRaQGONrD5mlAbS/G6S2hmgtCN1uo5oLQzRaquSB0s4VqLuhetpGqmu5vR1gViEshIgWdXcl3UqjmgtDNFqq5IHSzhWouCN1soZoLei+bdTEZY4zxywqEMcYYv6xAvG+l0wE6Eaq5IHSzhWouCN1soZoLQjdbqOaCXspm1yCMMcb4ZWcQxhhj/LICYYwxxi8rEH6IyFdFREUkzeksACLyXREpFJFdIvIXEcl2OtMFIvJDEdnnzfeiiAx2OhOAiNwlIiUi4hYRx4ciiki+iOwXkVIRedjpPBeIyG9E5KSIFDudpSMRGS4ir4nIXu+/5RedzgQgIgkisk1Edntz/YfTmXyJSLSIvCsiay71vaxAdCAiw4GbgGNOZ/HxQ1WdrqozgTXAt50O5GMTMFVVpwMHgH91OM8FxcBHgDecDiIi0cCjwAJgMnC3iEx2NtV7fgfkOx2iE+3Av6jqJGAu8GCI/L21ADeo6gxgJpDvXc8mVHwR2Nsbb2QF4h/9BPg6nSxx6gRVrfd5mUxoZfuLqrZ7X27Fs/qf41R1r6rudzqH1xygVFXLVLUVWAUsdTgTAKr6BlDndA5/VLVKVXd6vz6H5z+9HGdTgXqc976M9T5C4ndSRHKBRcATvfF+ViB8iMitQIWq7nY6S0ci8l8ichz4BKF1BuHrAWC90yFCUA5w3Od1OSHwH11/IiKjgFnAO84m8fB24+wCTgKbVDUkcgE/xfMB190bbxbMNalDkoj8Fcj0s+ubwL8BN/dtIo+L5VLVl1X1m8A3ReRfgYeA74RKNu8x38TTJfD7UMoVIsTPtpD4xNkfiMgA4HngSx3Oph2jqi5gpvea24siMlVVHb2OIyKLgZOqukNEruuN94y4AqGqN/rbLiLTgNHAbhEBT1fJThGZo6rVTuXy4w/AWvqwQHSVTUT+CVgMfFj78MaabvydOa0cGO7zOheodChLvyIisXiKw+9V9QWn83SkqmdE5O94ruM4faF/PnCriCwEEoCBIvKMqt7T0ze0LiYvVS1S1QxVHaWqo/D8Us/ui+LQFREZ7/PyVmCfU1k6EpF84BvArara6HSeELUdGC8io0UkDlgGrHY4U8gTzye1XwN7VfXHTue5QETSL4zWE5FE4EZC4HdSVf9VVXO9/38tA/52KcUBrED0F98XkWIRKcTTBRYSw/28/hdIATZ5h+E+5nQgABG5XUTKgXnAWhHZ6FQW70X8h4CNeC60PquqJU7l8SUifwS2ABNEpFxEPuV0Jh/zgXuBG7w/W7u8n46dlgW85v193I7nGsQlDykNRTbVhjHGGL/sDMIYY4xfViCMMcb4ZQXCGGOMX1YgjDHG+GUFwhhjjF9WIIwxxvhlBcIYY4xfViCMCRIRucK7TkaCiCR71w6Y6nQuYwJlN8oZE0Qi8j088+IkAuWq+t8ORzImYFYgjAki79xL24Fm4CrvLKDG9AvWxWRMcA0FBuCZryrB4SzGdIudQRgTRCKyGs8KcqOBLFV9yOFIxgQs4taDMKaviMgngXZV/YN3XerNInKDqv7N6WzGBMLOIIwxxvhl1yCMMcb4ZQXCGGOMX1YgjDHG+GUFwhhjjF9WIIwxxvhlBcIYY4xfViCMMcb49f8BhRFrhQsMwW8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import math\n", + "def normal_distribution(x, mean, standard_deviation):\n", + " return math.exp(-0.5 * pow( (x - mean) / standard_deviation, 2)) / standard_deviation / math.sqrt(2 * math.pi)\n", + "\n", + "\n", + "\n", + "mean = 0\n", + "standard_deviation = 1\n", + "\n", + "x_array = np.arange(-4, 4, 0.1)\n", + "y_array = []\n", + "for x in x_array:\n", + " y = normal_distribution(x, mean, standard_deviation)\n", + " y_array = y_array + [y]\n", + "\n", + "\n", + "fig, ax = plt.subplots()\n", + "ax.plot(x_array, y_array, \"-\")\n", + "ax.set_xlabel(\"x\")\n", + "ax.set_ylabel(\"probability\")\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-1.11820545 -0.34614928 -0.42576096 ... 1.57779068 -1.24144681\n", + " 0.76370401]\n" + ] + } + ], + "source": [ + "# generate random numbers following a normal distribution\n", + "x = random.normal(loc=0, scale=2, size=10000)\n", + "\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAARtUlEQVR4nO3df6zdd13H8eeLDYaACGTdrF1rpxZ1QyjkUtFFBYYywVBMhJREXHRaNeNnMLphFDBpMvnpEsFY2bTGyawwXKOozPkrJm6jGwPW1UnD5nZpXcsvmTEO273943zHDu25vefec07POZ8+H8nNPedzvt9z303PfZ3PfX8/3+9JVSFJasvjpl2AJGn8DHdJapDhLkkNMtwlqUGGuyQ16MxpFwBw9tln18aNG6ddhiTNldtvv/0LVbVm0GMzEe4bN25k79690y5DkuZKkv9Y6jHbMpLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1KCZOENVmpaNV/zV12/fd9XLp1iJNF7O3CWpQYa7JDXIcJekBtlzlybInr6mxZm7JDXIcJekBhnuktQgw12SGuQBVWkAD4Rq3hnuUqc/0KV5Z1tGkhpkuEtSgwx3SWqQ4S5JDVo23JM8McltST6VZF+Sd3Tjz0hyU5LPdt+f3rfPlUkOJLknyUsn+Q+QJJ1omJn7w8CLq+o5wGbgkiQvAK4Abq6qTcDN3X2SXABsAy4ELgE+kOSMSRQvSRps2XCvnv/u7j6++ypgK7CrG98FvLK7vRW4vqoerqp7gQPAlrFWLUk6qaHWuXcz79uB7wLeX1W3Jjm3qg4BVNWhJOd0m68DbunbfbEbO/45twPbATZs2LD6f4G0Qq5n1+lgqHCvqmPA5iRPAz6a5Fkn2TyDnmLAc+4EdgIsLCyc8Lg0TzyjVbNmRWeoVtVXkvwjvV76g0nWdrP2tcDhbrNFYH3fbucBB8dRrDQNBrfm0bLhnmQN8H9dsH8T8BLgt4E9wKXAVd33G7td9gB/muS9wLcBm4DbJlC7NFW2dzTLhpm5rwV2dX33xwG7q+ovk/wrsDvJZcD9wKsAqmpfkt3A3cBR4PKurSNJOkWWDfeq+jTw3AHjXwQuXmKfHcCOkauTJK2KZ6hKUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgPyBbWgHPStW8MNylU8Rr1OhUsi0jSQ0y3CWpQYa7JDXInrtOCx4I1enGcFczDHDpMbZlJKlBhrskNchwl6QG2XOXpsATmjRpztwlqUHO3DV3nPVKyzPcpTFzSaZmgW0ZSWrQsuGeZH2Sf0iyP8m+JG/sxt+e5PNJ7uy+Xta3z5VJDiS5J8lLJ/kPkFq18Yq/+vqXtFLDtGWOAm+pqjuSfDNwe5KbusfeV1Xv7t84yQXANuBC4NuAv0vyzKo6Ns7CJUlLW3bmXlWHquqO7vZDwH5g3Ul22QpcX1UPV9W9wAFgyziKlSQNZ0UHVJNsBJ4L3ApcBLwuyc8Ae+nN7r9ML/hv6dttkQFvBkm2A9sBNmzYsIrSpTa4+keTMPQB1SRPAT4CvKmqvgr8HvCdwGbgEPCeRzcdsHudMFC1s6oWqmphzZo1Ky5ckrS0ocI9yePpBft1VXUDQFU9WFXHquoR4A94rPWyCKzv2/084OD4SpYkLWeY1TIBrgH2V9V7+8bX9m32k8Bd3e09wLYkZyU5H9gE3Da+kiVJyxmm534R8FrgM0nu7MbeCrwmyWZ6LZf7gF8EqKp9SXYDd9NbaXO5K2U0KS4TlAZbNtyr6l8Y3Ef/2En22QHsGKEuSdIIPENVkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNcgP65BmiOv2NS6Gu+aCoSetjG0ZSWqQM3fNLGfr0uo5c5ekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNcimkNAf6l4Xed9XLp1iJ5oUzd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktSgZZdCJlkP/DHwrcAjwM6qujrJM4A/AzYC9wGvrqovd/tcCVwGHAPeUFV/O5Hq1RyvBCmNxzAz96PAW6rqe4EXAJcnuQC4Ari5qjYBN3f36R7bBlwIXAJ8IMkZkyhekjTYsuFeVYeq6o7u9kPAfmAdsBXY1W22C3hld3srcH1VPVxV9wIHgC3jLlyStLQV9dyTbASeC9wKnFtVh6D3BgCc0222Dnigb7fFbuz459qeZG+SvUeOHFl55ZKkJQ0d7kmeAnwEeFNVffVkmw4YqxMGqnZW1UJVLaxZs2bYMiRJQxgq3JM8nl6wX1dVN3TDDyZZ2z2+FjjcjS8C6/t2Pw84OJ5yJUnDWDbckwS4BthfVe/te2gPcGl3+1Lgxr7xbUnOSnI+sAm4bXwlS5KWM8xVIS8CXgt8Jsmd3dhbgauA3UkuA+4HXgVQVfuS7AbuprfS5vKqOjb2yiVJS1o23KvqXxjcRwe4eIl9dgA7RqhLkjQCz1CVpAb5YR2aCj98QposZ+6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIde6aOj99SRo/w12aY54MpqXYlpGkBhnuktQg2zJSI2zRqJ8zd0lqkDN3nTKuipFOHWfuktQgw12SGmS4S1KDDHdJapAHVKU544FpDcOZuyQ1aNlwT3JtksNJ7uobe3uSzye5s/t6Wd9jVyY5kOSeJC+dVOGSpKUNM3P/I+CSAePvq6rN3dfHAJJcAGwDLuz2+UCSM8ZVrCRpOMuGe1X9M/ClIZ9vK3B9VT1cVfcCB4AtI9QnSVqFUQ6ovi7JzwB7gbdU1ZeBdcAtfdssdmMnSLId2A6wYcOGEcqQdDyvM6PVHlD9PeA7gc3AIeA93XgGbFuDnqCqdlbVQlUtrFmzZpVlSJIGWVW4V9WDVXWsqh4B/oDHWi+LwPq+Tc8DDo5WoiRppVYV7knW9t39SeDRlTR7gG1JzkpyPrAJuG20EiVJK7Vszz3Jh4AXAmcnWQTeBrwwyWZ6LZf7gF8EqKp9SXYDdwNHgcur6thkStc88IQbaTqWDfeqes2A4WtOsv0OYMcoRUmSRuMZqpLUIK8tI51Gjm+TuUyyXc7cJalBhrskNchwl6QGGe6S1CAPqEqN81yD05Mzd0lqkOEuSQ2yLaOx8BKz0mxx5i5JDTLcJalBhrskNcieu1bNJXbS7HLmLkkNcuYuncZc5dQuZ+6S1CBn7ho7e/HS9Dlzl6QGGe6S1CDDXZIaZLhLUoMMd0lq0LLhnuTaJIeT3NU39owkNyX5bPf96X2PXZnkQJJ7krx0UoVLkpY2zMz9j4BLjhu7Ari5qjYBN3f3SXIBsA24sNvnA0nOGFu1kqShLBvuVfXPwJeOG94K7Opu7wJe2Td+fVU9XFX3AgeALWOqVZI0pNX23M+tqkMA3fdzuvF1wAN92y12YydIsj3J3iR7jxw5ssoyJEmDjPuAagaM1aANq2pnVS1U1cKaNWvGXIYknd5WG+4PJlkL0H0/3I0vAuv7tjsPOLj68iRJq7HacN8DXNrdvhS4sW98W5KzkpwPbAJuG61ESdJKLXvhsCQfAl4InJ1kEXgbcBWwO8llwP3AqwCqal+S3cDdwFHg8qo6NqHaJUlLWDbcq+o1Szx08RLb7wB2jFKUJGk0XvJXEuAHd7TGcNdA/qJL881w14r4QRzSfDDcJZ3Av9zmn1eFlKQGGe6S1CDbMlqWfXZp/jhzl6QGGe6S1CDDXZIaZM9d0km5LHI+OXOXpAYZ7pLUIMNdkhpkz13S0Oy/zw9n7pLUIGfuklbFWfxsc+YuSQ1y5n6a87oxUpucuUtSgwx3SWqQbRlJI/Pg6uwZKdyT3Ac8BBwDjlbVQpJnAH8GbATuA15dVV8erUxJ0kqMoy3zoqraXFUL3f0rgJurahNwc3dfknQKTaLnvhXY1d3eBbxyAj9DknQSo/bcC/h4kgJ+v6p2AudW1SGAqjqU5JxBOybZDmwH2LBhw4hlaCVc/ii1b9Rwv6iqDnYBflOSfxt2x+6NYCfAwsJCjViHJKnPSOFeVQe774eTfBTYAjyYZG03a18LHB5DnZLmhCtnZsOqwz3Jk4HHVdVD3e0fA34L2ANcClzVfb9xHIVqNLZipNPLKDP3c4GPJnn0ef60qv4mySeA3UkuA+4HXjV6mZKklVh1uFfV54DnDBj/InDxKEVJkkbj5QckqUFefkDSKeGB1lPLcG+YB1Gl05dtGUlqkDN3SRPjX4/T48xdkhrkzL0xzpQkgeEuaQpcOTN5tmUkqUHO3CVNlbP4yTDc55w9dkmD2JaRpAY5c5c0M2zRjI/hPmOWarP4Qpe0Eob7DLBvLmncDPc54RuApJUw3CXNPNuVK+dqGUlqkOEuSQ2yLTMl9tClk/N3ZDSGu6S55br4pRnuE7DUC86ZiHTqna5vAIb7mCwV3Aa6dGqM8rt2/L4tvAlMLNyTXAJcDZwBfLCqrprUz5oWg1vSrJpIuCc5A3g/8KPAIvCJJHuq6u5J/DxJGsaoLZp5avFMaua+BThQVZ8DSHI9sBWYSLiv9AQHZ9ySTpYDw4T4MDkyzL6TepNIVY3/SZOfAi6pqp/v7r8W+P6qel3fNtuB7d3d7wbuGeKpzwa+MOZyx2mW65vl2sD6RjHLtYH1jWK52r69qtYMemBSM/cMGPuGd5Gq2gnsXNGTJnuramGUwiZpluub5drA+kYxy7WB9Y1ilNomdYbqIrC+7/55wMEJ/SxJ0nEmFe6fADYlOT/JE4BtwJ4J/SxJ0nEm0papqqNJXgf8Lb2lkNdW1b4xPPWK2jhTMMv1zXJtYH2jmOXawPpGseraJnJAVZI0XV4VUpIaZLhLUoPmLtyTbE5yS5I7k+xNsmXaNfVL8vok9yTZl+Sd065nkCS/kqSSnD3tWvoleVeSf0vy6SQfTfK0Gajpku7/80CSK6ZdT78k65P8Q5L93evtjdOu6XhJzkjyySR/Oe1ajpfkaUk+3L3m9if5gWnX1C/Jm7v/17uSfCjJE1ey/9yFO/BO4B1VtRn4ze7+TEjyInpn4j67qi4E3j3lkk6QZD29y0LcP+1aBrgJeFZVPRv4d+DKaRbTdxmNHwcuAF6T5IJp1nSco8Bbqup7gRcAl89YfQBvBPZPu4glXA38TVV9D/AcZqjOJOuANwALVfUsegtTtq3kOeYx3At4anf7W5it9fO/DFxVVQ8DVNXhKdczyPuAX+W4k8pmQVV9vKqOdndvoXd+xDR9/TIaVfU14NHLaMyEqjpUVXd0tx+iF07rplvVY5KcB7wc+OC0azlekqcCPwxcA1BVX6uqr0y3qhOcCXxTkjOBJ7HCrJvHcH8T8K4kD9CbGU91dnecZwI/lOTWJP+U5PnTLqhfklcAn6+qT027liH8HPDXU65hHfBA3/1FZig8+yXZCDwXuHW6lXyD36E3kXhk2oUM8B3AEeAPu7bRB5M8edpFPaqqPk8v3+4HDgH/VVUfX8lzzOT13JP8HfCtAx76deBi4M1V9ZEkr6b3zvuSGantTODp9P5Efj6wO8l31Clcb7pMfW8FfuxU1TLIyeqrqhu7bX6dXsvhulNZ2wDLXkZjFiR5CvAR4E1V9dVp1wOQ5CeAw1V1e5IXTrueAc4Enge8vqpuTXI1cAXwG9MtqyfJ0+n9lXg+8BXgz5P8dFX9ybDPMZPhXlVLhnWSP6bXxwP4c07xn3zL1PbLwA1dmN+W5BF6F/45Mu36knwfvRfKp5JAr+VxR5ItVfWf067vUUkuBX4CuPhUvikuYeYvo5Hk8fSC/bqqumHa9fS5CHhFkpcBTwSemuRPquqnp1zXoxaBxap69C+dD9ML91nxEuDeqjoCkOQG4AeBocN9HtsyB4Ef6W6/GPjsFGs53l/Qq4kkzwSewIxcba6qPlNV51TVxqraSO/F/bxTGezL6T7g5deAV1TV/0y7Hmb8MhrpvUtfA+yvqvdOu55+VXVlVZ3Xvda2AX8/Q8FO97p/IMl3d0MXM6FLkq/S/cALkjyp+3++mBUe8J3JmfsyfgG4ujvI8L88dtngWXAtcG2Su4CvAZfOwOxznvwucBZwU/fXxS1V9UvTKmaCl9EYl4uA1wKfSXJnN/bWqvrYFGuaJ68HruveuD8H/OyU6/m6rlX0YeAOei3KT7LSq+iaPZLUnnlsy0iSlmG4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAb9P5TbJu1tb7ujAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(x, bins=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD5CAYAAAA6JL6mAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO29a3Rd1ZUm+q199AATYats/EKWQLwCEiElCVuMEAgF1C13G7ixoZzQVbdSKcqhB1WjGLfrpiqh4+vhO6pG31HjdpMezbjBodLVXQ3G8QMI3FAVTHiENDK2XCGWMDa2sGT5JVvItoKNpHP2uj/2Xvustc7a++x99j5Pze8P+Oictdd+fWuuOb85J+Ocg0AgEAjVC6vcEyAQCARCPBCREwgEQpWDiJxAIBCqHETkBAKBUOUgIicQCIQqBxE5gUAgVDnqkhiEMTYPwDMAOgFwAN/knL/r9/0FCxbwq666KolDEwgEwqxBf3//Gc75FfrniRA5gO8D+CfO+YOMsQYAc4K+fNVVV2HPnj0JHZpAIBBmBxhjw6bPYxM5Y+xyAHcA+AYAcM6nAUzHHZdAIBAI4ZCEj7wdwGkA/5Ux9i+MsWcYY5fpX2KMrWOM7WGM7Tl9+nQChyUQCAQCkAyR1wHoAvD/cs5/G8CnAP5a/xLnfBPnvIdz3nPFFTkuHgKBQCAUiCSIfBTAKOd8l/vvbXCInUAgEAglQGwi55yfBHCUMXaD+9HdAD6IOy6BQCAQwiEp1cqfA3jWVawMAfjjhMYlEAgEQh4kQuSc818B6EliLEJx0D88gb6hcfS2z0d3W3O5p0MgEBJEUhY5oYLRPzyBf/NMH6bTNhrqLDz7SC+ROYFQQ6AU/VmAvqFxTKdt2ByYSdvoGxov95QIBEKCICKfBehtn4+GOgspBtTXWehtn1/uKREIhARBrpVZgO62Zjz7SC/5yAmEGgUR+SxBd1szETiBUKMg1wqh6tE/PIGn3jiE/uGJck+FQCgLyCInlBVxZZHlUOSQlJNQaSAir2EkSTjFIK8kSNikyCkmuZKUk1CJICKvUSRJOMUiryRIWChyZtJ2SRQ5pV44CIQwICKvUSRJOMUiryRIuNSKnFIvHARCGBCR1yiSJJxikVdSJFxKRQ5JOQmVCMY5L/lBe3p6OLV6Kz6SCCSK3wMg8iIQygzGWD/nPKeuFVnkNYw4lqrJL/7YXdcmPEMCgZAESEdOMILqsxAI1QMicoIRVJ+FQKgekGuFYAQF9QiE6gEROcEXVJ+lskAZpQQ/EJETCBUKXTVEGaUEPxCREwgVCF01tLqrhTJKCb6gYGdIUIW92kUl3ltdNcQACj4TfEEWeQhQoaTaRaXeWz2bdnVXC1Z3tZCPnGDErCfyMAGkSiyUVKxqhLONKCrx3gL+qqFKmBuh8jCriTysNVZphZKKYUVWqmUaB2EWpkq7tzJINUQIi1lN5GGtsUrTVBfDiiyHZVrMHUDYhanS7m0lYDbuzKodiRE5YywFYA+AY5zzVUmNW0xEscYqyToqhhVZasu02DuAKAtTJd3bcqMWd2azAUla5H8BYD+AyxMcs6ioFGssqgVUjHmX+loUewdQyS6TSkalxgwIwUiEyBljLQD+NYC/AfC/JzFmqVBua6xQC6gY8y7ltSg20VbKIl1tqIYFkFw/uUjKIn8SwLcBNPl9gTG2DsA6AGhtbU3osNWP2WoBlYJooyxMRA4OKn0BJNePGbGJnDG2CsAY57yfMfYVv+9xzjcB2AQ4jSXiHrdWUC4LqBKIq9y7IQEiBxWVcl9MmK2GTz4kYZF/CcD9jLF/BeASAJczxv4H5/wPEhi75lEOC6hQ4qoE8k8K8rkQOVQPqsH1Uw7EJnLO+XcAfAcAXIv8L4nEo6HUFlAhxFVLVqt+LutXdcQmh1pa5CoZle76KRdmtY68GKiGF7oQq6aWrFb9XCYuTMciB9MiJ44TZrxqeGYqCZXs+ikXEiVyzvmbAN5McsxqQrVYrYVYNbW0pTWdSxxy0BeG7XtHsWPvaKjnoFqeGUJlgyzyBFFNVmtU4iqXL78YVm3S56IvDAzwnoOpGRtPv3UYtyybZzxWEs8MWfQEIvIEUY1Wa1QCLJWcL4qlWohVm+T2XF8YAGBrv2ORcwA/++AUXvvgFBrrc+cW95khi54AEJEnikoMxAQRarFIIIlxo1iqlbAT0heGB7tbsHnXCITOlkOdm3xf4jwzlXDuhPKDiDxhVFIgJh+hFosEkhg3iqVarJ1QnF3Fmq4Wz09uc6eDi5ib6b48dte1Bc2xGneBhORBRF7DyEeoxSKBJMYN2t3oBBt1J5Rvl9I3NI7mOQ3Y+MpgwbsKeU7NcxowcWHaO95Tbxwy3pdCFg7TuVOt+tkHIvIaRj5CLZYrSCexvqFx7/Oo44R1B4XdCQXtUuS/AYDt+kWmZhwlShLzB5z7UmcxzGQ4UhbztdKjkLnpHORx4hAx+eErH0TkNYzutmasX9WBVwdOYGXnEuPLl48ACyUA8V1BAHUWw0M9y7C6qyUWscR128i/n07beHLnQTx+z/XobmtW/iaDA9jWP4o17twTAWPOyIwlcl4CpnEAxCJi8sNXPojIaxj9wxOee2D3kU9ww+KmSC9gXEtMIc0Mx3O7RrB97yjWr+oo2G0R120jfi/m9c5HZ7D7yCd49pFe9LbPh8UYbJ5bCiiTSTaGkM44ihYxblJuLtM4cYmY/PCVDyLyGkaS1mscApiacUhLKDdeHThR8Lhx3UHi90/uPIh3PjqjqEkeu+tabHygE+tfGoBtc9TVWQDnyNi86DGEpNxcfuPEIeJKVGMRVBCR1zCSsl7jWGJrulowNjmFtw6eRibjjLOycwl2H/kkFrHEIZPutmY8fs/1OXPoH57AxIVpbHyg0wtOAuFT7aMc36+xchLHEGPIsYm4RFxJaixCLhg3bCOLjZ6eHr5nz56SH3c2IonEnEJ+bypMJSs3iq2CCDO+/B0gnh+5kiBfez02UYxjkaVeOjDG+jnnPfrnZJFXCIr1QiRhvcqKiLBzNBWmkrXSxcwSjdJ4WXzuJwmsBEQ9f7/YRNKLE6lZKgdE5BWASngh8pHFc7tGHN8x56HmmFSArJBrU4hvv5QBvag1ZKKev19sIunFidQslQMich+UcstY7hciH1n0D09g/UsDSLu6vOkQc0wqQFYqUg4j1UwCUYm5kPMX13773lFs6x9FOmODMYbmOQ2h5xjmvpGapXJARG5AqS3kcrwQUTrk9A2NIyOJqy3GvDkGvfRR3TqmsQol5aiLSFypZpjx+4bGcezsxcBrrV+DQp8Nce07l87F+pcGkLE5Nr4ymPe8FP96ysKD3S2++nlSs1QOiMgNKLWFXOoXImqHnN72+WistzA9Y8OyGDY+0OkFLOMueGFS4td0tYC7/y0k2zEMinnPdXKss5hR0uh3PeM8GxMXpmFzHtq9oidMbd41gh0B/nVSs1QGiMgNKIeFXMoXQn9ZXx04kaMq0edmIpO45CcTl8UccpMJB1CVJGu6WhK7Bjr87nkU9YteU0X87cmdBz1/dSZj42vLW7F03qU5Y/pdzzjPRvOcBliMATycFr5U/nVCsiAiN6AatoxhCj/phCI+C8pu9DtXE5no5Nc8pwFPvXGoIHUF4NQd4RLhyH+fmrGxw613Uoz4hemeh9lxyN+xOcAAr+44kF2IOJy/pSzmKwVM2oAQ7iKbc1gWw/pVHaH96zv2jmLrnqOJJ0MRioOaJvI4L3wlbxnDFn6S+0fqn/llN0Y5Z5n8Ji/ORFK1ALnEZdoV1KUsjwi37jmKjqVzI6f3h30O9HseZseh12fRdxT630RtFb/jF2pAmM5RnhsDx8SF6VDXQ1yH1V0tFW3MELKoWSKvBElfsRBEMH5Fk/TPHrvrWmN2IxC9axAArH363UiqFvHbIOLqbmtWGjRkbB45vT/Oc5DPQu4fnsCvjp5VimwxQPmu7KYA8tdsKcSAeG7XCL7nBjQb6ixs/tNe30BplOtRyFwoQag8qCoij5OQUks+viCC8fub6bNC3Qk6glQt+ZCPLESDBjH3qOn9Qc+B3/MUpnuPuE5TM7b3GQNw+3ULvGqKABQZoChRkKSbon94At97cR8y7uWfTjsuKHHu+i4nX+ITlbutTlQNkUd9SGpZ4xpkyfr9Lej7Ud0JOvxULcU61xsWNwXGAMR5yPEA067Dr253mO494jqJ5Uv4xmUSF/PvbmvGmgA3hU6eUQ2WDFc/G5ucylEliZ1Z0Hshkr4yNkdjvdnVlW8utWo8VTqqhsijPiTVELCMgyBL1vQ3+bMgogjjTpAVGuK/61d1YOD4OTAANyxuSnSLrZ+P/m9d3gfOkba5Eg8Iq7gJ+5zJ1ykVop6J3/0ySUGjxAB62+ejIcUw7bJ5XYphYVNjVpU0Y+fELkzXQ0/6mjL8Lt999BQyoABpqVE1RF5oYkitEXhc+AVD5Rc7jDtBqDDEf+tTDGAM6YyNrf2jOWQqE8aOvaORdeFB0MkXQE55WmHpClWN3/MkK3qCsiHl6yQWsyD4LWy6MmfL7pHIBsvmdbdh+95RMACrXYnmdtcdxdz66np8xBS0leuwM4YcOWi+WMTGVwaRsR31URiFDCE5xCZyxtgyAP8dwGIANoBNnPPvxx1XR61b2KWCTno79o5iu9skWG+d5vdbuTO8+O9MxlEdixff+zzttEkThLfh5UGvldq2PUexed1tge4RkzZbh2Idp7I1xFMpC8fOXkT/8AQOnJw0WqZiURHobnNS9cNkQ4rPwkoUp2Yc633jA514eEUr+ocncOzsRVgWg51xrt3gifOoS1mR/Omm+yUvMhtfGcxrAMkLmMUYHrn9avzDu0cixyI4AM553oWNkCySsMjTAP4d53wvY6wJQD9j7DXO+QcJjK2ALOz40C1RjlxFSz7CnJ6xYUO1yC0Gh5BcAvXI1GJevQ+LMW/rDjjkL46nl14FY5iR9NdCm+1HqPIiD8DTQT//3gh+7OqhhcEpVDW97fO9RUzOXgybDSmSfUxadxl9Q+PeLiZtc6x/aQAAPBeKLEjkNseDy5fhSi1hKKqrSn5XTDGFfNewu60Z93YsDn3MuDGpSlC7VMIcCkVsIuecnwBwwv3/ScbYfgBXAkicyAnx4Ud6elKPyRI2uRMmL87gh78YcrTKnONry1u97X3f0DiOn72Ize+NKEk/QuFSn8qqW7bvHfXIbibDXdvegVhsosj2+obGkbYdl4KtRwMBrym0aRELQ0q6m0nMc+ueozm+8t72+UhZ2UXM5o6MUnZR1UnJULrLqX94Al//YZ83HyEvDItCDaAov4uzY64EtUslzCEOEvWRM8auAvDbAHYZ/rYOwDoAaG1tTfKwhIjQX1B9G27KUpTJXP7td1/ISt/StkNm8nef2zXiBcBEMG/w+DmMTU5hYVMjAOcl2rrnqEeIKQvgYAVLGoFsp/ppA4lzDmx4eRBfuf4K37on+eq76G4mgYzNcxac7rbmbAs517Uz/7IGZQF45Par0XRpvZEEd7i7BiArL0yaZJIgskIXDL1kRDnULtWuuEmMyBljnwOwHcDjnPPz+t8555sAbAKcDkFJHbfWUIztXdh0/qAsRb+56HmKZyanlLH1AJjwDQvS2L53FHdcd4XrY3dw+aUNuOO6BXjl1ye83xYkaRSd6t15uiVHPAv/tQ9Oob7Owu/cuFBZVMLUd9FVK2DM16+tt5BrntPguVfE3JourTfKHAHkLBbFeHnKSWTNcxq8Z87mCF1uN0lUu1w5ESJnjNXDIfFnOec7khhzNqIY27so6fyiCqJ4oS0g70O9uqsFP95z1CPiNw+MoX94QpHy6QEwnTROnf9MGfOTT6fx4q+O49E72hUrNaq+Op1xrFiLAV+6dgFWdi7BxlcGcwpCvb7/FADHvbOmq0WxDp/ceRArO5cEupl07bqfNFJc/+17R5VYAYdKXvp5rulqwTb3Gqcsh/jFNU4K5fRxT1yY9uItlvvvUqPaxRRJqFYYgL8HsJ9z/h/jT6nyUKogSDGsoijp/BMXpnN84GHqkzzUs0xJo5dVKrKaRChIdNJYe2sr9p8YyHGDDJ44j3/8kxUA8i9I+v3RjyESdW5Y3OQFQtMZDhtQgqAc2bR6mwO/+OgMfvHRGVgMOcc16dvzXf8dbpanjlcHTuCGxU0AzCoYITHc1j+Kze+NYOueo4n24gxLZH4F2eIYICKhrNzWcDWLKZKwyL8E4A8B7GOM/cr97Luc858mMHbZUcogSBLbu/7hCUVTHDWdv5CHWU6jl1Uqsk9cKEiEOkS3Zh/qWYaPTk3ivSMT3rgrO5d4/++3IJl2FYPHz4EDSmYiAE9D/jdfvRmru1qUomGA44df09WCzqVz8e9f3Ae5L3mhi6tJJSR2CjJEBUp5R6CXshW7jDC9OAsxPvLde793Ia4BUu3WcCUgCdXKO8h1ldYMSuk7FA+0IOKo6B+ewNc3vetZtlv7R7H5T82ZfPLxorxAJoKQx5FVKsLKXzrvUk9BYkrSkcnh0TvaMXjiPFZ2LsHDK7JBcZ0QhbpG7rgznba94lEA0JBi2LzuNgBmK1cUDdNLC4h0dhkWy+9mMsFPJSSrXYCsm0fsCIIW3ny1wotlfMRR+eRDNVvDlYCqyexMElGslXIEQYRKIWrn876hcSVoOOP6eB+/53rfQFqUFyiIIMQ4YkcQpmiXmLNMDk2X1uMf/2SFkoUpjiGUJJ1SKVu54w7TdOrTGY4ndx5E62/N8chveka1ck0LmSk5RvjqAUSquW66xs8+0ouNLw/i/dFz3meiauKarpacuix6Ea98RbjCGh9RrXY9wHvcdZWRRV1+zDoij2qtlPohDfMS+r2Ave3zUS/V3eBwtuzvHh73sgmLPTe/6+V3DeUkI5ESr9+jb9x2FZ5552OvmBOQTWKSO+7omaMA8MtDZ/A/kVV62FADizLJ+lU9FOd+4ORkIrXQu9uasfbWVrw/us/73r03LcK37rzGO5ZM4npW6N9+9ebAIlxRdPBRzkXeMQpfvWxsFPJuVHMSTiVh1hF5Ia6SUm77whStCrKKRVBs8Ng5vD96TskmjNtQOOzuxHS9/K5hd5uaEr/+pQHc9fmFStGnTW7CEeD8m0G18Jsa6/CzwZNYdPkl2HCf4yMfOHYO+46dU2qFA47la2qwAOS6Xx6761qFSGX5ou6nD6tYEX+fuDANizm+d4sBtyybp8yhzi3ENTY5hc/cUrn6ffS7l2GMj0JdhrqvPo67sdqTcCoJs47IK10vmu8lzPcCihf8uV0jisVnSlSREcYykucmMiPF52HHNH0mp8SnbY6ffzimuEuUxCC3VZroXjN5cQY/eHvI/es5vHFgDM+vuw2ru1pyMi8Bp9Vab3tug4U1XS1G94ucXi+Cn7IsM4iMgu6V6TlUEmMyHM/uGsm5pjYPvo/yvQr6Tpz3IKl3KN+zTNZ6eMw6Iq9kf5784Pr5tMO+RLI2F8gSmOmYYqsslCZB0j7xeZAl5TcmAGOqeW/7fFhulT7AqTfy0Iqsu0S4MyymJgZ1tzXjD/9eTSKecf3ij99zveIGcCoBOhmU3W25DRbGJqeM7hc9vZ4B+JLUPEIeR+jOxd+C7pXfc9hQZ3kWuA6xEzHt0gpRqBT6HgT9Nqn4E1nr0TDriByozAh52Ac37AsotLmiKNPvfH6h7zFlq3VqxsbTbx3GLcvmKSQaVm5mGlN85/2jZ42p5t1tUgq7zdFQbyn66KCiTx1LLscvPjqjfCY3k/7br96MzqVzPdfNj375MSan0uhYOhd1FnOTbFiOSujNA2N4eEWrOjc3vX5l5xJvNyIHRk2NrPO1sgOg7GyefaQXf7XtfRw6/an3PVEm2KQbj0N4puOHhekdSjL+JO+E5B1StaFUu4pZSeSViCg+yzALkR6Y2rn/FN7+6LRx66/L4H72wSn87INTng8XCC83M42ZSjlywdc/HFPmKH/nhsVN+P1bl+HM5BQWuOny+c73uV0jeOadjwE4ZHflvEtw7OxnOT5s2XUjXBYNKabUOhk6/Rtl7Nc/zGaoPryi1UskGpucwoaXB5WdRlAjaz/CE+4pfaEEgJGJi953GQPuvdEJhJos3+OS/DKqv1rvCFSI1etX4iFq/ElXKTXPafANUFcLSrmrICKvEBTqd9Q79ujqiKDAlHxMADktw+RAoeyaCbKkdDcJADzY3YKJC9Pg0mcpBq+OiW7FWwxKWVm/85Y72jAAd9ywUKnkKObb255bQGtGUvbMZDgOSxYw4JQU0Ilou6b/ljXxKzuX4N3D47ANBbjkOcsuJ7msr7A6ATVhiHPg7Y9Oe4oWIEvANueos1jk+uWm6zftluCNmlNgKvFQyDOsE54eDK7G+ualzEEhIvdBqQMthfgsTQSor/xh/bRq0DAXX1w2T9mCB6lQHrn9amWszqVzccPiJkWbLfu6dStef/Cf2zWCVwdOKElCfUNqRxvLYkYNtpjTQz3LlOChxZydgkjC4cgW1gJyfdH6HIXuWwQ8RXEwxoBv3HaVb8xgRhpDXtiE1Smuk2nBEJarTMBpm+Nry5cp8ZAw0K8fZ8CW3U4iV5Sm234lHqK8NyY3SqWLEsKglOdARG5AmHZoxUDQNjxIweJHgGLMMH7aJ3ceDCSD945MYM/wRN6XvH94AoMnzmeLILnWlOzqEX09BWQtuQ01i/K5XSP47guO+kb4wh9e0ZqTtKMHQXWs7mrxmkiI78t1V0QpW7+Gw3oyjOyvFgFPoWx55p2PcW/HYo945WxbAQZ4tdnFIjJ4/BweXtEamPTTNzSeU95XTpDKt5PRz0dW5KQNbrQwY8Qt8WByo1SyKCEsSnkOROQG6JbG9r2jXrZlKSPo+XxsQQQoI+jlEtt02UWRrT2S1U0D+euNyD5XDkemp1u2oorfVqnNm/zAyy4iANj09mHlGK8OnPCs8tVdLUqfynwZl/L3BckunXcpNtzfmbdAmP5SAtkgoe5OsiWp5w/eOpxD4nUphrU9y9DUWIcfuolOHGpTiu62ZuPuwgtiS2UFJi5MF+Sb1n37gLrTyIekiMrPjRJmUah0iWKphBVE5AbolgZD+HZoSSKMZjxqtUIZJj9z2/w5GB6/4FlpKbd9W9BCATgk/u9f3Of51RmAm1vmouPKud53tu8d9UhtOuNUSZStaJMaY0qT4q3sXJKzwHVIFqmfHFLOjuxY6sypkMxGz8rWZJS66ka4XH6uBXgBZ4ETc5ata13rbyIBE3n2uzulqFv47rZsvRlRofLB7pZITbGTIKqoLoh8weJKJvZigYgcZq20bn2Z6ocUG2Ee8Dgv0g6tLrZlMVzR1Igj4xcAqJ1rghYKsSDIwVHLYth/4jz2HTvnbfd1iV9QYTDZbSQWmHV3XIOHV7TmaMBfHTiRs4MSL7rI8tSzI9feuqzgrjSmjj1/89Wbc2SST71xCLaeWgqHsMWc5Wth0lKL5tCdS+cq119f0Nev6vDiCFGeh0pwYUSZg7yIWyzrmoqzc650qz4MZj2R+7kv9JelHA97MV8y0V5NwGJOIs4eqYysBf/ONbJV9OrACXVBYI5u/fX9p5TdhNyEoj7FPJeICfoi9v/8/hcBOK3lzkxOKS3aVnYuwa4hp2AYY8gJKuqwOcfY5FTBXWn0ccfcrkj6MyPcIDnZpSlnzp4lbOVqxIXVL5O9KZgtviss091HPolciqFU2/8oc/AjV3mXKnrAcu78d/DYuWzf15CLc60kHs16Ig8rESrXwx72uFGtir6hcdUvzlWCYoDnIjAdSzz8oren+E3KcqoFTk6lFbJtntPgWJecO+qQPPM27YrkoGF9imHt8lZ0Lp2LNw6MIe1aZhzMl8QtSZGysKlRiQcMHj8XuiVe59K5sOAE5gDgrYOn0T884V1XfWf35M6D+OWhM961uvP6KzBxYdo3sCrGmUmrbiW/Z1Quixun2qFeeybMtQhDvlERRK76Ar9+VQcGjp/Dtv5R7Dt2zovNhN05l1IiWEzMeiKvBZlTIVaFfN56+dcUA762vNW3+4xqFWXVKXI7NVFidu3yZZ6qQpHUZTiefusw3v7otFIkSj6m+G/f0DiOnb2olOhNZzgGj53Dj3ePQOY72+3xmdZcGnUpho1SUBNw6rULi3fL7hFs1RpiiP6aojFG2nZ022BMWShm0rZyLvLve9vnK35oxoCffziG1/efCrxXve3zUe+qcgTkGIW8I1IaV6cKq3Yo/12co1/JBtM4SVq2QeRq2qU+9cYhL1dCPIeiTEI+1ML7DxCRV4SPMCp0y6fQjDo5ULrxlUFFCSGXvO0fnsDTbx3GqfOfYe2trWie0wCLOVtaWZ3y+D3XK3PJZGxcOe9ST1WhZ5AK14vIuNQ73ijkkrKQsuCRNgeUet4ClsXQ1ToPu4cnlA4/HUsuz3E5PNjdIrWoA9K2M/jUjK2ob2Q4iwnPOZed7rkAjhZaTukX2Z/b945iy+6jXoBzakatzaLfn81/2mv0kQNQ/MRCLcPcc8q3+JqeEeXv0jnmaw8o/pakZZuPXE0uLFNbvzCoxvffhFlP5EBl+AjDwmT5FGJV6IuBqZ6JCLY9v3sEItnw/dF9qE855CHcKHKD5AMnJ2G59V5NjSUgVTPkULXUOnHoi8LXlreCAxg8dg6/dkv0ynANSew+MpHzt/dHz+HrP+zzCnUBaos6xtRFQrfoBVIWnB2M64+X/ewCzue5HZH6hsaV4CdHcL14v+dSDvaCc1gWAwP3GlOYkO8Z0XXyYMyYLeo3jt/npSjoFZeMq+n99wMReQmgP8xxfIkmy+exu66N9CAHBXj17+iBOiCb3s7AlWCoCLrZLrmsX9Xhjalb/yYfp0wc/cMTOH72ouJnF8FRBmD/ifNIu2Vuu1rn4fpFTTg9OYXXPjilaKLB1ObKO/aOetexeU4D1nS1YGxyCmPnPzNa+DqYuxMBHOu/zr0e8jHvvnER3v7odA6pNc9p8BYuMS+xaIg642JuQffR5CeOqoPPJ2v0m4e+k5OzfU2yyCjuFr9Km2FQC2QcB0TkRYapHoWsfQ3zEspjHTt70VhbI8qDHGYbrGeNyqhPMWNNEXlcBo7B4+eUJB1xDJP1L9rpIzUAACAASURBVCe/ANlyt3VuUFNYmuJaioqFts3x/tGzaJ7TgJ37syQukm7GXHIXGJucUhYoEfAUwVcLDkGb3CqA45uH+xtuczy03LGi5ezQb915Db515zU5pCYvclwb37Y5fvDWYbzx4ZhSxEpcV/35EG3vktJ8+3Uy8hsHMOvwfd01edwtYXz41e7+KCaIyIsM/WGWNc/T6VxfapgH3bIYOq+ci7W3tua1cISPVX7hw7hilK12ysIXW+ZiKm1j7a2tvmVl9d+IAGFQf08T0T/xwj4vyDeTcVQuIqglrp3tfi786z+TyBoAupbNw+quFjz9lpoZKpK7BInK/5UDthteHvQWkq/csBBvHTyNTMa59rbtuE0Yc5KLHl7R6jW68CNCJUDMc5cIy8rGDIBsEavtmi4agJLc1Ll0buxdXiGByjAkHcXlFzRerUgEiwki8iJDf5hl/TCTEhqmZmwl01GH/KDbGY5fj57DgVODvpphXYe8zScl3u/FD7MVN/1GJKZcUp/K0ZHrFpapyQSQq9MW/+5tn4+6VFbJIVvUOj75dNqYGQpAKWvg1YRBNmDrDJ4NID565zV49M5rsGPvKLbsHvGqRAqXCACvdrkf5OdAjhMIXDX/MrUGOXMXKY3cAHi7ibTN8b2XBvDmgTG86UowC7FmCwlUhk1WC+vyCxqvViSCxQQReZFh8j2Kmh8dS+diw08GMO36WLf1j/pulcWD7hU5QvBDreuQZzL5079Nc9e/k09rbepub3rRTdmRYrzOpXORcgOJ9SnmuVW625oVpYkFpwzAwPHzOcTYfsXnMHTm0xySf33/Kdx94yIsaGrE5Y11GDxxHh1LLlcCtk+9ccjTpYu0+cfuuhbb944qUkfAJdMX9+HNA2NY0NToe/903/L/+ZMBL9ZQZwGfzWRyvi8HY+VrKMsrM7a6GzFZs1/f9K6XhCUWcxmFBMvDknRYl1/QeLUiESwmiMh9kKRPTnYlyFvE1V0tSnnVdJ6EpGcf6c2p1uf3UDvWK1Pqbsctzm/y98v+fdlySmdsfN3tbm+6hn5Wt1gMhKJlw/2dym91clt/XwdeGzyJp38xBM4dS/ZbX27HvR2L8fZHp3OCtRnuNM4QjSXSGY5dH3+i7Aj8iMOvpIAYE1B3Pjp0UtuyewQNdRbeHz2H0bOfKd+9dlGTL7k9cvvVSkNqGXpLv6D6NvK8ClF9JB1g9Bsv7Pxmsx89ESJnjP0egO8DSAF4hnP+H5IYt1wolk/OtEUUBZyA/J1QxIOu+2P9mkt8cdk87HZT7pMozi/PX/bv17nFli5MpRU5XlNjnW96P+AEJDOupSisbj1gqs/ZtMP50f884rmdUwxeCdn1qzqwZfcIBo6fQ0azpOWKhNNpGxtfHsT6+zoCXU+ru1qw1U3/tywAcPzlSnJQJn9zZHnnYhncLA3aLkR3k/zDu0e8RSvH3c7U5SZsfZtiqT6SItd885vtfvTYRM4YSwF4CsC9AEYB7GaM/YRz/kHcscuFYvnkTJZe39B45E4osoX/3Rf2eR1nBB/UWQyrvrDEI3HAGTtoSxrmhRPzFy4R4d+fTtueu0PGD9/5GOen0oq7Qc8gXLtCzSANs40+cHJSWbhkF1LadqxQAIqb5+r5l+b0wZTnK3TmevU/WV7X3eYk6YhjDx4/h7HJKbx5YMzb+dSnshZxmHohXKhYuCOlvPvzC3PausmQ1UQWzypsvPPXnld58ZElnHFhOjeTzLZU5FrIO1tLFnwSFvlyAIc450MAwBh7HsADAKqWyEVQTagv5JToODfdz9KTiat5TkPeutpAsM47bXO89KvjymdXLfhcwdIvef7rV3UY65ebAo4Zm2PzrhHs2DvquWGOnb2YDdZlOJbOu1Q5Vr5ttN5o4tE72nNS2bf1jyqlh9MZGyva52PUPTZjwP23LMVP953Iscyfk+YrW80iYUfMR86sFLVlZHVQvnohImgrHF9CSvnmgTFc4fYsDYqVyBryNw+Mea4dfVenLz7ywhQFeh0W3e8uXxNxvqUMUkb1o9eaBZ8EkV8J4Kj071EAK/QvMcbWAVgHAK2trfqfKw9iz8o5DpycDKx3HQX6FlEPgoU9jq7z1i1MnViPjH/qNRMGcqsXhq0a57gpsqNf1pjCxZkMOIfRZyssduGGsaxsnRI/V1LQNvrVgRPKvwdPnMeG+zrwn18/iJPnnSqEmYyN01p1w6bGOm8RsjnHPw2exIb7OzFw/Bx+vOeopw8HHOmfLBO1OccTL+zDex+P47pFTUrDY5tzPPPOx9jyrds8An/qjUOBTZH1oK0tZZSaShXo10Zf6CYuTHslAsSuzmR4FKrT1knvy9ddkeN3v3LepTnnW8ogZVQ/f60pYZIgcpPbLeeV5pxvArAJAHp6ekwGXFlgeoD7hsYV1YJe77rQmx5U6U+oJcIeR0+pfsjtOPPMOx97uvQvXDkX77nuFe6qLwDk9I+UJXhBL1z/8AS29Y8qN/c3U47a4ndvWoSv3LAwp9BUxs2+9NLwJcIsxG+/snOJ1/INcGqoiMUP0jkscK1agWfe+Rhrb12mpM5PXJjG3371ZjBA7edpsWwzZZ4NFr/4q+NO3fAUA5Mc1LZ0bQXhiUqQruAcvzp6VllI13S1eN2SGHNdJJncUgUActwV+jOkE2bznIZI1rHu7tKLlz391mGvnvtM2sbHZ9RG1Wcmp7Cmq8XY9q2UdUyi+PlN1yzMTrhSkQSRjwJYJv27BcBxn+9WFPy0zEHa70ItizBbuSgWjKxi4ci2L7u3Y7GyBf43z/TlvOC6O0ZOhgkqONQ3NK50eJdx6vxneHhFq0c0q7tavKCsnJYfVMcjjPvqhsVNuPemRRhzC3jJbc7khJ6B4+ey6fBwLGcOGK+vXz/P326dp8QZxLXK2Bx337gIP3ezMC2LeW4LpSpkhgPM+f5rH5zCGx+ewtpbWz0/tSBtzgFmc9x70yK86SYemQhZzwqWsyllwjSRdlidtr4jOHByUpE3WhbD1Qsuw6Gx33ifLWhq9NxuenOLYgVRk4AsA05qx10uJEHkuwFcxxi7GsAxAF8D8HAC4xYdflpmkyXhl80YFmG2coVYMIKA5Ka78u9ML7i+HRINC1Z2Lgn0ocpkIKoWCjTWWcbFSqhWxPVrntOANw+MeZUUTVah38ukf0fUJtEX3axvG17jgQa3oJSpD6ZJCWNqmCzAGEP7gstwtnUe3jsygbTNseEnA9hwf6dqqQPKRUrb8EhydVeLUpY3417PB7uzfUX7htTu8vLOUK+cqN/3KNaxuK/C6pZ3BOJ5ELhpyeV49M5r8JYb4K1POdmlctC9kOYWpYT+HAHlaeWYJGITOec8zRj7MwD/DEd++CPO+WDsmZUAflpmwOzLjnNzw1rbUY4TdnEwveDCHdPhlkcN8s/LlrIgg/ePnlUstesWNSnEMzWT6xcGoGSb7j8x4L3wfuciH9v0Hb1gmCpfBNYuX4YrNS27n29YLDpPvXFIIVkZFnOCyT94e0j5fDrjBCrlSuV1KacejDyWIEnhepHjDTv3nwI40FjvqEv07vLzL2tQasC/89EZ7D7ySc6i50fafs+WsKa/55buBbJ69OY5DYorSyy+m9fdpuy2lFrzFU6G+nPkt1OrJiSiI+ec/xTAT5MYq5SQ/ZSylrkYKIa/MGowyWR5BpGkn/risbuuRf/wBN48mK3w17F0Ll74l6z/nAOYvDgDwLFCXx04gUvrU77ZpqZz0X23X7lhoTFbNMgaDSoq5bcL6G2fj/oUUyxyCwCzcjXfMk6d/0xpPv37Pcu8BKaDpyaxd+QsOM9WcuxYOlchTxFfF4ugGEfEMcY/nVaC2mLB9EvyMe1o/J6/iQvTXlVHBuChnmXKGMJlIkrt6nEdOehe6WSoP2t+O7VqwqzO7JQti0oLxoQdL2rTXTEHU5amaVHwI3hd1rbxlUFvay4weOK8IhcE3N6gklUpVCumhU4O/orCWCmL4e4bF/lqrcU42/eOBjZ3znduG+7vxI/eGQIYwz2fX4ihM59ip1aYS0Z9imHtra04cGowZxE5cHISz7/n1GhJMXjlfYXL7smdBxWrVyyCh6USAxxOYHf3kU+8OjHi86DSDgL5XFc6uXUsnesF/x5e0ZpTK930O1Pv0UqCaWfpt1OrNsxqIgcqOxijw5Rwka/pbpikFKHgMD3cQVa/bpXpWNm5JEcuuLCpEafOT3kBVlm1ot8Lvb4M4AQOX99/Ct+685rAayX6WG7ZfdTYtEEef3rGKWAmFpXndo3gey/u84pjDY9/6lQ8dH/HANxz0yIsbGrE2OQUFjY1euSlx1L6hyeUsTLckXDK9+Xxe67Hu4fHlWYWz7zzsWL9i0bYsmtL1F5PZ1R/uZ8SK8gNJy+kUWSwpVamFIqg+E0tYNYTeTERNokozPdMD2K+lzNKE1tx7EICsL3t81FnMaXBQspyGhp3LLlcsTb/1y9eiX9490gkZc72vaN4/r0Rz22R4chbKVKvEGha5MSORmjLN77ihHbWvzQA2UWu+8tTFsOjATsCfcHU3e1n3Jro8m6oyw2cCsikLjfClndUokeozR1/+a6PP8FXrr8CPz8w5pQ+CFBima67vjDrVRflbNowvvdKQq3pxnUQkRcJ+QpM+X3Pz/qJKinz+41ssZnm5NdgIO9Dz5jSyTLjKjQa6y08ekc7Bk+c93ysskQy37ji2Gcmp5TgapDbpLd9vpK6nrGdRs+b/rce5Xv9wxN4deCEoi1/deBEjh+83g1apjPc62katOAKt87qrhbnHkn+9voUw4KmxqzLaMZWLHZxbkJtIwelZUWRWIQ2vX0Yw+MXvMQr+RrlU2IFXT+TLl3eGV1SH16mVwmp8KVMTioHiMiLBEWbm/ZvIBHWUvCzoINeTtML+cQL+3wbPgR1SA96Ef305UKh0XRpPf7xT3KSfUOjf3gCC5oaUZ9yemXmqxnS3daM3/n8QqUz0Ov7T+VktsrkJDrUr+xcgl1D415Di3tuWuS5ccLsmmTZ4tb+UWy4rwMPuZ2KhAsGcKWvwtetWeyN9erCDyDHKBAJV2IX5FeXPUiJJeacT45pkq1Oz4SvZ6I/U2GuZdLQXUdBMtu4KMfCRUSeMOTUd1GvRc5s1Mk6iiwxiqRM/00YmZhpUQGCU7v1c0ilLNx5/RVeRx1T0o883jduu0qx1k3X0St+ZTGvG0++F+SuGxZip9S/k8Nxx5jIyUI2GQqAW0GQo67OUoKq+Y7Z5y4AAkELuJD76XUNbmmZ61VhFFCCvu6Ycis6UZdd9DEVQza4Gm+/jMWg3aD+XFmMeVmu4hIdP3tRWRz9ron8TJm6HpWSzIH8z3MclKuGCxF5gtDlcl5wjDlbalMN8Shb3kJ8kbrfM0gmZgr+FZrIJBOxbP3I4302Y3t6bOFHF9mhcqq7Fyi0c4tsCehFnYS/W5xrncW8hBWTSkckQx0/exHpjHOdMpn8Vqd8XF22mLKY4raRx5q4MA1bI/GUxRQSl6+hmKtsFIhza6h36rIDqh87X9ByuxsQNhkY+v3d+ECnt4BYFgNjwOb3/GvCCOiGinABlctXXWxfebl88UTkCUK5iYYmvX5NFkoRLNKtZr1cq5iHHvzzkyUCwV3P/awfb7FI27oxii27R/DwilblOsqQmyboxC0fZ01XS9badtP2W39rDja7AVNdpaNb/abm1qbzNVlfm9fd5vnIReq36dr1ts9XqjamGPB/ub530WtVdoEJV4tS7sBwH/0seVN9FbluDrMYjgVY2A+vyPZqPXb2ohd8zkdW+iIPwNj1qFQotq+8XL54IvIEoWtq5Zoi5dbWhrX8Jy5M5xSWMlnbgmhmMk5ATtQnkS3CY4YKgCITU9dOA8DCyy8B4GjLTXk3IknFVI1Ptiz1TD3hMtmuEYhJpTGd4bh24WVYfvVv+dZRN6mGptxmyX/z1ZuVaytfEz1YuflPe3OaY5vKE4v7IJc7kAOqYa1hvb6KiGswOMbG8++NKKUeTM8Q4BBxUBs/0+/k8copV4yyA67E8f1ARJ4gTNZHuaP1MuQXSrdoZfeAKagqviNK+spEIyR+KQYv+GYx+Pbt7G5rxuP3XI9dH3+iWKSPukFFU0XElMW8QKESSJ6x8fMPx7KWJXOIyaTICao1UmdlXSKHxn6DkU8uKJm+Omlv3+sk4ch1xbfuOZpDrEF+WdNOTA8s+mVKijpBQa6NIFKR73NQDEeG4jpMWVi7fFneRCTTGIW+E6XqNhQXpdhh6yAiTxh+LoZKgu7LB2Oe7/jZR3qNFrjcSEFUEpSRcRNmxOfCCr/3pkW4Zdm8nJfPzyIFkCPZA6DUMJFJSO5Iz9zjPrdrRNFQy8f0Izy5dyqQle4BWb+zIHs5m1KuKy4aNfuRc+TyxD4usCjjBZ2z7lrK5w6Qj5vJ2LjSJ17hhziBwFprBJE0iMhnIXJ9+ao19thd1/oSBzjX20ICcCzmFHO01nL6+JsHxjz5nq6eCCKZzetuw8aXB/Hr0XNeqVdBWIKEduwdxZbdWfJlLCsCkTXUJujW3equFmzdc1RZPJ7fPYKtboDUYkxJ2km7gVC/Tvcy/DJI/XqtyuWJTRZvEn5Y/fzDVPeMe9w4gUBdzitnshKIyH1RCUkMYVDIPIN8+UFEJF7gO667Qq1R7QbqBBnI6eMZ2+kgI1wBpsYFJnS3NWP9fR1KPfXedrXl3tJ5lypFqtoXXKb05Tx4ahJ/+Pe7jNJGk3W3ed1t+Ktt73tjZGwg47bvsTnHHinz0uaOL1+3bE36ZFMQGcj2FBWVGhvrszprU3liebw4fli/8w+z6PkdN0rP10IWAj1I7lf5cbaCiNwAkdgh9yQs9cNSaNp+mHlG9eXr39ebDaz7crtSFU+kj4uFYvDYOd/GBfnIXJ+nCASmLKdXpkwM37y9HRt+MuAl84imELq08cmdB42yu+62Zixvn682aZaKfMkpTxayvvwgP7i4T6YMUlmZI88FyC/Ri+OHjWIZh6lREqXna6ELkPjtkzsP4p2PzoRqSzibQERuwPa9ozk9CUv5sMjKBaEIEUQpFCPCAVDoVjWqL1/+ft/QuFJedfDEeUW2Jl460VJOuEfkRs1ht8fycZ9645BXYTFtO70yNz7QmRPU3LJ7BL8ePaeMs2X3CAaOn/O05CIRSLcM9dLG3/zS1U77PJujLmXevYjFIagMsCmDdPeRT7zf6HMxlfRNaoeo78hMiT3ieEG9RwWS8NmHgQiSx+3WVYsgIjdAdwGfmZwqaj8//SXtG1KLPq13iz4BamOGuhSLJANLCr3t89FYH7zNFechk+bNLXOx/+Qk0plo22NxfUR9c4G07fRTlav+6YoagcHj57wFBVBb2wGq/37D/Z1K/W29fZ78/6IzjpA9CqKWv+uXQSq3GpPT8fuGxgNT9OO6E/SFVk7sOXByElt2j+CDE+eRsXmgrl6glNrpMFZ9tbhFk8SsJfKgm726qwVb3ZezLsXw5oEx7Nx/qmQpvb3t85GymFcBz+bZ5r5yY4ZMhmPtCv9EozDnWsj3xcu08eVBvO+S4/RMroWtW36dV87F2ltb8erAiVDbYz0xxmIsp6bILw9lFwNdugc4xCpIXsmGlPTlfn0x5dLA+u7FpPeWidp0Dep9jrla05DrhJ0vsadQV4VYaMW4T791WHGZAU6Mw9RlSR+rEN95nLkn7W6sdsxKIs93s7vbsk0TomSxFQLTtvSxu671UqJFnQ5h5cjZgPUpljdoGPXBjhIf2H9y0vt/G7kWtsnyE2SZb3tsIkq41QCFrxmAct2a5zTAEnVSpKAqkG1CrTc/0ElS9l0H3W+T3ruh3spxFZlIzo+Y/VwUfhZvXNLSxz11/rOc7+TrsiSfp4moTc3Nk5i7H8qVIl9uzEoiD3OzxYMprMJSpPTK/ko5JVq2WPy013HOVUa++ICwoo65NUlkCMtcP8bRTy4olp9fEwvTvHNqiqzqwIv/MqrU7mZuF/uNrwwiYztkv+F+tZlEmMQY2Xedzz+t3zd50cgns/QjZr/P/SzesLVS/GAKYr8/mu3mdO3Cz+GbX7q6YCL0a24OFI9w47p5iu2WKdb4s5LITTc7n6slXzp0oQjyV5qsnHzbyiDCCfNgn5mcUv4txwv0zD45G1LA0uqhmAJ9eraoOC8ZfokxALBneEL57qKmRmx6+3C2CzznOdmhftfNjyS37B7BossvwWuDJ51gp6GC4equFpyZnMKCpkZ0LJ3r3UM5uUqco6wVF7/Vnym/uZjuq14rRa5DExZ+tXK27B7B4PFzGDr9G2x8ZdDYlCMM9DiF/O9iEW4YH3rQmMV0yzy3a8S3GmZczEoi1282YA4m6Tc2qAZ23Pno/sqoFkqQNjjsg90/PIE3D4x5/7aYE4gT0DP77r5xEV7/cCzbeZ1BabrgF+gL8gfL18Q076feOJRTh+XY2axLIGzzX1n9s6arxZPU9Q9PYMNPBtwFSlW+CKtSEPZMWvXHy/77qRnH5/z2R6eVhawuZQGce8WwxDMlE5Ms7/O7TuJ5EccVdWj0cwzyT5vGfXhFKyYuTGPfsXOxreWg5ubFJFx5Nx1FpKAkHRliPnHQPzyB9S8NeHGv6YTdPrOSyIFcWVsUn2VUFDtZAgjequazfuUx5HraNodikelzvKKpUem8/rXlapNeU6BPvGB+cj0ZJiu6t30+Lqm3cho9C8ydU49v/y+fN56jnEm54eVBb9u/bc9RLxagXwMZnMNromz8u/b/r+8/pXxXnKv4uyCLlZ1LfMvNmu4rABw7e1FRk+hGRj6yC3peklKhdLcFNzcP+1zqCPNeFmJdyxm4NtRAelzC7RsaV3uwsug7qCDMWiKXEdVnGQWlSJYAoAT6TOVXwwQwm+c05GyHdcthTVeLZ8UC2YqCqZRTa9qkJ5fPKcjdEmbBE2PKiSEyzl2YMboD9Hoxck/M6Uy2Rkpvu1pTXAYHfEkcyO3So39X7BbAuVfK4JeHzuDdw+O+dcv1Z1C0XRNZsnffuAgLmhq9cxTXLx/ZBT3bcZ9FGflcgUHPpd/zEOa9LMQIk5+tXx46k6j/3pPszth52wUWglhEzhj7OwD3AZgGcBjAH3POzyYxsVLC78FN4oEudrJE//CEt9UXgb71q9QOM2ETnCYuTMNiatMakYquL0gi0Lp+VYfnUzWVQdXPSdbIM6i66rAWVHdbM1Z2LsG7h8eVJgsAfAN/8n0AeM55ivonwooUZWJPT0555QZkWHCCrLZ7zR+5/WoMnjivlOa13KxQca63X5c9V5ksRP0a0avTRKrCDTR4PJslm7Y5fv7hGGzOsW3PUYAxL/iqZ73qZJfv2S7kWYyKoOcyX/eiMA3BCzHCutuKk3SU5OJoQlyL/DUA3+Gcpxlj/zeA7wD4q/jTKj2CgmFxLnrUBypKVNsk0TMF+vQEJ1Pj4v7hCW+7Lvt+RSq6viDtcOunyH0jgfyLlWz1cwArO5eguy1Xkid80aYgs0j8ydhcdGXLW/ZVvw9fuHKup3yxWG7pXKGbBqB0qxffX/fl9pwm0s/tGlGI/P5bluKfBk/muJYAKGSRspzajnaGQ69Ipmvp6ywGy2LgbhkCr/xshnvNr0XWq1hcxDXWEfXZTlpxEfRc5jOA8s09DnEWi3SLuTjGInLO+c+kf/YBeDDedGoPUYONUfx6JomeicTkBKd8/tQ6i+HemxbhzQNjORmjdRZz6phYDFv2HEVa8x2ECTTKVr9MoLJ/Eowpvuit/aOKBnn73lFJoeKMw+AEEk1lX4Hcsq0bXs62gqszKG3keyB+N3lxxlOw/MO7R3Bvx2IlMCmfGwNwWWOdYk37zef42YvY/N5ITns500Kddq8/4CiEUoC3E8tweH7YjEvmNudKYlOhKIaiI+i5TMKtGYc4S7EjSRJJ+si/CWBLguPVDMI+FH6BLb9FwE/LbCIxkeBkGkdRo9gctyybh2/deU2Ob1uYv7bNFbeEIHA/EvWbs66VFhUCZf81kFu75Md7jip/t7lDxhvu61CCrTrEfXjqjUNGxYdfEFaU9XUUM1lfttzMWfjX9UYTQpZoqmQo5iPcY/o1MS3UlpWtB2/bHF+TWggeODnpydusPM0iolrXxdB9Bz2XxXZF1BryEjljbCeAxYY/PcE5f8n9zhMA0gCeDRhnHYB1ANDa6v+yzWYEBbbCSvRkyRWgLgJ+L4OJXPXvi6Qo18Ws4AuGzu+AP1noGmq5QJPcqV1AJ7eMKRBpcCn5QT/fjqVz8cQL+xQ3kV4zRf9dymKOuyPDlaxFudFEOsPxn18/6O0egtQ5JtLqbZ/v7YJSKYbf71mGTq0PqK5Dl1vL+TWLiKPoSDoxLui5rDaruJzIS+Sc83uC/s4Y+yMAqwDczbnhLcyOswnAJgDo6ekJiP3PXugvdJQMVCA3YUfWK+cLHgZZP/3DE9iye8Tj77oUA+ccGdspE+BH4jpZALk1RnS3jpDUpVIW7rz+CixsalTIqrd9PlIWkJbUh3LlwCjKF5MUUYyn10zRf/f+0bNeXRI5a1E0mhAStpPnswlWqZQ/AfqSlrsLshjzdjtBTSDkcfy+V4heWr9mUSWDhOIirmrl9+AEN+/knF9IZkqzG/oLHcUK0okfyKo4dDdAvuPK2L53VCHOr9ywEI9qrpd8c+kbctL69ZRyAIpbJ1+BJgCwLAuwbVgM6GlrxrWLmjw5ZBTlS3dbM554YZ9C4n41U/TfffeFfcrnXPq7X3PpB7vz18WRr6lI+tF952EtVb/vFaqXFn8rZ1Gq2VjZMAzi+sj/C4BGAK8xJ9rexzl/NPasaghxHjzdUgZy63jI0NPawbkXCNNTx6PMRVcXLGxqzEsmJjfR91//yJhSLn/P5GPX9dHCv21zp3nEr4+dw5quloL8uKe1kgR+biId+bIW9ebSDdp3dPhVwUzKnaE/h4XqpYvhK49yDrOxsmEYHkSJ4wAAD39JREFUxFWtXJv/W7MXSTx4ckAs31gm4pdVETZ3UseDelmakE/14jdv3U3kl1Kez62jl5ltqLM8y1627guResolCep83ER+55cva3HDfY7GfuHll+DRO68JHFcnyO17R3HlvEuVuuSFkpbfs1OIXtq0QBezVr+Mci4ilQ7K7CwSwqahh0XYh1i3lMUisLV/VFFTRCkAFqQuyPc7PzdRx9K5CgH4KSr08xaVE4W2Wkgkhd82CvH1DY17ChkG4K4bFkby/QbtSoTWfTpto+7kJK5wsy/9dhvNcxqy8ksAP95zFHaI+EYY+D07hShDdF+5X2mBYqBYAddaABF5ERCUhl4o4jzEupoiY/PIi0pcBUFYAvCzwKfT2Q70Yi6rXXeKPJ7Fwqc/6yqUtw6exuuGBiKFuMeUgGLaxuZduVmv+rl+47ar8Mw7HzuLi6vMiSIdLCSlvZD7Kn4T1PCiGChk4ZktICIvAmT9r58CIiq62xydtWhBFnUsoaYotjUTRHphCMBkgQt9ecbmSh0V03g2z7bG87tGz+0a8a6jnpQjz0lvexbF6hTkaXIB+Z3r4InzivzSlGCl93N95Par0XRpfeDiWCwCLIeFHNegqFUQkRcB+gNeKInLpAjA2IIsLEphzYSNCQQRgOlvfUPjXhKMXwEoizGPBO2AHcdzu0Y8xckvPjqDv/3qzXjsrmtzknImL87g7/75gPLbKFanuN66CyjoXOWmFimfLFW5Vk3a5vjB20NejRa/wltiPlEUM2EQ95kiBUpyICIvApIgTVMt9Ljb2GJbM0F+fJNqIkpGX74CUF5rPJujod7fOnx14ETOvx9e0Zpz3Cd3Hsz5bSEuLdkFFOZcgzTigNDRq9UbRZanZTEwQ/VLHfq9iBOUL/SZIgVKsqhJIq+ElT4uaeqkKBoGV3Kgx8/SDmp6EQaydeuXSebXGk/Hys4lir57ZecS5Tjidx1LLle+t/yqZvzVyhsLuqdB52oKTgcdQ160RAq+hWwbvHyBXtO9KIcahBQoyaLmiLxWVnqdFFd3tfhadpUCP2s6yksbdP/8apbIx893XUQtFuEjF//WF/+mS+u9+uIMwJ03LKyYay4vWnILuTDzM92Lcvi6SYGSLGqOyGtlpfcjRbEVLpV2V4ccKDQVqDKRaZSX1u/+JXlfH16hdjLyS8ZprC+PXjoMCt3x+dXVieoKjLvrJQVKsqg5Iq+lld70spZzx6EHCgEEVhsUiPLS+t2/Yt5X0yLx2F3Xlk0vXUwEGQhhzympZ5AUKMmh5oi81lf6QizTpGIGfoHCJBFENMW6r16bPK4GCsUxntx5MKdGTKHHr8X4TSl2vZVw3SoZNUfkQG2v9EEBRb8kkbjWkxhbDwDKgcJ8v48yB7/7V4z7KjIwbe6oPuQ2efK8RVAxzm7AryJktRFUqXe9tRL3KiZqkshrGSbLNOhBj2s96WM/ekc73h0ax8LLL8ENi5tCjVFKCy5OwwQGtaa5/DeLxU/s0q+DaGdXSQQVtQxw3BowYcaolbhXMUFEXiGIQkC6ZRr0oMexnkS9GNmtMDmVxoFTk9h37Bx+8dHpsjYlMM23kIYJXvMGrfFxUoldYm7Hz15EncWcdm2MYWxyKhRBlcqtkO/66fOIM5co96qW4l7FAhF5AUj6xYq7dcxXS6MQ60l3K4jsQQ5Eto5KFbco2HITHZy1xsdJWp5f/2EfZtK2k7TDnFICbx08jTqLGbM+5d+Wyq2QL6EryXlEuVe1HvdKAkTkEVGMFyvu1lF+0E3dWwqxnuQ5AW7jBMbQuXRuQdZRKeIWYkGTC2zlQ9+QuXmDQBLz3uG6TwCnYJnQp2cyttJzE8itN19Kt0KQQZD0PKJa2bUc90oCROQRUYwXK4mto5hDUouMXvQJcIhHlJGtJOtI3iH5FdjyQ75rn8TuS89GtVzDX+656WcglNKtEGT5Jj0PsrKTBRF5RBTjxUrqoU5ykRFz2r53FNv6R5HJ+DdmLqc0TCfANV0tgQW2dPhde1FEK05nJQG9m9CG+ztzsjGD7t2arhZw97/Fvr5BiqGkiZes7ORARB4RxbIkknioi2E1dbc1e23UTOebtKspjupkxvXnR70GpoVJricPOHGBQhfG7rZsNyG/lHrTvTMtUuVEJRAv6cnNICIvAJXwQJtQjkUmyV1AoaoTvedn0MITBuKcZJeIzRHoc89HMPlcX6Z7V4rGDdVEjKQn9wcReY2h1ItMkruAQhYFP119HDTPafCCvAIWoGjM9VrxYQjGdH7ic5PLqtj+8WojxlIEfqtpYZNBRE6IhSR3AYUSl0yASZDTxIVpT1kCONJLuca5yeURhmD082ue0xA412IHBKst0YYWNn8QkRNiI6ldQBLElQQ5yZUPUxbDQz3LlGbVhfrl9fMLM9di7rCqLdGGFjZ/EJETKgpxiSspKWcQYcTxy+vnV04irUYJIC1sZjDOdZVr8dHT08P37NlT8uMSKhtJ+SdL4eesprkSwqPS7wdjrJ9z3pPzeRJEzhj7SwB/B+AKzvmZfN8nIifoqGb/JIFQKvgRuZXAwMsA3AtgJO5YhNJAdBiKq+5IEn6KjiCU4zziHrMSrz2h+pGEj/w/Afg2gJcSGItQZFSq5RvVPxn2PJLcKse9dpV67QnVj1hEzhi7H8Axzvn7TKscZ/juOgDrAKC1NdmuMoTwSKI+eTF8iFEDb2HOo5wV+4rxewLBD3mJnDG2E8Biw5+eAPBdAL8b5kCc800ANgGOjzzCHAkJQrZ8UykLx85eRP/wRChCKbZFGUWREMaCL3fFvqR/TyD4IS+Rc87vMX3OGLsZwNUAhDXeAmAvY2w55/xkorMkJAZh+e7YO4qte47i+fdGsGPvaChSriSLMowFX66KfX67lmqU+xGqAwW7Vjjn+wAsFP9mjB0B0BNGtUIoL7rbmp063DaPRMqVZlHms+DLUbEv366lUuv0AJUvvSP4gxKCZikKIeVSWZRJEkqxiNNvjpW0a/GDae4UiK1uJEbknPOrkhqLUHwUSspRiTEqKVcDoQTNsdJ2LTr85l4NCxDBH2SRz2IUe5sfhZQF4R87e7HiCSWI9CrdD+4390pfgAjBICInFA1hrTyZ8OtSVt6GxOVGPtKrZD+439wrfQEiBIOInFA0hLXyZMLXGxJXIqFUM+kFzb2SFyBCMIjICUVDWMLTCX91CXpTxkU1k141z51gBlU/JFQESPpGIOSHX9EsssgJFQGyEgmEwhG7+iGBQCAQygsicgKBQKhyEJETCARClYOInEAgEKocROQEAoFQ5SAiJxAIhCoHETmhIFDvSQKhckA6ckJkVEOFwiBQ8hGh1kBEToiMai55Wu2LEIFgArlWCJEhaqOkGCq2QqEfTItQNYBcWYQgkEVOiIxqrv5XjXW3aRdByAci8lmOQv3F1VobpRoXoWp2ZRFKAyLyWYzZaulV2yJUjbsIQmlBRD6LQZZedaAadxGE0oKIfBaDLD1/VJpEsdp2EYTSgoh8FoMsPTNmq8uJUL0gIp/lIEsvF+RyIlQbSEdOIGioZp08YXYitkXOGPtzAH8GIA3g/+Ocfzv2rAiEMoJcToRqQywiZ4zdBeABAF/gnE8xxhYmMy0CobxIwuVUaQFTQu0irkX+bwH8B875FABwzsfiT4lAqH5QwJRQSsT1kV8P4MuMsV2MsbcYY7f6fZExto4xtocxtuf06dMxD0sgVDaqtaYLoTqR1yJnjO0EsNjwpyfc3zcD6AVwK4AfM8baOedc/zLnfBOATQDQ09OT83cCoZZAGn1CKZGXyDnn9/j9jTH2bwHscIn7PcaYDWABADK5CbMaFDAllBJxfeQvAvgdAG8yxq4H0ADgTOxZEQg1ANLoE0qFuET+IwA/YowNAJgG8EcmtwqBQCAQiodYRM45nwbwBwnNhUAgEAgFgDI7CbFB3WsIhPKCaq0QYoH00gRC+UEWOSEWSC9NIJQfROSEWKACUwRC+UGuFUIskF6aQCg/iMgJsUF6aQKhvCDXCoFAIFQ5iMgJBAKhykFETiAQCFUOInICgUCochCREwgEQpWDiJxAIBCqHKwcxQoZY6cBDJf8wMXDAtRu+V46t+pDrZ4XQOfWxjm/Qv+wLERea2CM7eGc95R7HsUAnVv1oVbPC6Bz8wO5VggEAqHKQUROIBAIVQ4i8mSwqdwTKCLo3KoPtXpeAJ2bEeQjJxAIhCoHWeQEAoFQ5SAiJxAIhCoHEXnCYIz9JWOMM8YWlHsuSYEx9neMsQ8ZY79mjL3AGJtX7jnFAWPs9xhjBxhjhxhjf13u+SQFxtgyxtgbjLH9jLFBxthflHtOSYIxlmKM/Qtj7JVyzyVJMMbmMca2ue/YfsbYbVHHICJPEIyxZQDuBTBS7rkkjNcAdHLOvwDgIIDvlHk+BYMxlgLwFICVAG4C8HXG2E3lnVViSAP4d5zzGwH0Anishs4NAP4CwP5yT6II+D6Af+Kcfx7ALSjgHInIk8V/AvBtADUVQeac/4xznnb/2QegpZzziYnlAA5xzoc459MAngfwQJnnlAg45yc453vd/5+EQwhXlndWyYAx1gLgXwN4ptxzSRKMscsB3AHg7wGAcz7NOT8bdRwi8oTAGLsfwDHO+fvlnkuR8U0Ar5Z7EjFwJYCj0r9HUSNkJ4MxdhWA3wawq7wzSQxPwjGS7HJPJGG0AzgN4L+6bqNnGGOXRR2EWr1FAGNsJ4DFhj89AeC7AH63tDNKDkHnxjl/yf3OE3C278+Wcm4Jgxk+q6kdFGPscwC2A3icc36+3POJC8bYKgBjnPN+xthXyj2fhFEHoAvAn3POdzHGvg/grwF8L+oghJDgnN9j+pwxdjOAqwG8zxgDHNfDXsbYcs75yRJOsWD4nZsAY+yPAKwCcDev7uSDUQDLpH+3ADheprkkDsZYPRwSf5ZzvqPc80kIXwJwP2PsXwG4BMDljLH/wTn/gzLPKwmMAhjlnIud0zY4RB4JlBBUBDDGjgDo4ZzXRJU2xtjvAfiPAO7knJ8u93zigDFWBydgezeAYwB2A3iYcz5Y1oklAOZYEf8NwCec88fLPZ9iwLXI/5Jzvqrcc0kKjLFfAHiEc36AMbYBwGWc8/8jyhhkkRPC4L8AaATwmrvj6OOcP1reKRUGznmaMfZnAP4ZQArAj2qBxF18CcAfAtjHGPuV+9l3Oec/LeOcCPnx5wCeZYw1ABgC8MdRByCLnEAgEKocpFohEAiEKgcROYFAIFQ5iMgJBAKhykFETiAQCFUOInICgUCochCREwgEQpWDiJxAIBCqHP8/72suEwstUjkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# make a 2 dimensional distribution of random numbers and plot it\n", + "\n", + "x = random.normal(loc=0, scale=2, size=1000)\n", + "y = random.normal(loc=0, scale=2, size=1000)\n", + "\n", + "plt.plot(x, y, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVF0lEQVR4nO3df2ydV33H8c/HsZsMWmi8BKWpWxLWUrkxG6xXwEoGcoGVH4VGmgTEDSDiNQooXligDendBNHmbg5NGPMmdSkJUFGb8aMrbCUbFN8WWYwKtzSQ1HQw1kIIpW6bjpDi2Em/+8N2iFM7sX2fe58e+/2Srpr73Oee83V1/cnJuec8jyNCAIB01eRdAACgPAQ5ACSOIAeAxBHkAJA4ghwAEkeQA0DiCHJgBmx/xvbf5F0HIBHkSJDth23/xvavbR+yfaftCyrQz922B0f7edz27bbPm0E7YfuirOsDxhDkSNXbIuJsSedJ+qWkzgr1s2G0n5dKOlfSJyrUDzBjBDmSFhGDkr4k6dKxY7ZfaPtW2wO2H7H9l7ZrbNfbPmD7baPnnW37x7bfM4V+npT0ZUlNE71u+9rRtp60/VXbS0ePf2v0lL2jI/t3lvkjA89CkCNptp8n6Z2SvnPS4U5JL5T0Ekmvk/QeSe8bDeO1km6x/SKNjK4fiIhbp9DPIkl/Kul7E7x2haS/lfQOjfwL4RFJn5ekiHjt6Gl/EBFnR8S/zOTnBE6nNu8CgBm6w/YxSWdLekzSlZJke55Ggv0VEXFY0mHb2yW9W9KuiPi67S9K+qak35X0sjP08w+2b5J0RNLdkjZNcM41knZHxP2jNWyRdMj2soh4uLwfEzgzRuRI1aqIOFfSfEkbJN1je4mkRZLO0sioeMwjks4/6flOjUyRfDoinjhDP38eEedGxPkRcU1EDExwztKT+4uIX0t64pQ+gYohyJG0iDgeEbdLOi5ppaTHJQ1LevFJp10o6efSiRH7P0u6VdL7M1pNcvDk/mw/XyOj/Z9n0DZwRgQ5kuYRV0taKKk/Io5L+oKkdtvn2H6xRqZDPjf6lhtG/7tW0k2Sbh0N93J0SXqf7Zfbni/pRkn3njSt8kuNzNcDFUGQI1X/ZvvXkn4lqV3SeyNi/+hrbRqZ0/6JpF6NBO1u25dpJNTfMxr4HZJC0kfKKSQivinprzSyquUXkn5P0rtOOuVjkj5r+ynb7yinL2Ai5sYSAJA2RuQAkDiCHAASR5ADQOIIcgBIXC47OxctWhTLli3Lo2sASNZ99933eEQsPvV4LkG+bNky9fX15dE1ACTL9iMTHWdqBQASR5ADQOIIcgBIHEEOAIkjyAEgcQR5wrq7u9XU1KR58+apqalJ3d3deZcEIAfcIShR3d3dKhaL2rVrl1auXKne3l61trZKklavXp1zdQCqKZMRue2/sL3f9j7b3bYXZNEuJtfe3q5du3apublZdXV1am5u1q5du9Te3p53aQCqrOzL2No+XyPXfL40In5j+wuSvhYRn5nsPYVCIdgQVJ558+ZpcHBQdXV1J44NDw9rwYIFOn78eI6VAagU2/dFROHU41nNkddK+h3btZKep5FbX6GCGhsb1dvbO+5Yb2+vGhsbc6oIQF7KDvKI+LlGbpn1U43cHeX/IuLrp55ne53tPtt9AwMT3b8W01EsFtXa2qpSqaTh4WGVSiW1traqWCzmXRqAKiv7y07bCyVdLWm5pKckfdH2moj43MnnRcROjdy9XIVCgdsSlWnsC822tjb19/ersbFR7e3tfNEJzEFZrFp5g6T/jYgBSbJ9u6TL9dub3aJCVq9eTXADyGSO/KeSXm37ebYt6fWS+jNoFwAwBVnMkd8r6UuS7pf0g9E2d5bbLoB0sVmtujLZEBQRH5X00SzaApA2NqtVX9nryGeCdeTA7NXU1KTOzk41NzefOFYqldTW1qZ9+/blWFn6JltHTpADyBSb1Sqn0huCAEASm9XyQJADyBSb1aqPqx8CyBSb1aqPOXIASARz5ACqhnXk1cXUCoBMsY68+phaAZAp1pFXDlMrAKqiv79fBw4cGDe1cuDAAfX3cwmmSmFqBUCmli5dquuvv15dXV0nplZaWlq0dOnSvEubtRiRA8jcyIVQJ3+ObBHkADJ18OBBdXR0qK2tTQsWLFBbW5s6Ojp08CB3gKwUghxAphobG/XQQw+NO/bQQw+xRb+CCHIAmWpublZHR4fWrl2rw4cPa+3atero6Bi3igXZIsgBZKpUKmnz5s3avXu3zjnnHO3evVubN29WqVTKu7RZi3XkCevu7lZ7e/uJ61kUi0U2XCB3XMa2ciq6jtz2uba/ZPuHtvtt/1EW7WJyY7vnOjs7NTg4qM7OThWLRbZCI3dcxjYHEVH2Q9JnJf3Z6J/PknTu6c6/7LLLAuVZsWJF9PT0jDvW09MTK1asyKkiYERXV1csX748enp6YmhoKHp6emL58uXR1dWVd2nJk9QXE2Rq2VMrtl8gaa+kl8QUG2NqpXz88xXPZW1tbbrlllt09OhRzZ8/X9dee606OzvzLit5lZxaeYmkAUmftv0925+y/fwJClhnu89238DAQAbdzm2NjY3aunXruG3QW7du5Z+vyF13d7fuvPNO7dmzR0NDQ9qzZ4/uvPNOpv0qaaJh+nQekgqSjkl61ejzT0r669O9h6mV8m3YsCFqa2tj+/btceTIkdi+fXvU1tbGhg0b8i4NcxzTfpWjCk6tLJH0nYhYNvr8jyV9JCLeOtl7mFopX1NTk1atWqU77rjjxKqVsedcYQ55Ytqvcio2tRIRj0r6me1LRg+9XtKD5baL0+vv79cll1wy7tgll1zCFeaQO1atVF9WG4LaJN1m+/uSXi7pxozaxSSWLl2qzZs3j1t+uHnzZq4wh9xx8+Xqy+QythHxgEbmylFFp06LlTtNBmRh9erV+va3v603v/nN41atsFmtctiin6iDBw9q27Zt464wt23bNq4wh9yxaqX6CPJENTY2qqGhQfv27dPx48e1b98+NTQ0MA+J3LW3t6ulpWXcIKOlpUXt7e15lzZrcYegRI3NQ556g1t+WZC3Bx98UE8//fSzPpsPP/xw3qXNWlw0KxEzvcMK8+aotgULFujGG2/Upk2bThzbsWOHbrjhBg0ODuZYWfq4+XLiJtoEEL/dlHXa14BqGhoaUmdn57hVK52dnRoaGsq7tFmLqRUAmbr00ku1atUqtbW1ndisds011+iOO+7Iu7RZixE5gEwVi0V1dXWN2+PQ1dXFOvIKYkQOIFNj68VPHpG3t7ezjryC+LJzFrDNfDhyNZMv4/nMTt9kX3YyIgdQtslCmUFGdTBHDgCJI8gBIHEEOQAkjiAHgMQR5ACQOIIcABJHkANA4jILctvzbH/P9r9n1SYA4MyyHJFvlMSdfwGgyjIJctsNkt4q6VNZtAcAmLqsRuR/L+l6Sc9MdoLtdbb7bPcNDAxk1C0AoOwgt32VpMci4r7TnRcROyOiEBGFxYsXl9stAGBUFiPy10h6u+2HJX1e0hW2P5dBuwCAKSg7yCNiS0Q0RMQySe+S1BMRa8quDAAwJawjB4DEZXo98oi4W9LdWbYJADg9RuQAkDiCHAASR5ADQOIIcgBIHEEOAIkjyAEgcQQ5ACSOIAeAxBHkAJA4ghwAEkeQA0DiCHIASBxBDgCJI8gBIHEEOQAkjiAHgMRlcfPlC2yXbPfb3m97YxaFAQCmJos7BB2T9KGIuN/2OZLus/2NiHgwg7YBAGeQxc2XfxER94/++bCkfknnl9suAGBqMp0jt71M0isk3ZtluwCAyWUW5LbPlvRlSR+MiF9N8Po62322+wYGBrLqFgDmvEyC3HadRkL8toi4faJzImJnRBQiorB48eIsugUAKJtVK5a0S1J/ROwovyQAwHRkMSJ/jaR3S7rC9gOjj7dk0C4AYArKXn4YEb2SnEEtAIAZYGcnACSOIAeAxBHkzzH19fWyPa2HpGmdX19fn/NPCSBLWWzRR4YOHTqkiKhoH2PhD0xHfX29Dh06NO33TffztnDhQj355JPT7mcuI8gBTEk1BhkSA42ZYGoFABJHkANA4ghyAEgcQQ4AiSPIASBxBDkAJI4gB4DEEeQAkDiCHAASR5ADQOIIcgBIHEEOAInL5KJZtt8k6ZOS5kn6VET8XRbtzkXx0RdIH3th5fsAMGuUHeS250n6J0lvlHRA0ndtfzUiHiy37bnIW39VlcvYxscq2gWAKspiauWVkn4cET+JiCFJn5d0dQbtAgCmIIuplfMl/eyk5wckverUk2yvk7ROki688MIMugVQTdWY9jvRD6YliyCf6Crwz5obiIidknZKUqFQqPzV6QFkqhrTfhJTfzORxdTKAUkXnPS8QdLBDNoFAExBFkH+XUkX215u+yxJ75L01QzaBQBMQdlTKxFxzPYGSf+pkeWHuyNif9mVAQCmJJN15BHxNUlfy6ItAMD0sLMTABJHkANA4ghyAEgcQQ4AiSPIASBxBDkAJI4gB4DEEeQAkDiCHAASR5ADQOIy2aKPbNkTXRk4OwsXLqxo+5i9Kv3ZlPh8zgRB/hwzk+s9267KdaIxt/HZfO5iagUAEkeQA0DiCHIASBxBDgCJI8gBIHFlBbntj9v+oe3v2/5X2+dmVRgAYGrKHZF/Q1JTRPy+pP+WtKX8kgAA01FWkEfE1yPi2OjT70hqKL8kAMB0ZDlHvlbSnsletL3Odp/tvoGBgQy7BYC57Yw7O23fJWnJBC8VI+Iro+cUJR2TdNtk7UTETkk7JalQKLDVCwAycsYgj4g3nO512++VdJWk1wd7cQGg6sq61ortN0naLOl1EfF0NiUBAKaj3Dnyf5R0jqRv2H7A9s0Z1AQAmIayRuQRcVFWhQAAZoadnQCQOIIcABJHkANA4ghyAEgcQQ4AiSPIASBxBDkAJI4gB4DEEeQAkDiCHAASR5ADQOIIcgBIHEEOAIkjyAEgcQQ5ACSOIAeAxBHkAJC4TILc9odth+1FWbQHAJi6soPc9gWS3ijpp+WXAwCYrixG5J+QdL2kyKAtAMA0lRXktt8u6ecRsXcK566z3We7b2BgoJxuAQAnqT3TCbbvkrRkgpeKkm6Q9CdT6SgidkraKUmFQoHROwBk5IxBHhFvmOi47ZdJWi5pr21JapB0v+1XRsSjmVYJAJjUGYN8MhHxA0kvGntu+2FJhYh4PIO6AABTxDpyAEjcjEfkp4qIZVm1BQCYOkbkAJA4ghwAEkeQA0DiCHIASBxBDgCJI8gBZK67u1tNTU2SpKamJnV3d+dc0exGkCeMXxY8V9ge92hpadH+/fslSfv371dLS8uzzkF2CPJEdXd3a+PGjTpy5Igk6ciRI9q4cSNhjlxExIlHfX29ampqtH37dh05ckTbt29XTU2N6uvrx52H7DiP/6GFQiH6+vqq3m/KZjqC4RcG1WZb27Zt03XXXXfi2Mc//nFdf/31fB7LZPu+iCicepwReSJOHsmM/TIsWbJEPT09GhoaUk9Pj5YsWfKsc4E8jE35TfYc2SLIE7Zp0yY1Nzerrq5Ozc3N2rRpU94lAaqtrdWaNWtUKpU0PDysUqmkNWvWqLY2syuC4BQEecJ27Ngx7pdlx44deZcEaP369XrqqafU0tKiBQsWqKWlRU899ZTWr1+fd2mzFn9FJqqhoUFPPPGErrzySg0PD6uurk61tbVqaGjIuzTMcZ2dnZKkW265Rc8884wOHTqkD3zgAyeOI3uMyBO1atUqHT16VPX19ZKk+vp6HT16VKtWrcq5MkC6/PLLddFFF6mmpkYXXXSRLr/88rxLmtUI8kSVSiVt2bJFixYtUk1NjRYtWqQtW7aoVCrlXRrmuO7ubhWLRXV2dmpwcFCdnZ0qFossja0glh8mat68eRocHFRdXd2JY8PDw1qwYIGOHz+eY2WY65qamtTZ2anm5uYTx0qlktra2rRv374cK0sfyw9nmcbGRm3dulVNTU2aN2+empqatHXrVjU2NuZdGua4/v5+rVy5ctyxlStXqr+/P6eKZr+yg9x2m+2HbO+3vS2LonBmzc3N6ujo0Nq1a3X48GGtXbtWHR0d40ZBQB4aGxvV29s77lhvby+DjEo6daPJdB6SmiXdJWn+6PMXTeV9l112WaA8K1asiEKhELZDUtiOQqEQK1asyLs0zHFdXV2xfPny6OnpiaGhoejp6Ynly5dHV1dX3qUlT1JfTJCp5S4/fL+kv4uIo6N/KTxWZnuYov3796u2tlY33XST1q9fr5tvvlmbN2/WsWPH8i4Nc9zq1aslSW1tberv71djY6Pa29tPHEf2yvqy0/YDkr4i6U2SBiV9OCK+O8m56yStk6QLL7zwskceeWTG/UKqqanRFVdcoUcfffTEL8vYlv1nnnkm7/IAVMCMv+y0fZftfRM8rtbIhqKFkl4t6TpJX/AkV3eKiJ0RUYiIwuLFi8v8cRARKpVK4+bIS6US11cB5qByR+T/oZGplbtHn/+PpFdHxMDp3sfyw/IxIgfmnkotP7xD0hWjHbxU0lmSHi+zTUxBROiee+4ZNyK/5557GJEDc1C5X3bulrTb9j5JQ5LeGyRJVaxYsUIXX3yxbrjhBn3oQx/S/PnzddVVV+lHP/pR3qUBqLKyRuQRMRQRayKiKSL+MCJ6sioMp1csFrV3717t2bNHQ0ND2rNnj/bu3atisZh3aQCqjKsfJoolXgDGcK0VAEgE11oBgFmKIAeAxBHkAJA4ghwAEkeQJ6y7u3vc9ci5AwswN7H8MFFjt9PatWuXVq5cqd7eXrW2tkoSSxCBOYblh4nidlrA3DPZ8kOCPFHcsxOYe1hHPstwOy0AYwjyRBWLRbW2tqpUKml4eFilUkmtra1cawWYg/iyM1FcawXAGObIASARzJEDwCxFkANA4ghyAEgcQQ4AiSPIASBxuaxasT0g6ZGqdzx7LZL0eN5FABPgs5mtF0fE4lMP5hLkyJbtvomWJAF547NZHUytAEDiCHIASBxBPjvszLsAYBJ8NquAOXIASBwjcgBIHEEOAIkjyBNme7ftx2xzbzc8p9i+wHbJdr/t/bY35l3TbMYcecJsv1bSryXdGhFNedcDjLF9nqTzIuJ+2+dIuk/Sqoh4MOfSZiVG5AmLiG9JejLvOoBTRcQvIuL+0T8fltQv6fx8q5q9CHIAFWV7maRXSLo330pmL4IcQMXYPlvSlyV9MCJ+lXc9sxVBDqAibNdpJMRvi4jb865nNiPIAWTOtiXtktQfETvyrme2I8gTZrtb0n9JusT2AdutedcEjHqNpHdLusL2A6OPt+Rd1GzF8kMASBwjcgBIHEEOAIkjyAEgcQQ5ACSOIAeAxBHkAJA4ghwAEvf/Z2nXlrtnGf4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "x = random.normal(loc=0, scale=2, size=1000)\n", + "y = random.normal(loc=0, scale=2, size=1000)\n", + "\n", + "data = [x, y]\n", + "\n", + "fig1, ax1 = plt.subplots()\n", + "ax1.set_title('Box Plot')\n", + "ax1.boxplot(data)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Biomodal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-0.83396869 2.46855613 0.18863638 ... 8.72127243 10.24225462\n", + " 7.26607252]\n" + ] + } + ], + "source": [ + "# generate random numbers following a bi-modal distribution\n", + "a = random.normal(loc=0, scale=2, size=10000) \n", + "b = random.normal(loc=8, scale=2, size=10000)\n", + "\n", + "x = np.concatenate([a, b])\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAN2ElEQVR4nO3dbYidZ17H8e/PWLviA7ZkGrJJMEWyYOqLrgxRKUi1q41bMVUoZEHJi0J8kYUVBDfxza4vglHwCXSFuJZG1C0BXRrWxzRayoJsd6J1t2kNDba2Y0Iyu4to31Ra/77I3e3J5JzOmZnzNNf5fmA497nOfc5cuTP5zf/87+vcSVUhSWrLt0x7ApKk0TPcJalBhrskNchwl6QGGe6S1KBvnfYEALZv31579+6d9jQkaUu5ePHi16pqod9jMxHue/fuZWlpadrTkKQtJcl/DHrMtowkNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVoJj6hqq1j7/G/+ub2a6cemeJMJL0fK3dJapCVuzbMKl6aXVbuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUEuhZQa4dJU9bJyl6QGWblrJKwapdli5S5JDTLcJalBtmWkOWY7rV2Gu9bUGwDaGgxt2ZaRpAZZuUtzxHdh88PKXZIaZLhLUoNsy6gv377PrkmfLPXk7NZk5S5JDbJylwRYobfGcJe2sHG1z2zLbX22ZSSpQVbuUuOswueT4a6xso8rTYfhrm8aVYVnpShNnz13SWrQ0OGeZFuSf0nyhe7+3UnOJ3mlu72rZ98TSa4kuZzk4XFMXJI02Hoq908AL/fcPw5cqKp9wIXuPkn2A4eB+4CDwGeSbBvNdCVJwxgq3JPsBh4BPtszfAg4022fAR7tGX+qqt6qqleBK8CB0UxXkjSMYSv33wV+Bfi/nrEdVXUNoLu9pxvfBbzRs99yN3aLJEeTLCVZWllZWffEJUmDrRnuSX4auFFVF4d8zfQZq9sGqk5X1WJVLS4sLAz50pKkYQyzFPIB4GeSfBT4APDdSf4UuJ5kZ1VdS7ITuNHtvwzs6Xn+buDqKCet0XHZotSmNSv3qjpRVburai83T5T+Q1X9PHAOONLtdgR4uts+BxxOcmeSe4F9wPMjn7kkaaDNfIjpFHA2yePA68BjAFV1KclZ4CXgbeBYVb2z6ZlKkoa2rnCvqmeBZ7vtrwMPDdjvJHByk3OTJG2Qlx/QVHjNGWm8vPyAJDXIcJekBhnuktQge+5zyLXtUvus3CWpQYa7JDXItoykobmEdeuwcpekBhnuktQgw12SGmTPXRPjEkxpcqzcJalBVu7SFuC7Hq2X4S7NKANdm2FbRpIaZLhLUoMMd0lqkOEuSQ3yhKqmzuuVSKNn5S5JDTLcJalBtmUkbYjttNlm5S5JDbJy10yxGpRGw8pdkhpk5S7NEK8no1GxcpekBlm5zwkrQmm+WLlLUoMMd0lqkOEuSQ2y5y5p0/x8wuyxcpekBhnuktSgNcM9yQeSPJ/kX5NcSvJr3fjdSc4neaW7vavnOSeSXElyOcnD4/wDSJJuN0zP/S3gx6vqzSR3AF9M8jfAzwEXqupUkuPAceCTSfYDh4H7gA8CzyT5UFW9M6Y/gwZwbbs0v9as3OumN7u7d3RfBRwCznTjZ4BHu+1DwFNV9VZVvQpcAQ6MdNaSpPc1VM89ybYkLwA3gPNV9SVgR1VdA+hu7+l23wW80fP05W5s9WseTbKUZGllZWUzfwZJ0ipDhXtVvVNV9wO7gQNJfuB9dk+/l+jzmqerarGqFhcWFoabrSRpKOtaLVNV/wU8CxwErifZCdDd3uh2Wwb29DxtN3B10zOVJA1tmNUyC0m+p9v+duAjwL8B54Aj3W5HgKe77XPA4SR3JrkX2Ac8P+qJS5IGG2a1zE7gTJJt3PxlcLaqvpDkn4CzSR4HXgceA6iqS0nOAi8BbwPHXCkjSZO1ZrhX1VeAD/cZ/zrw0IDnnARObnp2kqQN8ROqktQgLxymmTUvF6Pyw2YaByt3SWqQlXtjrAIlgZW7JDXJcJekBhnuktQgw12SGuQJVWkKPPGtcTPctzhDQlI/tmUkqUGGuyQ1yHCXpAYZ7pLUIE+oShqpQSf5W7742yyycpekBhnuktQg2zLacublOu/SZhju2hL8sJa0Pob7FmTQSVqLPXdJapDhLkkNMtwlqUH23KUJ8VyJJsnKXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQa6WkcbIFTKaFit3SWqQ4S5JDTLcJalBhrskNWjNcE+yJ8k/Jnk5yaUkn+jG705yPskr3e1dPc85keRKkstJHh7nH0CSdLthKve3gV+uqu8Hfhg4lmQ/cBy4UFX7gAvdfbrHDgP3AQeBzyTZNo7JS5L6WzPcq+paVf1zt/0/wMvALuAQcKbb7QzwaLd9CHiqqt6qqleBK8CBUU9ckjTYunruSfYCHwa+BOyoqmtw8xcAcE+32y7gjZ6nLXdjkqQJGTrck3wn8BfAL1XVf7/frn3Gqs/rHU2ylGRpZWVl2GlIkoYwVLgnuYObwf5nVfWX3fD1JDu7x3cCN7rxZWBPz9N3A1dXv2ZVna6qxapaXFhY2Oj8JUl9DLNaJsAfAy9X1W/3PHQOONJtHwGe7hk/nOTOJPcC+4DnRzdlSdJahrm2zAPALwBfTfJCN/arwCngbJLHgdeBxwCq6lKSs8BL3Fxpc6yq3hn5zOeM1yjpr/e4vHbqkSnO5D3+XWkWrBnuVfVF+vfRAR4a8JyTwMlNzEuStAl+QlWSGuQlfyVNxKB21ay001pj5S5JDTLcJalBhrskNcieu5oxi8sipWmxcpekBlm5SyPgB5c0a6zcJalBVu4zzGpQ0kYZ7pKmyhPh42FbRpIaZLhLUoNsy6hJq89X+HZf88bKXZIaZLhLUoNsy8wYlz9KGgXDXdogfxFrlhnu0hpch62tyHDXXBhVQFuta6vwhKokNchwl6QGGe6S1CDDXZIa5AlVzR1Xv8wu/25Gx8pdkhpkuEtSgwx3SWqQ4S5JDfKEqtTx06dqiZW7JDXIcJekBhnuktQge+4zwF6vdDs/0LQ5Vu6S1KA1wz3JE0luJHmxZ+zuJOeTvNLd3tXz2IkkV5JcTvLwuCYuSRpsmLbMk8DvA3/SM3YcuFBVp5Ic7+5/Msl+4DBwH/BB4JkkH6qqd0Y7bWk0bImpVWtW7lX1HPCNVcOHgDPd9hng0Z7xp6rqrap6FbgCHBjRXCVJQ9poz31HVV0D6G7v6cZ3AW/07Lfcjd0mydEkS0mWVlZWNjgNSVI/oz6hmj5j1W/HqjpdVYtVtbiwsDDiaUjSfNvoUsjrSXZW1bUkO4Eb3fgysKdnv93A1c1MUJJcFrl+G63czwFHuu0jwNM944eT3JnkXmAf8PzmpihJWq81K/cknwMeBLYnWQY+BZwCziZ5HHgdeAygqi4lOQu8BLwNHHOlTH+u0pA0TmuGe1V9bMBDDw3Y/yRwcjOTkiRtjp9QlaQGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQf5PTBPkB5ckTYrhLmlL8Tozw7EtI0kNMtwlqUG2ZcbMPrukabByl6QGWblL2rI8uTqY4T4GtmIkTZttGUlqkOEuSQ0y3CWpQYa7JDXIE6oj4klUabpcOXMrw11Scwx62zKS1CTDXZIaZLhLUoPsuUtq2rz2363cJalBhrskNci2zCa4tl3SrDLch2CIS22Yp/67bRlJatDcV+7z9Jtc0vywcpekBs195T6IfXapbe/3b7yFd/GGew8DXVIrbMtIUoPGVrknOQj8HrAN+GxVnRrX95KkURr0Ln4rtWvGEu5JtgF/APwEsAx8Ocm5qnppHN+v16DVL66KkbRZWyn0U1Wjf9HkR4BPV9XD3f0TAFX16/32X1xcrKWlpQ1/P3vlkmbFoKAfxy+GJBerarHfY+Nqy+wC3ui5vwz80KpJHQWOdnffTHJ5THMZpe3A16Y9iRni8biVx+M9c3ss8ht9hwcejwH7D+t7Bz0wrnBPn7Fb3iJU1Wng9Ji+/1gkWRr0W3IeeTxu5fF4j8fiVtM4HuNaLbMM7Om5vxu4OqbvJUlaZVzh/mVgX5J7k3wbcBg4N6bvJUlaZSxtmap6O8nHgb/j5lLIJ6rq0ji+14RtqTbSBHg8buXxeI/H4lYTPx5jWS0jSZouP6EqSQ0y3CWpQYb7OiX5dJL/TPJC9/XRac9p0pIcTHI5yZUkx6c9n2lL8lqSr3Y/Dxv/NN4WleSJJDeSvNgzdneS80le6W7vmuYcJ2nA8Zh4bhjuG/M7VXV/9/XX057MJPVcWuKngP3Ax5Lsn+6sZsKPdT8P87i2+0ng4Kqx48CFqtoHXOjuz4snuf14wIRzw3DXeh0ArlTVv1fV/wJPAYemPCdNUVU9B3xj1fAh4Ey3fQZ4dKKTmqIBx2PiDPeN+XiSr3Rvv+bm7Wan36Uldk1pLrOigL9PcrG7rIZgR1VdA+hu75nyfGbBRHPDcO8jyTNJXuzzdQj4Q+D7gPuBa8BvTXWyk7fmpSXm0ANV9YPcbFUdS/Kj056QZs7Ec8P/iamPqvrIMPsl+SPgC2Oezqzx0hKrVNXV7vZGks9zs3X13HRnNXXXk+ysqmtJdgI3pj2haaqq6+9uTyo3rNzXqftBfdfPAi8O2rdRXlqiR5LvSPJd724DP8n8/Uz0cw440m0fAZ6e4lymbhq5YeW+fr+Z5H5utiJeA35xutOZrIYvLbFRO4DPJ4Gb/57+vKr+drpTmqwknwMeBLYnWQY+BZwCziZ5HHgdeGx6M5ysAcfjwUnnhpcfkKQG2ZaRpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB/w/djKbRPHxBWgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist(x, bins=100)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Paired/related samples " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAY8ElEQVR4nO3dfWxd9X3H8ff32jElLW1MCJBgnJCS0pVIXRMLTJlaWEoLLWoQKVV4mLIKSP9gfZba0GrphlSJP0pV/qCT0vQhW2mAhmyJkNqFBVA1aQ61024NhJQs4GBwYzdzAC0sfrjf/XHPNdfX9/ncp3PO5yUh+x7f63uOEj73l+/5nu8xd0dEROIl1eodEBGR+lO4i4jEkMJdRCSGFO4iIjGkcBcRiaHOVu8AwHnnnecrVqxo9W6IiETK0NDQn9x9SaGftUW4r1ixgsHBwVbvhohIpJjZcLGfqSwjIhJDCncRkRhSuIuIxJDCXUQkhhTuIiIxpHAXEYkhhbuISA2Ghid46OmjDA1PtHpXCmqLPncRkSgZGp7g9u0DTE6n6epM8fBd/axd3l30uQPHTtK/cnHR5zRC2ZW7mf3YzMbM7FDOtnPN7EkzezH42p3zs3vN7KiZHTGzTzRqx0VEWmXg2Ekmp9OkHaam0wwcO1nwedkPgQf2HeH27QNNXeVXUpb5KXB93rYtwH53XwXsDx5jZh8ANgKXB6/5gZl11G1vRUTaQP/KxXR1pugwWNCZon/l4oLPq/RDoBHKlmXc/ddmtiJv83rgmuD7HcAzwDeC7Y+4+xngJTM7ClwB/Ed9dldEpPXWLu/m4bv6y5Zbsh8CU9Ppkh8CjVBrzf0Cdx8FcPdRMzs/2H4RMJDzvJFgm4hIrKxd3l22hl7ph0Aj1PuEqhXYVvAmrWa2GdgM0NvbW+fdEBFpD5V8CDRCra2QJ8xsKUDwdSzYPgJcnPO8HuC1Qr/A3be5e5+79y1ZUnBipYiI1KjWcN8LbAq+3wTsydm+0czOMrNLgFXAs+F2UUSk/dSjz72RvfJlyzJmtpPMydPzzGwE+DZwP/CYmd0JHAduAXD358zsMeB5YBq4x91n6r7XIiItVE2feyN/RymVdMvcWuRH64o8/zvAd8LslIhIO8tvcdx9cKTqk6aF2iSbGu4iIvK2oeEJXj31Fp0dKWZm0nR0pPjF4CtMp72qFXij2yQV7iKSaNWMB8gtpXSmjI1X9OLAI88er2gFnv9ejWyTVLiLSGJVW/fOLaXMpJ1li86mf+Vidh8cKbsCL/ZejWqTVLiLSGJVW/fuX7mYzpQxNeN0pKyqFXija+z5FO4iklg11b3NAA++ZlSyAm/2KAKFu4gkVrV174FjJ5meSePAzEx1q+9mjyJQuItIolVT9w67+m7mKAKFu4hIhVo5CKxaCncRkSq0ahBYtXQPVRGRGFK4i4jEkMJdRGKnkdMWo0I1dxGJlUZPW4wKrdxFJJKKrc5beVPqdqKVu4hETqnVeStvSt1OFO4iEjml5rREqRe9kRTuIhI55VbnhXrRqxntGwcKdxGJnGpX50k8yapwF5FIyF95V3OlaLPH7bYDhbuItL2wK+8knmRVuItI2xs4dpIzU5lRu5NT1a+8k3iSVeEuIm2ve2EXHnyfDh7nK3fCNCoDv+pF4S4ibW/i9CQpg7RDyjKPcyXxhGk5ukJVRNpetmbeYdBVoGauq1Ln08pdRNpOoc6YUjXzJJ4wLcfcvfyzGqyvr88HBwdbvRsi0gZqLbEk7SIlADMbcve+Qj/Tyl1E2kpuZ8yZKjpjknbCtBzV3EWkrbz51tRsZ4wHj6V6CncRaSvPjb5R8rFURuEuIm3lhtVLSz6WyqjmLiJt5bYrewH45aFRbli9dPaxVCdUuJvZV4C7yJTGfg98DlgIPAqsAF4GPuvuyb2RoUiC1drBctuVvQr1kGouy5jZRcAXgT53Xw10ABuBLcB+d18F7A8ei0jCZFsaH9h3hNu3DyT6ZtWtELbm3gmcbWadZFbsrwHrgR3Bz3cAN4V8DxGJIF012lo1h7u7vwp8FzgOjAKvu/s+4AJ3Hw2eMwqcX48dFZFoyR0ZoKtGm6/mmruZdZNZpV8CnAJ+YWZ3VPH6zcBmgN5e1dZE4qbUyICfHzjOo785zgXvfgef/+h7dfFRA4Q5ofox4CV3Hwcws93Ah4ETZrbU3UfNbCkwVujF7r4N2AaZ8QMh9kNE2lShq0Z/fuA43/zn3wePXuepI2M8uvkqBXydham5Hwf6zWyhmRmwDjgM7AU2Bc/ZBOwJt4siEie/PDQ65/H0jKse3wBhau4HgF3AQTJtkCkyK/H7gevM7EXguuCxiAhQ+KKkQjffkHBC9bm7+7eBb+dtPkNmFS8iMs9tV/byzJEx9j1/Aih88w0JT+MHRKQhhoYneOjpowX72z//0ffyjgXFb74h4Wn8gIjUXbmZ7Em8YXWzKdxFpO4KXcCUH+Cav95YKsuISMVKlVpy6QKm1tPKXUQqUs3t71R2aT2Fu4jMKjXFsVyppdBNrRXqraNwFxFg7sq8M2Xc0ncxN6/pmQ3obKllajo9r9RS602tpXFUcxcRYO7KfHLG+fmB43NG9WZLLV/9+GXzwlsTINuPVu4iAry9Mj8zlcbJ3IEnv/xSrNRSalUvraFwFxHg7ZX54wdH2DU0wsxM5UGtE6jtR+EuIsDbJ0Q3rOlhw5qeqoNaJ1Dbi8JdRAqeEL3n2ktbvVsSgk6oiohOiMaQwl1EdEVpDKksIxJxpS48qua1OiEaLwp3kQgLc/FQuTp7mA8NaT2Fu0iEVTJ9sZbX5gZ/yoz71q/mtit1I/soUc1dJMKK1cormd6Y/9ruhV2zr8kN/um0s3XPobKTILMqnRwpjaWVu0iEFbp4qNJSTe5ruxd2cd8Tz82+ZuuNl5MyI+0OQDrtFf2rQDNm2odW7iIRt3Z5N/dce+lsiBYqtxRbTWdfO3F6cs5rJk5Pct/61XSmjBTQtaCyDhq1VLYPrdxFYiZ3zktHyvjPV07x4L/9gem009mR4jNrM1eg5q6oC82GWbu8m8suPKeqk6qaMdM+zIN/drVSX1+fDw4Otno3RGJjaHhidkbM1HRmEFiWAWctyJReJk5Pzinn1KM7Rl02zWNmQ+7eV+hnWrmLRNTQ8AS7D47gMG8lvnZ5NwPHTjI9MzfYITPtcXIqzdY9h0i7z6mN1yOMNWOmPSjcRSJoaHiCW3+YOXEJsGvwFf7u06vnrMTnlGc6UlzzviU89cIJZtJgBmn3mlooJRoU7iIRNHDsJFNBsEPm5hp/u+cQ6bSzoDPFzrv753XSADzzh3Fm0mlSKcOAmeD5qo3Hj8JdpI0Vq1/3r1zMgs7U7Mo9ZZmgBpicTrP74Mi8+5g+9PTR2TJNOu1svKKXZYvOVm08phTuIm2qVM/42uXd7Ly7f7bm/qc3z7Dv+ROzry3UJpHfyXJzXp1e4kXhLtKmyo0WyF2VDw1P8MyRMaZmnAUdxoY1PfN+n+6WlCwKd5E2VU3P+Nrl3ezcfFXZ4FYnS3Koz12kjalnXEpRn7tIRGmlLbUKNVvGzBaZ2S4ze8HMDpvZVWZ2rpk9aWYvBl/1N1OkjjR1USoRdnDYg8Cv3P39wAeBw8AWYL+7rwL2B49FpA6yHTQP7DvC7dsHFPBSVM3hbmbvBj4C/AjA3Sfd/RSwHtgRPG0HcFPYnRSRDE1dlEqFWbmvBMaBn5jZb81su5m9E7jA3UcBgq/nF3qxmW02s0EzGxwfHw+xGyLJoRtZS6Vq7pYxsz5gALja3Q+Y2YPAG8AX3H1RzvMm3L1k3V3dMiKVUweNZDWqW2YEGHH3A8HjXWTq6yfMbKm7j5rZUmAsxHuIRE6jw1cdNFKJmsPd3f9oZq+Y2WXufgRYBzwf/LcJuD/4uqcueyoSAbrNnLSLsH3uXwAeNrMu4BjwOTJ1/MfM7E7gOHBLyPcQiYxyIwNEmiVUuLv774BC9Z51YX6vSFTpNnPSLnSFqkgdaTiXtAuFu0gFqjlJqhOe0g4U7iJlhDlJqrZFaRWFu0gZtZ4kVeeMtFLY2TIisVfrVaEaFSCtpJW7SBmFbjT90NNHy5Za1DkjraSbdYhUIbfUkjLjvvWrue3K3pLPV81dGkU36xCpk9xSS9qdrXsOcdmF57B2eXfBIFfnjLSKwl2kQkPDE7x26i0sZ1s67bO1dJ08lXaicBepQG45piNlkHbcoWtBppausQPSbhTuIhXIDW9LOxuv6GXZorPnlGB08lTaicJdpAL5nS83r+mZszLX2AFpN+qWEamQOl+k3ahbRqQOynW+KPylnSjcRepAowak3Wj8gEiVhoYneOjpowwNT8xu06gBaTdauYtUodgKXaMGpN0o3EWqUKyfXd0y0m4U7iJVKLVC16gBaScKd5ECinW+aIUuUaFwl8TLD/JynS9aoUsUKNwlcXLDHOYP/NKcGIkDhbskSv6qfMOannlBrs4XiQOFuyRK/qrcmT/wS3V1iQOFuyRK/qp8w5oeNqzp0U02JHYU7pIoxVblCnKJG4W7xFKpIV5alUsSKNwldjTES0SDwyQmcod5aYiXiFbuEhHZ0O5e2MXE6ck55Zb8lfrWGy9XK6MknsJd2l42vM9MZVoXU8acckv+Sn3i9KRaGSXxQoe7mXUAg8Cr7n6jmZ0LPAqsAF4GPuvuE8V/g0hp2fDO3hAyv9zy6qm36OxIMTMzt1ddoS5JVo+a+5eAwzmPtwD73X0VsD94LFKzbG969i+rAR0dKboXdnH79gEeefY4uLPxil6dPBUJhAp3M+sBPgVsz9m8HtgRfL8DuCnMe0g8FbqbUbHt2d70jVf20tlhmY3uHHrt9dlyzEzaWbbobAW7SCBsWeb7wNeBc3K2XeDuowDuPmpm5xd6oZltBjYD9Pb2htwNiZJirYqlWhiztfV02nEyYW7MHx0gIhk1r9zN7EZgzN2Hanm9u29z9z5371uyZEmtuyERVKxVMXf7ZIEWxtzyjJlx+bL38PBd/Xz145epHCOSJ0xZ5mrg02b2MvAI8Jdm9jPghJktBQi+joXeS4mVbEh3GHNW3N0Lu0gHZ03Tnnmca+3ybrbeeDmplJF2574nngPgnmsvVbCL5Kk53N39XnfvcfcVwEbgKXe/A9gLbAqetgnYE3ovJVayNfT8FffE6UmCijqp4HG+idOTpN11gZJIGY24QvV+4DozexG4LngsMsfa5d3cc+2lALMnUPtXLuasBZkVfdeCwjX0Yqt+EZnL3L38sxqsr6/PBwcHW70b0mS5J1A7O1J8Zm0Pq5e9Z94VqIVepwuURMDMhty9r9DPdIWqtEz+CdSdB45z1oLSg74U7CKVUbhL3VQbvNkSS3asgFP6nqWa9ihSOU2FlLrIBu8D+45w+/aBeRcnFZI9sXrblb10dVjZOrqmPYpUTit3qYtCwZu/qi60ss/OgLm5wK3u8l/XvbBLFy2JVEjhLnWRf2/S/OAtV1IpNuir0DjfcidcRUThLnVS7N6kWZWs7AspNM4320IpIsUp3CW03HJLseAtt7IvptbXiSSdwl1CqaaDZcOaHjz4WmmrY7l/EYhIYQp3CaXSE6m5HwAb1vQU/F3FPih04w2R6incJZRKyiblPgCyq/VXT71VU11eROZTuEsolZRNSn0A5I8g6EwZM2lXfV0kJIW7hFaubFLqAyB3VT8zk2bjFb0sW3S26usiISncpSmKfQDkr+pvLnGyVUQqp3CXllI3jEhjKNyl5dQNI1J/GhwmIhJDCnepytDwxOydk0SkfaksIxXTPHWR6NDKXSqmeeoi0aFwl4rp5tQi0aGyjFRMbYsi0aFwl6qobVEkGlSWkZLUHSMSTVq5S1GFumMAlWVEIkDhLkXld8fsPjjC4wdH1AopEgEqy8is/BJMfneMg1ohRSJCK3cBil+glNsdA7D74IjuZyoSAQp3AYrfLSm/O0atkCLRoHBPiPwbT+er5HZ5oFZIkahQuMfc0PAEuw+O8IvBV5hOe9ETobpASSReFO4xlq2jn5lK48G2Ujee1qpcJD5qDnczuxj4R+BCIA1sc/cHzexc4FFgBfAy8Fl31xUwTZJdqY+9eYaxN/6Pyem3g93QTBiRpAizcp8GvubuB83sHGDIzJ4E/hrY7+73m9kWYAvwjfC7Kvny6+hDwxPc+sNMx0uulEFnR4rPrO1hg+5RKpIINYe7u48Co8H3b5rZYeAiYD1wTfC0HcAzKNzrrlDr4sCxk0zlBTvA1Zeex5c/9j6FukiC1OUiJjNbAXwIOABcEAR/9gPg/CKv2Wxmg2Y2OD4+Xo/dSJRCrYv9KxezoHPuH2lXZ0rBLpJAoU+omtm7gMeBL7v7G2ZW0evcfRuwDaCvr8/LPF3yFGpdXLu8m51398/W3M8/5yxuVhlGJJFChbuZLSAT7A+7++5g8wkzW+ruo2a2FBgLu5MyX7HWRXW8iAiE65Yx4EfAYXf/Xs6P9gKbgPuDr3tC7aEUpSAXkWLCrNyvBv4K+L2Z/S7Y9k0yof6Ymd0JHAduCbeLIiJSrTDdMv9OpnW6kHW1/l4REQlPI39FRGJI4d7mdJs7EamFZsu0sWIz1vOfo2FfIpJP4d7Gis1Yz6ok/EUkmVSWaWP5t7nLH/hVKPxFREAr96aqtoRSbsZ6pTfYEJHkMffWX/nf19fng4ODrd6NhmpUCUU1d5HkMrMhd+8r9DOt3JukXP28VrpKVUQKUc29ScrVz0VE6kkr9zopVx7RPUpFpJkU7nVQqp6eH/oKdRFpBoV7HTx+cGT2JtS59fT80N964+VMnJ7Uyl1EGk7hHtLQ8AS7hkZmb0LdkbLZenruSdTJ6TRb9xwi7a4LjkSk4XRCNaSBYyeZnsnct9SAW/oung3t3JOoKTNm0q4LjkSkKbRyDyn/QqKb1/TM/iz3JGr3wi7ue+I5XXAkIk2hcA+pXBdM7knUyy48R90yItIUCvc6qLQLRt0yItIsqrmLiMSQwl1EJIYU7g2kuyiJSKuo5l4HhUYPDA1PcOsPB2a7Y3berb52EWkehXtIxUYP7D44wuR0pv99cjrN7oMjCncRaRqVZUIqdjek/Cn5rZ+aLyJJonAPqdgo3w1reujqMAzo6jA25FzcJCLSaLoTUx0UG/eruySJSCPpTkwNVuziJF20JCKtorKMiEgMRT7c1UsuIjJfpMsype6AJCKSZJFeuRdrQxQRSbpIh3uxNkQRkaRrWFnGzK4HHgQ6gO3ufn+936PcLHURkaRqSLibWQfwEHAdMAL8xsz2uvvz9X4vtRuKiMzXqLLMFcBRdz/m7pPAI8D6Br2XiIjkaVS4XwS8kvN4JNg2y8w2m9mgmQ2Oj483aDdERJKpUeFuBbbNmXPg7tvcvc/d+5YsWdKg3RARSaZGhfsIcHHO4x7gtQa9l4iI5GlUuP8GWGVml5hZF7AR2Nug9xIRkTwN6ZZx92kz+xvgX8m0Qv7Y3Z9rxHuJiMh8bTHy18zGgeEmvNV5wJ+a8D6tpGOMhyQcIyTjOBt5jMvdveBJy7YI92Yxs8Fis4/jQscYD0k4RkjGcbbqGCM9fkBERApTuIuIxFDSwn1bq3egCXSM8ZCEY4RkHGdLjjFRNXcRkaRI2spdRCQRFO4iIjGUiHA3s+vN7IiZHTWzLa3en3ows4vN7GkzO2xmz5nZl4Lt55rZk2b2YvA18vOQzazDzH5rZk8Ej+N4jIvMbJeZvRD8mV4Vt+M0s68Ef1cPmdlOM3tH1I/RzH5sZmNmdihnW9FjMrN7gxw6YmafaOS+xT7cc2bL3wB8ALjVzD7Q2r2qi2nga+7+Z0A/cE9wXFuA/e6+CtgfPI66LwGHcx7H8RgfBH7l7u8HPkjmeGNznGZ2EfBFoM/dV5O5cn0j0T/GnwLX520reEzB/58bgcuD1/wgyKeGiH24E9PZ8u4+6u4Hg+/fJBMGF5E5th3B03YAN7VmD+vDzHqATwHbczbH7RjfDXwE+BGAu0+6+ylidpxkxp2cbWadwEIywwQjfYzu/mvgf/I2Fzum9cAj7n7G3V8CjpLJp4ZIQriXnS0fdWa2AvgQcAC4wN1HIfMBAJzfuj2ri+8DXwfSOdvidowrgXHgJ0H5abuZvZMYHae7vwp8FzgOjAKvu/s+YnSMOYodU1OzKAnhXna2fJSZ2buAx4Evu/sbrd6fejKzG4Exdx9q9b40WCewBvgHd/8Q8L9ErzxRUlB3Xg9cAiwD3mlmd7R2r5quqVmUhHCP7Wx5M1tAJtgfdvfdweYTZrY0+PlSYKxV+1cHVwOfNrOXyZTT/tLMfka8jhEyf0dH3P1A8HgXmbCP03F+DHjJ3cfdfQrYDXyYeB1jVrFjamoWJSHcYzlb3syMTI32sLt/L+dHe4FNwfebgD3N3rd6cfd73b3H3VeQ+XN7yt3vIEbHCODufwReMbPLgk3rgOeJ13EeB/rNbGHwd3cdmfNEcTrGrGLHtBfYaGZnmdklwCrg2YbthbvH/j/gk8AfgP8GvtXq/anTMf0FmX/S/Rfwu+C/TwKLyZyhfzH4em6r97VOx3sN8ETwfeyOEfhzYDD48/wXoDtuxwn8PfACcAj4J+CsqB8jsJPMOYQpMivzO0sdE/CtIIeOADc0ct80fkBEJIaSUJYREUkchbuISAwp3EVEYkjhLiISQwp3EZEYUriLiMSQwl1EJIb+HxiYwOFA/iW5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "number_of_samples = 100\n", + "x = random.uniform(low=0, high=100, size=number_of_samples)\n", + "\n", + "x1 = x + random.normal(loc=0, scale=2, size=number_of_samples)\n", + "x2 = x + random.normal(loc=0, scale=2, size=number_of_samples)\n", + "\n", + "\n", + "plt.plot(x1, x2, \".\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Recap: Descriptive statistics" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean: 0.0006667702810900537\n", + "standard_deviation: 1.9981803784765388\n" + ] + } + ], + "source": [ + "# we setup an array of normal distributed values and \n", + "# measure their mean and standard deviation.\n", + "x = random.normal(loc=0, scale=2, size=1000000) # <-- increase and decrease \n", + " # the size here!\n", + "\n", + "mean = np.mean(x)\n", + "standard_deviation = np.std(x)\n", + "\n", + "print(\"Mean: \" + str(mean))\n", + "print(\"standard_deviation: \" + str(standard_deviation))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Central limit theorem" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEWCAYAAABSaiGHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdWklEQVR4nO3debwcVZn/8c+XBAhL2COSjaAiGBTQCcvMIOAOQZbBZdgUEGXyYxF/biCCoqDiOOPgAmYiIpsIjDASMcigLC6AEmQzIBDCkpAACZtsDgae+aPOhUrRfbvuza3T9958369Xv7qr6lTVc6pO99N1qrpaEYGZmVnTVup2AGZmtmJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLAZtwpEUkl7Xz3nvk/TONtPeKunOVmUlHSvp9P5F3DGmSalOI9PwZZIOHKBlt63TAC1/jqSdB2p5NdcpST+U9LikP+Rcd259aeuSTpB0bno9UdLTkkYMUBzTJR2fXu8sacFALLefsZwp6aQurr/fnz+DlaSrJX20mzGMHMiFSboP2BB4AXgGmAUcGRFPD+R6lkdE/AbYrM20r/a8ljQJuBdYOSKWNhDHrnXKSQpg04iY28uy2taprySdCSyIiONKy99iIJbdRzsA7wLGR8Qz1YmSNgL+E5gCbARsEhH3ZY2wyyLiAWDNTuUkHQR8NCJ26LC8aQMUWq12ayueJo5wdo+INYG3ANsAx1UL9HzLt+U3jLflxsB9rZJN8iLwC+B9+UIavtt7oI6SumG47pPBKvU+9Ct3NNalFhEPApcBb4SXDlEPl3Q3cHca9zFJcyU9JmmmpLGVxUyVNE/SEknf6KmkpNdKulLSo2najyStU5l3G0m3py6ZH0oaleZt21VQ7q4Afp2en0jdFjulON9UKv8qSc9JGtNiWSMk/VuKbx6wW2X6S4e3kl4n6RpJT6byF6TxPTHckmL45574JR0t6SHgh23q1K7+B0n6bSWWSDEcCuwPfDat72dpernbcVVJp0hamB6nSFq1vG0lfUrSI5IWSTq41bZO5cem/f5YagcfS+MPAU4H/j7F8aXqvBHxcEScBtzQbvmVdd0n6dOSbk3b+YKebZKmt22L1bZbqudnS/XcS9JUSXelZRxbmn9bSddJeiKV/a6kVWrGvUlqG09JugLYoDSt2k17UHq/PCXpXkn7S3oDML20LZ9IZc+U9D1JsyQ9A7xNLbqxVHQzL0nbb//S+GW6Z8rtqlW7TePfK+nmtB2ulbRlaf43S/pjiv0C4KV902KbHCTpd5L+Q9JjwAnq8JlQY/9/Ju2bhZI+Ulnf2pLOlrRY0v2SjtPLn0XlWJ5I2/8f0vj5qX207TpP2/HEtIynJP2PpA3StFe8r7Xse/EESf8l6dw0722SXi/pc2m98yW9u7LK10r6Q9oGl0har7Ts7dN+eULSLSp1o6c4vyLpd8CzwGtatbd29XxJRAzYA7gPeGd6PQGYA5yYhgO4AlgPWA14O7CE4khoVeA7wK9LywrgqlR+InAXRbcAwOsoultWBcZQJIdTKnH8KcWwHvA74KQ0bWeKLqNWMZ8AnJteT0oxjCyVPQ34emn4KOBnbbbFNODPpRiuKi8PuLpUnx8Dn6f4AjAK2KGyHV5XGt4ZWAp8PdV/tTZ1alf/g4DfVmJ9aR3AmT1l22yjLwPXA69K2/7a0j7uie3LwMrAVIrGuW6bbXRN2qajgK2BxcA72sXZZhkjU/yTarTNPwBj0za5A5iWptVpi+W221PPL6R6fizFfh4wGtgC+CvwmjT/3wHbp1gnpXV/ot0+rsR9HfDNFNeOwFO0aKPAGsBfgM3StI2ALXrZ52cCTwL/yMvt7qV9X6pjz7p3ougm71n+1aT222od1TqlbfsIsB0wAjgw7ZNVgVWA+4H/n7bn+4G/UWmHlXUtBY5MdV+Nep8J7fb/LsDDFF+O10j7sfyeOBu4JO3bSRSfRYdUYjk41esk4AHg1BTLu9M+W7NNXa4G7gFen+pxNXByq8+qNp9XfwXek7bD2RSnAT7Py+3y3sq6HizV8yJebkvjgEcp3rMrpW35KDCmNO8DFG17JLA2bdpbr+/DOomk7iNtjKeBJ1IDOg1YrdQA314q+wPgX0vDa6ZGNqlUfpfS9MOAX7VZ717ATZU4ppWGpwL3tNqJLXZgbwlnO2A+sFIang18sE1MV1ZieDftE87ZwAyK8xXV5bRKOM8DoyrjqnVqV/+DWL6Ecw8wtTTtPRRdXz1xPFfZZo8A27eo1wSKc32jS+O+BpzZLs4227kvCeeA0vC/AtP70BbLbbenniPS8OhUZrtSmRuBvdrE8gngv9vt49L4iRQfZmuUxp1H+4TzBEUX42qV5bTa52cCZ7cYV0045XVfCBxfbb+t1lGtE/A90heT0rg7KRLZjsBCQKVp11bbYWVdD3TY360+E9rt/zNIH/Jp+PU98VMkkf8FJpem/wtwdSmWu0vT3pTm3bA07lFg6zZxXg0cVxo+DPhFq/d1i/fiCcAVpWm7U3z+VtvlOqV1les5meKzZARwNHBOZV2XAweW5v1yaVrb9tbbo4kutb0iYp2I2DgiDouI50rT5pdej6VISgBEcWHBoxSZtlX5+9M8PV1Z50t6UNJfgHMpdTX0Nu/yiIjfU3zL20nS5hQNcmab4mNbxNDOZwEBf1BxRdhHeikLsDgi/tqhzIDXP1lmv7VY9qOx7EUWz9L6xPZY4LGIeKqyrHEtyg6Uh9rE1de2CEU9X0ive9r4w6Xpz/UsP3VzXCrpodRev8or22srY4HHY9nzWC3bUSrzzxRH1osk/Ty10d5U61TVat39bUcbA59K3TVPpK69CWl5Y4EHI32SldbVm2Vir/mZ0Nv+b/de3YCXj8DK08tto7rfiYiWbaGNdnHVUV3Pkhbtsry8aj1XpqjjxsAHKvtnB4ojl1fM28/2lv2y6HKDWkhRSQAkrQGsT3HI12NC6fXENA8U34QD2DIi1gIOoPjApsa8/Ym17Ky0vg8BP+nlg39RixharyjioYj4WESMpfj2dJp6vySzXWxl7er/DLB6zwRJr+7jspfZb/Rv2/YsZz1JoyvLerBN+SbVaYt1tnk736PoXt00tddjeWV7bWURsG6Kp0dv7ejyiHgXxYfEn4Hv90xqN0uH9bdad8t2BFTbUdV84Cvpy2jPY/WI+DFFPcdJKm+TtvVsE3udz4R2enuvLqE42q22+RzttPpeHUHRXbg8qvX8G0Ud51Mc4ZT3zxoRcXKp/DLbvJf21lY3f4dzHnCwpK1VnHT+KvD7WPbS1s9IWlfSBIrzJRek8aNJXXeSxgGfabH8wyWNTyfFji3NW9diiiuhXlMZfw7wTxQN+uxe5r8Q+HiKYV3gmHYFJX1A0vg0+DjFju35lvJwixjqaFf/W4At0nYfRXFYXtZpfT8GjpM0Jp3c/ALFt8k+iYj5FN0mX5M0SsUJ5EOAH9VdRop/1TS4avkkcB/VaYvLYzRFf/fT6Vvg/6szU0TcT9Ft+yVJq0jagaLb5BUkbShpj5Qg/pfi/VFuQ+NV80KFip51vxV4L/BfafzNwN6SVk9fjg6pzFdtR98HpknaToU1JO2WvnBcR9F993FJIyXtDWzbxzjrfCa0cyFwkKTJklYHvtgzIR0tXAh8RdJoSRsDn6Qfbb4f7gJGpe20MsUVv6t2mKeTA0r1/DLFl+YXKOqzu6T3qLjgaVS6aGF8q4V0aG9tdS3hRMSvgOMpTlwtAl4L7FMpdglFX/jNwM8p+toBvkRxEvLJNP7iFqs4D/gfYF569OlHZBHxLPAV4HfpEHP7NH4B8EeKpPCbXhbxfYo+0FtS+VYx9tgG+L2kpym66I6KiHvTtBOAs1IMH+xDFVrWPyLuomhov6S4WvC3lfl+AExO6/tpi+WeRPEheCtwW6pbf3+gty/FeYiFwH8DX4yIK/ow/3MUDR2Kb1jP9VK2rZptcXl8GtiP4uTx9+nbl5/9KM4dPkbxQdjuS85KwKcotuVjFOdGDkvTrqS4gOchSUv6sO6HKL4ALaT4IjAtIv6cpv0HRf//wxRH/dUvCidQarcRMZviJPZ30zLnUpz/ICKeB/ZOw49TdNX09n5ppc5nQksRcRlwCsV2mpuey46kONqYR/F+OY/ivE+jIuJJin14OsUR1TPA8v4Y9xyKc3UPUVwo8vG0rvnAnhRfThdTHPF8hvY5orf21paW7Ta1OiSdASyM0o8jzcysd/7BVB+puAPB3sCbuxuJmdnQMmjvpTYYSTqR4vct3yh1eZmZWQ3uUjMzsyx8hGNmZlkMuXM4G2ywQUyaNKnbYZiZDSk33njjkohY3t/xLJchl3AmTZrE7Nmzux2GmdmQIqnT3Rsa5y41MzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8vCCcfMzLJoLOFIOkPF/2r/qc10Sfq2iv+Rv1XSW5qKxczMuq/JI5wzKf4rvJ1dgU3T41CKP6kyM7NhqrGEExG/pvifhHb2pPhP9YiI64F1JG3US3kzMxvCunmngXEs+//aC9K4RdWCkg6lOApi4sRO/zxrK7pJx/y8a+u+7+TdurZus8GumxcNtPq/8Za3ro6IGRExJSKmjBnT1VsBmZlZP3Uz4SwAJpSGx1P8XamZmQ1D3Uw4M4EPp6vVtgeejIhXdKeZmdnw0Ng5HEk/BnYGNpC0APgisDJAREwHZgFTgbnAs8DBTcViZmbd11jCiYh9O0wP4PCm1m9mZoOL7zRgZmZZOOGYmVkWTjhmZpaFE46ZmWXhhGNmZlk44ZiZWRZOOGZmloUTjpmZZeGEY2ZmWTjhmJlZFk44ZmaWhROOmZll4YRjZmZZOOGYmVkWTjhmZpaFE46ZmWXhhGNmZlk44ZiZWRZOOGZmloUTjpmZZeGEY2ZmWTjhmJlZFk44ZmaWhROOmZll4YRjZmZZOOGYmVkWTjhmZpaFE46ZmWXhhGNmZlk44ZiZWRZOOGZmloUTjpmZZdFowpG0i6Q7Jc2VdEyL6WtL+pmkWyTNkXRwk/GYmVn3NJZwJI0ATgV2BSYD+0qaXCl2OHB7RGwF7Az8u6RVmorJzMy6p8kjnG2BuRExLyKeB84H9qyUCWC0JAFrAo8BSxuMyczMuqTJhDMOmF8aXpDGlX0XeAOwELgNOCoiXqwuSNKhkmZLmr148eKm4jUzswY1mXDUYlxUht8D3AyMBbYGvitprVfMFDEjIqZExJQxY8YMfKRmZta4JhPOAmBCaXg8xZFM2cHAxVGYC9wLbN5gTGZm1iVNJpwbgE0lbZIuBNgHmFkp8wDwDgBJGwKbAfMajMnMzLpkZFMLjoilko4ALgdGAGdExBxJ09L06cCJwJmSbqPogjs6IpY0FZOZmXVPYwkHICJmAbMq46aXXi8E3t1kDGZmNjj4TgNmZpaFE46ZmWXhhGNmZlk44ZiZWRZOOGZmloUTjpmZZeGEY2ZmWTjhmJlZFk44ZmaWhROOmZll4YRjZmZZOOGYmVkWTjhmZpaFE46ZmWXhhGNmZlk44ZiZWRZOOGZmloUTjpmZZeGEY2ZmWTjhmJlZFk44ZmaWhROOmZll4YRjZmZZOOGYmVkWTjhmZpaFE46ZmWXhhGNmZlnUSjiSLpK0myQnKDMz65e6CeR7wH7A3ZJOlrR5gzGZmdkwVCvhRMQvI2J/4C3AfcAVkq6VdLCklZsM0MzMhofaXWSS1gcOAj4K3AR8iyIBXdFIZGZmNqyMrFNI0sXA5sA5wO4RsShNukDS7KaCMzOz4aPuEc7pETE5Ir7Wk2wkrQoQEVPazSRpF0l3Spor6Zg2ZXaWdLOkOZKu6XMNzMxsSKibcE5qMe663maQNAI4FdgVmAzsK2lypcw6wGnAHhGxBfCBmvGYmdkQ02uXmqRXA+OA1SS9GVCatBaweodlbwvMjYh5aVnnA3sCt5fK7AdcHBEPAETEI32ugZmZDQmdzuG8h+JCgfHAN0vjnwKO7TDvOGB+aXgBsF2lzOuBlSVdDYwGvhURZ3dYrpmZDUG9JpyIOAs4S9L7IuKiPi5bLcZFi/X/HfAOYDXgOknXR8RdyyxIOhQ4FGDixIl9DMPMzAaDTl1qB0TEucAkSZ+sTo+Ib7aYrccCYEJpeDywsEWZJRHxDPCMpF8DWwHLJJyImAHMAJgyZUo1aZmZ2RDQ6aKBNdLzmhRdXtVHb24ANpW0iaRVgH2AmZUylwBvlTRS0uoUXW539CF+MzMbIjp1qf1nev5SXxccEUslHQFcDowAzoiIOZKmpenTI+IOSb8AbgVepLj8+k99XZeZmQ1+nbrUvt3b9Ij4eIfps4BZlXHTK8PfAL7Re5hmZjbUdbpK7cYsUZiZ2bBX5yo1MzOz5dapS+2UiPiEpJ/xykuaiYg9GovMzMyGlU5dauek539rOhAzMxveOnWp3Zier0mXNm9OcaRzZ0Q8nyE+MzMbJur+PcFuwHTgHoo7CGwi6V8i4rImgzMzs+GjVsIB/h14W0TMBZD0WuDngBOOmZnVUvfvCR7pSTbJPMB3djYzs9o6XaW2d3o5R9Is4EKKczgfoLh1jZmZWS2dutR2L71+GNgpvV4MrNtIRGZmNix1ukrt4FyBmJnZ8Fb3KrVRwCHAFsConvER8ZGG4jIzs2Gm7kUD5wCvpvgH0Gso/tvmqaaCMjOz4aduwnldRBwPPJPur7Yb8KbmwjIzs+GmbsL5W3p+QtIbgbWBSY1EZGZmw1LdH37OkLQucDzFv3aumV6bmZnVUivhRMTp6eU1wGuaC8fMzIarWl1qktaX9B1Jf5R0o6RTJK3fdHBmZjZ81D2Hcz7FrWzeB7wfWAJc0FRQZmY2/NQ9h7NeRJxYGj5J0l5NBGRmZsNT3SOcqyTtI2ml9Pggxd2izczMaul0886nKG7WKeCTwLlp0krA08AXG43OzMyGjU73UhudKxAzMxve6p7DQdIewI5p8OqIuLSZkMzMbDiqe1n0ycBRwO3pcVQaZ2ZmVkvdI5ypwNYR8SKApLOAm4BjmgrMzMyGl7pXqQGsU3q99kAHYmZmw1vdI5yvAjdJuoriirUdgc81FpWZmQ07HROOpJWAF4HtgW0oEs7REfFQw7GZmdkw0jHhRMSLko6IiAsp7hRtZmbWZ3XP4Vwh6dOSJkhar+fRaGRmZjas1D2H8xGKOw4cVhnvvyowM7Na6iacyRTJZgeKxPMbYHpTQZmZ2fBTt0vtLOANwLeB76TXZ3WaSdIuku6UNFdS29/sSNpG0guS3l8zHjMzG2LqHuFsFhFblYavknRLbzNIGgGcCrwLWADcIGlmRNzeotzXgcvrh21mZkNN3SOcmyRt3zMgaTvgdx3m2RaYGxHzIuJ5ij9x27NFuSOBiyj+4M3MzIapuglnO+BaSfdJug+4DthJ0m2Sbm0zzzhgfml4QRr3EknjgH+iw/kgSYdKmi1p9uLFi2uGbGZmg0ndLrVd+rFstRgXleFTKH5E+oLUqniaKWIGMANgypQp1WWYmdkQUCvhRMT9/Vj2AmBCaXg8sLBSZgpwfko2GwBTJS2NiJ/2Y31mZjaI1f4/nH64AdhU0ibAg8A+wH7lAhGxSc9rSWcClzrZmJkNT40lnIhYKukIiqvPRgBnRMQcSdPSdP+Ox8xsBdLkEQ4RMQuYVRnXMtFExEFNxmJmZt3Vl//DMTMz6zcnHDMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8vCCcfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8vCCcfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsGk04knaRdKekuZKOaTF9f0m3pse1krZqMh4zM+uexhKOpBHAqcCuwGRgX0mTK8XuBXaKiC2BE4EZTcVjZmbd1eQRzrbA3IiYFxHPA+cDe5YLRMS1EfF4GrweGN9gPGZm1kVNJpxxwPzS8II0rp1DgMtaTZB0qKTZkmYvXrx4AEM0M7Ncmkw4ajEuWhaU3kaRcI5uNT0iZkTElIiYMmbMmAEM0czMchnZ4LIXABNKw+OBhdVCkrYETgd2jYhHG4zHzMy6qMkjnBuATSVtImkVYB9gZrmApInAxcCHIuKuBmMxM7Mua+wIJyKWSjoCuBwYAZwREXMkTUvTpwNfANYHTpMEsDQipjQVk5mZdU+TXWpExCxgVmXc9NLrjwIfbTIGMzMbHHynATMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8vCCcfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8vCCcfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLJxwzMwsCyccMzPLwgnHzMyycMIxM7MsnHDMzCwLJxwzM8ui0YQjaRdJd0qaK+mYFtMl6dtp+q2S3tJkPGZm1j2NJRxJI4BTgV2BycC+kiZXiu0KbJoehwLfayoeMzPrriaPcLYF5kbEvIh4Hjgf2LNSZk/g7ChcD6wjaaMGYzIzsy4Z2eCyxwHzS8MLgO1qlBkHLCoXknQoxREQwNOS7hzYULPZAFjS7SAyW6HqrK8DK1idE9d58Nu42wE0mXDUYlz0owwRMQOYMRBBdZOk2RExpdtx5OQ6rxhcZ6ujyS61BcCE0vB4YGE/ypiZ2TDQZMK5AdhU0iaSVgH2AWZWyswEPpyuVtseeDIiFlUXZGZmQ19jXWoRsVTSEcDlwAjgjIiYI2lamj4dmAVMBeYCzwIHNxXPIDHkuwX7wXVeMbjO1pEiXnHKxMzMbMD5TgNmZpaFE46ZmWXhhNMgSetJukLS3el53Tbl1pH0E0l/lnSHpL/PHetAqVvnVHaEpJskXZozxoFWp86SJki6Ku3fOZKO6kasy2tFu11Vjfrun+p5q6RrJW3VjTiHCiecZh0D/CoiNgV+lYZb+Rbwi4jYHNgKuCNTfE2oW2eAoxjade1Rp85LgU9FxBuA7YHDW9zqaVBb0W5XVbO+9wI7RcSWwIn4QoJeOeE0a0/grPT6LGCvagFJawE7Aj8AiIjnI+KJbBEOvI51BpA0HtgNOD1TXE3qWOeIWBQRf0yvn6JItOOyRTgwVrTbVXWsb0RcGxGPp8HrKX5LaG044TRrw57fFaXnV7Uo8xpgMfDD1L10uqQ1cgY5wOrUGeAU4LPAi7kCa1DdOgMgaRLwZuD3jUc2sNrdiqqvZYaKvtblEOCyRiMa4pq8tc0KQdIvgVe3mPT5mosYCbwFODIifi/pWxRdMscPUIgDbnnrLOm9wCMRcaOknQcytqYMwH7uWc6awEXAJyLiLwMRW0YDdruqIaJ2XSS9jSLh7NBoREOcE85yioh3tpsm6WFJG0XEotSt8EiLYguABRHR8233J/R+3qPrBqDO/wjsIWkqMApYS9K5EXFAQyEvtwGoM5JWpkg2P4qIixsKtUkr2u2qatVF0pYUXcO7RsSjmWIbktyl1qyZwIHp9YHAJdUCEfEQMF/SZmnUO4Db84TXiDp1/lxEjI+ISRS3PLpyMCebGjrWWZIoztPdERHfzBjbQFrRblfVsb6SJgIXAx+KiLu6EOPQEhF+NPQA1qe4aunu9LxeGj8WmFUqtzUwG7gV+Cmwbrdjb7rOpfI7A5d2O+6m60zR1RJpH9+cHlO7HXs/6joVuAu4B/h8GjcNmJZei+LKrnuA24Ap3Y654fqeDjxe2qezux3zYH741jZmZpaFu9TMzCwLJxwzM8vCCcfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMVtOkrZJ/4cyStIa6f9u3tjtuMwGG//w02wASDqJ4r5wq1HcG+9rXQ7JbNBxwjEbAOleWzcAfwX+ISJe6HJIZoOOu9TMBsZ6wJrAaIojHTOr8BGO2QCQNJPiHyE3ATaKiCO6HJLZoOP/wzFbTpI+DCyNiPMkjQCulfT2iLiy27GZDSY+wjEzsyx8DsfMzLJwwjEzsyyccMzMLAsnHDMzy8IJx8zMsnDCMTOzLJxwzMwsi/8DuRK8kUnDSfsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEWCAYAAAAkUJMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3debwcVZn/8c/XQFgzbAlbFoKKS1BA5gooKMFRDEEEFR0QFxDMIKI4Koq4gIqKOj9lFCQTMYZFFmcAiRoElFUQJGHfDQFJDJhA2EEx+Pz+OOdCpdN9u+5Stzr3ft+vV79u1zmnqp7TXd1P16m6VYoIzMzM6vKSugMwM7PhzYnIzMxq5URkZma1ciIyM7NaORGZmVmtnIjMzKxWq2QikhSSXt7Hee+X9NYWdW+SdHeztpKOlnRK3yJuG9PE3KfV8vSFkj48QMtu2acBWv7tkiYP1PJKrlOSfirpUUl/HMx1D7bebOuSjpV0Rn4+QdJTkkYMUBzTJX05P58sadFALLePscySdFyN6+/z90+nknS5pEPqWv9qg7UiSfcDmwDPA08Dc4BPRMRTgxVDOxFxFfDKFnXf7H4uaSJwH7B6RCyvII49yrSTFMBWETG/h2W17FNvSZoFLIqILxWWv/VALLuXdgHeBoyLiKcbK3NivBR4plD88Yg4dXDCq19EPACs266dpAOBQyJilzbLO3SAQiu13drwMth7RHtFxLrA9sDrgS81NujeK7D+G8Kv5RbA/c2SUMHiiFi38Kg8CQ3V13ug9qrqMFTfk06VRyt6nVdqGZqLiL8AFwKvgRd2dT8u6U/An3LZRyXNl7RM0mxJmzcsZqqkBZIelvTd7s5LepmkSyU9kut+Jmn9hnlfL+mOPLTzU0lr5nlbDjkUhz2AK/Pfx/Lwx645ztcW2m8s6VlJY5osa4Sk/8rxLQD2bKh/YTdZ0sslXSHp8dz+nFzeHcPNOYZ/745f0uclPQT8tEWfWvX/QEm/b4glcgzTgAOAz+X1/TLXF4cv15B0gqTF+XGCpDWKr62kz0haIulBSQc1e61z+83z+74sbwcfzeUHA6cAb8hxfLXVMsrKffispFvy63xO92uS61tui43bbqGfnyv0cx9JUyXdk5dxdGH+HST9QdJjue2JkkaWjHvLvG08KekSYHShrnG498D8eXlS0n2SDpD0amB64bV8LLedJelkSXMkPQ3spibDYUrD1Q/n1++AQvkKwzzF7arZdpvL3yHppvw6XCNpm8L8r5N0Q479HOCF96bJa3KgpKslfV/SMuBYtflOKPH+H5nfm8WSPtKwvvUknSZpqaQ/S/qSXvwuKsbyWH7935jLF+bto+UQfH4dv56X8aSkiyWNznUrfa614mfxWEn/K+mMPO+tkl4h6Qt5vQsl7d6wypdJ+mN+DS6QtGFh2Tvl9+UxSTerMByf4/yGpKtJoxAvbba9teonABExKA/gfuCt+fl44Hbg63k6gEuADYG1gLcAD5P2nNYAfghcWVhWAJfl9hOAe0jDCwAvJw3brAGMISWNExriuC3HsCFwNXBcrptMGnpqFvOxwBn5+cQcw2qFtj8Cvl2YPgL4ZYvX4lDgrkIMlxWXB1xe6M9ZwBdJPxrWBHZpeB1eXpieDCwHvp37v1aLPrXq/4HA7xtifWEdwKzuti1eo68B1wIb59f+msJ73B3b14DVgamkjXaDFq/RFfk1XRPYDlgK/FurOBvmnQw8B/yVNIT6fWCdNtvmH4HN82tyJ3BoriuzLRa33e5+fiX386M59jOBUcDWwN+Al+b5/xXYiTRMPjGv+1Ot3uOGuP8AfC/H9WbgSZpso8A6wBPAK3PdZsDWPbzns4DHgZ15cbt74b0v9LF73buShtu7l385efttto7GPuXXdgmwIzAC+HB+T9YARgJ/Bv4zv577Av+gYTtsWNdy4BO572tR7juh1fs/hbQdvSa/jmey4mfiNOCC/N5OJH0XHdwQy0G5X8cBDwAn5Vh2z+/Zui36cjlwL/CK3I/LgeObfVe1+L76G/D2/DqcRvosfJEXt8v7Gtb1l0I/z+XFbWks8AjpM/uS/Fo+AowpzPsAadteDViPFttby89gX5JKXx75RXoKeCxvWD8C1ipsmG8ptP0J8J3C9Lp545tYaD+lUH8Y8LsW690HuLEhjkML01OBe5u9uU3e2J4S0Y7AQuAleXou8L4WMV3aEMPutE5EpwEzSMdDGpfTLBE9B6zZUNbYp1b9P5D+JaJ7gamFureThtC643i24TVbAuzUpF/jSccSRxXKvgXMahVnw/ybApNIH5otSV88/9Nm2/xAYfo7wPRebIvFbbe7nyPy9KjcZsdCm3nAPi1i+RRwfqv3uFA+gfQlt06h7ExaJ6LHgPeQP3OFeZq957OA05qUNSai4rp/Dny5cfttto7GPgEnk3+wFMruJiW4NwOLARXqrqHnRPRAq/e6h++EVu//TPKXf55+RXf8pOTyd2BSof4/gMsLsfypUPfaPO8mhbJHgO1axHk58KXC9GHAb5p9rpt8Fo8FLinU7UX6/m3cLtcvrKvYz0mk75IRwOeB0xvWdRHw4cK8XyvUtdzeWj0Ge2hun4hYPyK2iIjDIuLZQt3CwvPNSckKgEgnNDxCyszN2v85z9M9JHa2pL9IegI4g8KQRU/z9kdEXEf6VbirpFeRNtTZLZpv3iSGVj4HCPij0hlqH+mhLcDSiPhbmzYD3v9shfetybIfiRVP7niG5gfUNweWRcSTDcsa26TtSiLioYi4IyL+GRH3kV7DfdvM9lCLuHq7LULq5/P5efc2/tdC/bPdy8/DJb+S9FDeXr/JyttrM5sDj8aKx8mabke5zb+T9sQflPTrvI32pLFPjZqtu6/b0RbAZ/Kwz2N5iHB8Xt7mwF8if8MV1tWTFWIv+Z3Q0/vf6rM6mhf32Ir1xW2j8X0nIppuCy20iquMxvU83GS7LC6vsZ+rk/q4BfDehvdnF9Kezkrz9mV766TTt4sb2mJS5wGQtA6wEWnXsdv4wvMJeR5Iv5wD2CYi/gX4AOmLnBLz9iXWolPz+j4I/F8PCeHBJjE0X1H6Uv1oRGxO+rX1I/V86mir2Ipa9f9pYO3uCkmb9nLZK7xv9O217V7OhpJGNSzrLy3atxOsvA30JpZ222KZ17yVk0nDtFvl7fVoysX6ILBBjqdbT9vRRRHxNtKXx13Aj7urWs3SZv3N1t10OyLtofZkIfCN/CO1+7F2RJxF6udYScXXpGU/W8Re5juhlZ4+qw+T9o4bt/m+bqe90fhZHUEaduyPxn7+g9THhaQ9ouL7s05EHF9ov8Jr3sP21lQnJaKiM4GDJG2ndLD7m8B1EXF/oc2RkjaQNJ50POacXD6KPAQoaSxwZJPlf1zSuHww7ujCvGUtBf4JvLSh/HTgXaQN/bQe5v858MkcwwbAUa0aSnqvpHF58lHSG979q+avTWIoo1X/bwa2zq/7mqTd+6J26zsL+JKkMfmg6ldIvz57JSIWkoZfviVpTaUD1wcDPyszfz6QO0HJeOB40jh+X5TZFvtjFGk8/an8q/FjZWaKiD+Thn+/KmmkpF1Iwy8rkbSJpHfmxPF30uejuA2NU8kTJBp0r/tNwDuA/83lNwHvlrR2/tF0cMN8jdvRj4FDJe2Y37N1JO2Zf4j8gTQM+ElJq0l6N7BDL+Ms853Qys+BAyVNkrQ2cEx3Rd67+DnwDUmjJG0BfJo+bPN9cA+wZn6dViedgbxGP5f5gUI/v0b6Mf08qT97SXq70olWa+bP2LhmC2mzvTXVkYkoIn4HfJl0wOxB4GXAfg3NLiCNtd8E/Jo0lg/wVdLBz8dz+XlNVnEmcDGwID969c9xEfEM8A3g6ryrulMuXwTcQEoWV/WwiB+Txlhvzu2bxdjt9cB1kp4iDfUdkYebICWKU3MM7+tFF5r2PyLuIW2AvyWdvfj7hvl+AkzK6/tFk+UeR/pyvAW4Nfetr/94uD/pOMdi4HzgmIi4pOS825O+wJ4mJbTbgE/2JYiS22J/fBZ4P+mg9Y/p3Y+i95OOTS4jfUG2+vHzEuAzpNdyGenYy2G57lLSiUMPSXq4F+t+iPTDaDHpB8KhEXFXrvs+L54scior/4A4lsJ2GxFzSQfPT8zLnE86vkJEPAe8O08/Shry6enz0kyZ74SmIuJC4ATS6zQ//y36BGk7W0D6vJxJOq5UqYh4nPQenkLaA3sa6O8/GZ9OOhb4EOkElU/mdS0E9ib9aF1K2kM6ktb5o6ftrSmtOPRq/SVpJul/WFb6HykzM1uZ/9lrACldceHdwOvqjcTMbNXRkUNzqyJJXycNAX23MHRmZmZteGjOzMxq5T0iMzOr1ZA6RjR69OiYOHFi3WGYma0y5s2b93BE9Pd/kPplSCWiiRMnMnfu3LrDMDNbZUhqd6WKynlozszMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWq8oSkaTxki6TdGe+odsRTdpI0g8kzVe6X/z2hbopku7OdS1vk2BmZqu2KveIlgOfiYhXAzuR7oEzqaHNHsBW+TGNdJOw7ps8nZTrJwH7N5nXzMyGgMoSUUQ8GBE35OdPAney8q2e9wZOi+RaYH1Jm5FufDU/Ihbk+5GcnduamdkQMyhXVsi3R3gdcF1D1VhWvE/6olzWrHzHFsueRtqbYsKEdncQNrOhbuJRv647hEF3//F71h1Cv1R+soKkdUl3t/xURDzRWN1kluihfOXCiBkR0RURXWPG1Hq5JDMz64NK94jyvdTPBX4WEc1uz7sIGF+YHke6vezIFuVmZjbEVHnWnICfAHdGxPdaNJsNfCifPbcT8HhEPAhcD2wlaUtJI4H9clszMxtiqtwj2hn4IHCrpJty2dHABICImA7MAaYC84FngINy3XJJhwMXASOAmRFxe4WxmplZTSpLRBHxe5of6ym2CeDjLermkBKVmZkNYb6ygpmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrlRORmZnVyonIzMxq5URkZma1ciIyM7NaORGZmVmtnIjMzKxWTkRmZlYrJyIzM6tVZTfGkzQTeAewJCJe06T+SOCAQhyvBsZExDJJ9wNPAs8DyyOiq6o4zcysXlXuEc0CprSqjIjvRsR2EbEd8AXgiohYVmiyW653EjIzG8IqS0QRcSWwrG3DZH/grKpiMTOzzlX7MSJJa5P2nM4tFAdwsaR5kqbVE5mZmQ2Gyo4R9cJewNUNw3I7R8RiSRsDl0i6K+9hrSQnqmkAEyZMqD5aMzMbULXvEQH70TAsFxGL898lwPnADq1mjogZEdEVEV1jxoypNFAzMxt4tSYiSesBuwIXFMrWkTSq+zmwO3BbPRGamVnVqjx9+yxgMjBa0iLgGGB1gIiYnpu9C7g4Ip4uzLoJcL6k7vjOjIjfVBWnmZnVq7JEFBH7l2gzi3Sad7FsAbBtNVGZmVmn6YRjRGZmNow5EZmZWa2ciMzMrFZORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrlRORmZnVyonIzMxq5URkZma1ciIyM7NaVZaIJM2UtETSbS3qJ0t6XNJN+fGVQt0USXdLmi/pqKpiNDOz+lW5RzQLmNKmzVURsV1+fA1A0gjgJGAPYBKwv6RJFcZpZmY1qiwRRcSVwLI+zLoDMD8iFkTEc8DZwN4DGpyZmXWMuo8RvUHSzZIulLR1LhsLLCy0WZTLmpI0TdJcSXOXLl1aZaxmZlaBOhPRDcAWEbEt8EPgF7lcTdpGq4VExIyI6IqIrjFjxlQQppmZVam2RBQRT0TEU/n5HGB1SaNJe0DjC03HAYtrCNHMzAZBbYlI0qaSlJ/vkGN5BLge2ErSlpJGAvsBs+uK08zMqrVaVQuWdBYwGRgtaRFwDLA6QERMB/YFPiZpOfAssF9EBLBc0uHARcAIYGZE3F5VnGZmVq/KElFE7N+m/kTgxBZ1c4A5VcRlZmadpe6z5szMbJhzIjIzs1o5EZmZWa2ciMzMrFZORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrlRORmZnVyonIzMxq5URkZma1KpWIJJ0raU9JpROXpJmSlki6rUX9AZJuyY9rJG1bqLtf0q2SbpI0t+w6zcxs1VM2sZwMvB/4k6TjJb2qxDyzgCk91N8H7BoR2wBfB2Y01O8WEdtFRFfJGM3MbBVUKhFFxG8j4gBge+B+4JK8F3OQpNVbzHMlsKyHZV4TEY/myWuBcb2K3MzMhoTeDLVtBBwIHALcCPw3KTFdMgBxHAxcWJgO4GJJ8yRNaxPXNElzJc1dunTpAIRiZmaDabUyjSSdB7wKOB3YKyIezFXn9PcYjqTdSIlol0LxzhGxWNLGpL2vu/Ie1koiYgZ5WK+rqyv6E4uZmQ2+UokIOCUi5hQLJK0REX/vzzEcSdsApwB7RMQj3eURsTj/XSLpfGAHoGkiMjOzVVvZobnjmpT9oT8rljQBOA/4YETcUyhfR9Ko7ufA7kDTM+/MzGzV1+MekaRNgbHAWpJeByhX/Quwdpt5zwImA6MlLQKOAVYHiIjpwFeAjYAfSQJYnveuNgHOz2WrAWdGxG/60jkzM+t87Ybm3k46QWEc8L1C+ZPA0T3NGBH7t6k/hHTiQ2P5AmDblecwM7OhqMdEFBGnAqdKek9EnDtIMZmZ2TDSbmjuAxFxBjBR0qcb6yPie01mMzMzK63d0Nw6+e+6VQdiZmbDU7uhuf/Jf786OOGYmdlw025o7gc91UfEJwc2HDMzG27aDc3NG5QozMxs2Cpz1pyZmVll2g3NnRARn5L0S9KFSFcQEe+sLDIzMxsW2g3NnZ7//lfVgZiZ2fDUbmhuXv57haSRpCtwB3B3RDw3CPGZmdkQV/Y2EHsC04F7Sdeb21LSf0TEhT3PaWZm1rOyt4H4f6Rbd88HkPQy4NeseDM7MzOzXit7G4gl3UkoWwAsqSAeMzMbZtqdNffu/PR2SXOAn5OOEb0XuL7i2MzMbBhoNzS3V+H5X4Fd8/OlwAaVRGRmZsNKu7PmDhqsQMzMbHgqe9bcmsDBwNbAmt3lEfGRiuIyM7NhouzJCqcDm5Lu2HoF6Y6tT/Y0g6SZkpZIuq1FvST9QNJ8SbdI2r5QN0XS3bnuqJIxmpnZKqhsInp5RHwZeDpff25P4LVt5pkFTOmhfg9gq/yYBpwMIGkEcFKunwTsL2lSyTjNzGwVUzYR/SP/fUzSa4D1gIk9zRARVwLLemiyN3BaJNcC60vaDNgBmB8RC/LVG87Obc3MbAgq+w+tMyRtAHwZmE26Y+uX+7nuscDCwvSiXNasfMdWC5E0jbRHxYQJE/oczMSjft3nefvj/uP3rGW9ZmadolQiiohT8tMrgJcO0LrVbFU9lDcVETOAGQBdXV0t25mZWWcqNTQnaSNJP5R0g6R5kk6QtFE/170IGF+YHgcs7qHczMyGoLLHiM4mXdLnPcC+wMPAOf1c92zgQ/nsuZ2AxyPiQdIVG7aStGW+4vd+ua2ZmQ1BZY8RbRgRXy9MHydpn55mkHQWMBkYLWkRcAywOkBETAfmAFOB+cAzwEG5brmkw4GLgBHAzIi4vXSPzMxslVI2EV0maT/SteYg7RX1eHQ/IvZvUx/Ax1vUzSElKjMzG+LaXfT0SV48geDTwBm56iXAU6S9HDMzsz5rd625UYMViJmZDU9lh+aQ9E7gzXny8oj4VTUhmZnZcFL29O3jgSOAO/LjiFxmZmbWL2X3iKYC20XEPwEknQrcCPiCpGZm1i9l/48IYP3C8/UGOhAzMxueyu4RfRO4UdJlpDPo3gx8obKozMxs2GibiCS9BPgnsBPwelIi+nxEPFRxbGZmNgy0TUQR8U9Jh0fEz/GldszMbICVPUZ0iaTPShovacPuR6WRmZnZsFD2GNFHSFdYOKyhfKBuCWFmZsNU2UQ0iZSEdiElpKuA6VUFZWZmw0fZRHQq8ATwgzy9fy57XxVBmZnZ8FE2Eb0yIrYtTF8m6eYqAjIzs+Gl7MkKN+ab1wEgaUfg6mpCMjOz4aTsHtGOpLupPpCnJwB3SrqVdGuhbSqJzszMhryyiWhKpVGYmdmwVSoRRcSf+7JwSVOA/ybd8vuUiDi+of5I4IBCLK8GxkTEMkn3A08CzwPLI6KrLzGYmVlnK30/ot6SNAI4CXgbsAi4XtLsiLiju01EfBf4bm6/F/CfEbGssJjdIuLhqmI0M7P69ebq2721AzA/IhZExHPA2cDePbTfHzirwnjMzKwDVZmIxgILC9OLctlKJK1NOg51bqE4gIslzZM0rdVKJE2TNFfS3KVLlw5A2GZmNpiqTERqUhYt2u4FXN0wLLdzRGwP7AF8XNKbm80YETMioisiusaMGdO/iM3MbNBVmYgWAeML0+OAxS3a7kfDsFxELM5/lwDnk4b6zMxsiKkyEV0PbCVpS0kjSclmpdtISFoP2BW4oFC2jqRR3c+B3YHbKozVzMxqUtlZcxGxXNLhwEWk07dnRsTtkg7N9d0XTX0XcHFEPF2YfRPgfEndMZ4ZEb+pKlYzM6tPZYkIICLmAHMayqY3TM8CZjWULQCK17YzM7MhqsqhOTMzs7aciMzMrFZORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrlRORmZnVyonIzMxq5URkZma1ciIyM7NaORGZmVmtKk1EkqZIulvSfElHNamfLOlxSTflx1fKzmtmZkNDZbcKlzQCOAl4G7AIuF7S7Ii4o6HpVRHxjj7Oa2Zmq7gq94h2AOZHxIKIeA44G9h7EOY1M7NVSJWJaCywsDC9KJc1eoOkmyVdKGnrXs6LpGmS5kqau3Tp0oGI28zMBlGViUhNyqJh+gZgi4jYFvgh8ItezJsKI2ZERFdEdI0ZM6bPwZqZWT2qTESLgPGF6XHA4mKDiHgiIp7Kz+cAq0saXWZeMzMbGqpMRNcDW0naUtJIYD9gdrGBpE0lKT/fIcfzSJl5zcxsaKjsrLmIWC7pcOAiYAQwMyJul3Rorp8O7At8TNJy4Flgv4gIoOm8VcVqZmb1qSwRwQvDbXMayqYXnp8InFh2XjMzG3p8ZQUzM6uVE5GZmdXKicjMzGrlRGRmZrVyIjIzs1o5EZmZWa2ciMzMrFZORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrVaWJSNIUSXdLmi/pqCb1B0i6JT+ukbRtoe5+SbdKuknS3CrjNDOz+lR2q3BJI4CTgLcBi4DrJc2OiDsKze4Ddo2IRyXtAcwAdizU7xYRD1cVo5mZ1a/KPaIdgPkRsSAingPOBvYuNoiIayLi0Tx5LTCuwnjMzKwDVZmIxgILC9OLclkrBwMXFqYDuFjSPEnTWs0kaZqkuZLmLl26tF8Bm5nZ4KtsaA5Qk7Jo2lDajZSIdikU7xwRiyVtDFwi6a6IuHKlBUbMIA3p0dXV1XT5ZmbWuarcI1oEjC9MjwMWNzaStA1wCrB3RDzSXR4Ri/PfJcD5pKE+MzMbYqpMRNcDW0naUtJIYD9gdrGBpAnAecAHI+KeQvk6kkZ1Pwd2B26rMFYzM6tJZUNzEbFc0uHARcAIYGZE3C7p0Fw/HfgKsBHwI0kAyyOiC9gEOD+XrQacGRG/qSpWMzOrT5XHiIiIOcCchrLpheeHAIc0mW8BsG1juZmZDT2+soKZmdXKicjMzGrlRGRmZrVyIjIzs1o5EZmZWa2ciMzMrFZORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmZlZrZyIzMysVk5EZmZWKyciMzOrlRORmZnVqtJEJGmKpLslzZd0VJN6SfpBrr9F0vZl5zUzs6GhskQkaQRwErAHMAnYX9KkhmZ7AFvlxzTg5F7Ma2ZmQ0CVe0Q7APMjYkFEPAecDezd0GZv4LRIrgXWl7RZyXnNzGwIWK3CZY8FFhamFwE7lmgztuS8AEiaRtqbAnhK0t1t4hoNPNymzaDRt/s0W0f1oR/cj84xFPoAw7Qfffwe6bZFv+YeAFUmIjUpi5JtysybCiNmADNKByXNjYiusu070VDoA7gfnWQo9AHcj1VVlYloETC+MD0OWFyyzcgS85qZ2RBQ5TGi64GtJG0paSSwHzC7oc1s4EP57LmdgMcj4sGS85qZ2RBQ2R5RRCyXdDhwETACmBkRt0s6NNdPB+YAU4H5wDPAQT3NO0ChlR7G62BDoQ/gfnSSodAHcD9WSYpoeujFzMxsUPjKCmZmVisnIjMzq9WQT0SSNpR0iaQ/5b8b9NB2hKQbJf1qMGNsp0wfJI2XdJmkOyXdLumIOmJtpj+XeuoUJfpwQI79FknXSNq2jjjbKXvpLEmvl/S8pH0HM76yyvRD0mRJN+XPwxWDHWM7Jbap9ST9UtLNuQ8H1RHnoIiIIf0AvgMclZ8fBXy7h7afBs4EflV33L3tA7AZsH1+Pgq4B5jUAbGPAO4FXko6Lf/mxrhIJ6xcSPr/sZ2A6+qOuw99eCOwQX6+R6f1oWw/Cu0uJZ1MtG/dcffx/VgfuAOYkKc3rjvuPvTh6O7POjAGWAaMrDv2Kh5Dfo+IdGmgU/PzU4F9mjWSNA7YEzhlkOLqjbZ9iIgHI+KG/PxJ4E7SFSrq1p9LPXWKtn2IiGsi4tE8eS3pf986TdlLZ30COBdYMpjB9UKZfrwfOC8iHgCIiE7rS5k+BDBKkoB1SYlo+eCGOTiGQyLaJNL/JpH/btyi3QnA54B/DlZgvVC2DwBImgi8Driu8sjaa3UZp962qVNv4zuYtIfXadr2Q9JY4F3A9EGMq7fKvB+vADaQdLmkeZI+NGjRlVOmDycCryb9M/+twBER0YnfT/1W5ZUVBo2k3wKbNqn6Ysn53wEsiYh5kiYPZGxl9bcPheWsS/o1+6mIeGIgYuun/lzqqVOUjveEpBwAAAKoSURBVE/SbqREtEulEfVNmX6cAHw+Ip5PP8Q7Upl+rAb8K/BvwFrAHyRdGxH3VB1cSWX68HbgJuAtwMuASyRd1SGf6wE1JBJRRLy1VZ2kv0raLCIezMM9zXbRdwbeKWkqsCbwL5LOiIgPVBTySgagD0hanZSEfhYR51UUam/151JPnaJUfJK2IQ3t7hERjwxSbL1Rph9dwNk5CY0GpkpaHhG/GJwQSym7TT0cEU8DT0u6EtiWdOy0E5Tpw0HA8ZEOEs2XdB/wKuCPgxPi4BkOQ3OzgQ/n5x8GLmhsEBFfiIhxETGRdDmhSwczCZXQtg95HPknwJ0R8b1BjK2d/lzqqVO07YOkCcB5wAc76Fd3o7b9iIgtI2Ji/iz8H3BYhyUhKLdNXQC8SdJqktYmXb3/zkGOsydl+vAAaY8OSZsArwQWDGqUg6XusyWqfgAbAb8D/pT/bpjLNwfmNGk/mc47a65tH0hDQQHcQtqdvwmYWnfsObappF+i9wJfzGWHAofm5yLdCPFe0lh4V90x96EPpwCPFl77uXXH3Jd+NLSdRQeeNVe2H8CRpDPnbiMNVdcedy+3qc2Bi/Nn4jbgA3XHXNXDl/gxM7NaDYehOTMz62BORGZmVisnIjMzq5UTkZmZ1cqJyMzMauVEZGZmtXIiMjOzWjkRmVUk39PnFklrSlon31PmNXXHZdZp/A+tZhWSdBzp+oVrAYsi4ls1h2TWcZyIzCqUryN2PfA34I0R8XzNIZl1HA/NmVVrQ9JNzUaR9ozMrIH3iMwqJGk26e6bWwKbRcThNYdk1nGGxP2IzDpRvivo8og4U9II4BpJb4mIS+uOzayTeI/IzMxq5WNEZmZWKyciMzOrlRORmZnVyonIzMxq5URkZma1ciIyM7NaORGZmVmt/j99EGVtKlhQuAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEWCAYAAAAtuzN2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZgdZZn38e+PsEMEQsKWhYAwSpBFpg0ovAK+ggnIRMdlEhEEwchIFF99VXRGUWEUxXEQBTMRYwCF6DUKRk1YlE1BNAmyhc0Qo8QASQiyKwTu+eN5Wion5/Q5vVSf6u7f57rO1VXPU8tdz6mq+9TSVYoIzMzMqmKjdgdgZmZW5MRkZmaV4sRkZmaV4sRkZmaV4sRkZmaV4sRkZmaVMiASk6SQtEcPx10u6Y0N6v6PpPvqDSvpU5Iu7FnETWMan5dp49y/QNJ7+mjaDZepj6a/RNJhfTW9FucpSd+R9Jik3/bnvKtE0gmSftWN4UtbnyU9JWn33D1H0ll9Ne0exNLj/UMfzLtb38lAULt/aofSElPeKJ7NK/AjeceydVnz64mI+GVEvKJB3Rci4mQo/4uKiMkRcVGz4VrZALtapu6qt8OJiL0j4vq+mH43HAIcAYyJiIm1lZJ2ljRP0srcRuNr6jeTNFvSE5IelvSR/gm7Oorrc1ckXS+p6XARsXVELOttXINxx269V/YR0zERsTVwAPAa4N9rB2hnVh5sBnFb7gosj4inG9S/CFwJvK1B/WeBPfN0Dgc+LmlSXwdZazB+HwN5mfKR94A4SzRY9Hh9iYhSPsBy4I2F/nOAn+buAE4Ffg/8IZe9D1gKrAXmAbsUxg3gQ8AyYE2e1ka57uXAtcCjue57wLY1cXwSuBt4DPgOsHmuOwxYUS9m0s7su7n7TzmGp/Ln0BznPoVxdwCeBUbVaYthwFdyfMvysgewca6/Hjg5d+8B3AA8nof/fi6/MY/zdI7hXzrjBz4BPAxc0mCZGi3/CcCvamKNHMN04HnguTy/n9Rpo82Ac4GV+XMusFmxbYGPAquAh4ATu1hfdsnf+9q8Hrwvl58E/BV4IcfxuS6msXGOf3xN+Z+BIwv9ZwJzG0yjy7iBbYCLgdXAH0k/tjYqtOdNwH/l5TgLmANcACzI8d8E7JTb6jHgXuDVhemfDjwAPJm/s7cW6jb4vmpiPy7H9CjwbzRenzcHvpuH+wuwENgR+I/czn/NsX6ji+01gD1y9xxgJnBNjvsGYNdcN57Cul5c34G9ar7bvxTWq6+QtrtH8rS3KIz/sfy9rATeW4ylTptcn5frJtL2uQdwInBPjnUZ8P5ufP/bk9bTJ4DfktalXxXqX5fb8/H893U1sZwF3JyX9yd5et/L01tIzbpbGLezHd+T22UN8G+F+jnAWbXLUbMf+BhwB2kf8u38nS/I7fBzYLuaeU3PbfwQ8NHCtDbipfX0UeAHwIiacU/Kcd5Ig/Wty/zRnWTTnQ/rbxRjgSXAmYWV+hpgBLAF8Ibc0AeQVsqvAzfW7Cyvy8OPA+5n/R35EXm8Ubkhzq2J464cwwjSCnpWF19evQ25s7GLG9cFwJcK/aeRd9512uIU0g6oM4braJyYLiPtVDbKX+ghNe2wR6H/MGAd8KW8/Fs0WKZGy38CDRJTvZW9Tht9HriFlJRHkTa4M2ti+zywCXAU8Ax55a/TRjfkNt0c2J+04/+/reyQC9PYIDEB2+WyHQtlbwfubDCNLuMmJaUfA8PzenE/cFIhznXAB3MsW+Q2XAP8Y162a4E/AMeTfrCcBVxXmP87SEl6I9KPj6eBnZu1AzCBtLN7fV4Xvppjqbc+v5+0U9wyx/CPwMtq18WadeLv22uD9eTJwry/1hknXSSmLtbBc0k7/xG5nX8CfDHXTSIlq1cBWwGX0jwx/QnYO38nmwBHk37QivQj8xnggBa//7mkHfFWOYY/F5Z1BOnHxnF5XtNy//aFWJbmeW9D+uFxP/DGPPzFwHcaLEdnO36LtF7tB/wN2Kvetkr9/cAtpGQ0mpR0bwVenb+za4EzauZ1WV7OfUjbY+e69OE8rTF53P8GLqsZ9+I87hZ0sb413Jabbew9/eSGeIqUIf9I2ukUV+o3FIb9NvDlQv/WpF/r4wvDTyrUfwD4RYP5vgX4XU0cpxT6jwIe6OLLazUxHQg8yEu/lhcB72wQ07U1MRxJ48R0MTCLdD2ldjr1EtNz5COgLpap0fKfQO8S0wPAUYW6N5FOuXXG8WxNm60CDqqzXGNJv5qHF8q+CMxpFGeDdq6XmMbmsmIbHdEZZ51pNIybtFH9DZhQqHs/cH0hzj/VTG8O8K1C/weBewr9+5CPFBrEcxswpVk7AJ+hcBRI2ik8R/31+b2kHxH71pnO39fFmnXiDXXKiutJcd5b5+9zLN1MTKRk8TTw8kLZa3npSG02cHah7h9onpg+32S9uQI4rcXv/3nglYW6L/BSYjoO+G3NtH8NnFCIpXiU85/AgkL/McBtDWLsbMcxhbLfAlPrbavU3w8cW+j/IfDNmvXyipp5FZfzy8C3c/c95B+NuX/n3C4bF8bdvVDfcH1r9Cn7fOtbImLbiNg1Ij4QEc8W6h4sdO9CSl4ARMRTpMO+0Q2G/2MeB0k7SJor6c+SniAdMo6siaPuuL0REb8hbUCHSnol6chtXoPBd6kTQyMfJ22cv813wL23SSirI+KvTYbp8+XP1vve6kz70YhYV+h/hrTTqjedtRHxZM20RtcZtrueyn9fVih7GekXfiON4h4JbMqGy9xoPe30SKH72Tr9f28TScdLuk3SXyT9hfSrvHZ9rme9dSzS9bhHGwx7CXAVMDffMPJlSZs0mX695apbn7fftfRsPRtF+mW9uNAGV+Zy6N62tEFsAJImS7pF0to8/aNYv40bff+jSDvfRvOv3R4664vrR8vrQgMP14mrVd2dd6P9xq7A5YXv5x7SD5EdG4zb7fWtnRcCo9C9krSwAEjainTu9c+FYcYWusflcSD9sg5SNn4Z8G7Sjp0Wxu1JrEUX5fkdB/xPFwnioTox1J9RxMMR8b6I2IX0a/yCJnfiNYqtqNHyP03aCQAgaaduTnu9742etW3ndEZIGl4zrT83GL5lEfEYqf33KxTvRzq13F1rSL8Ma5e5GGcr30ddknYlnaqZQTr9sy3pNGzt+lzPeuuYpC1J29AGIuL5iPhcREwgXRN5M+nUYlfxN1uu4ry3Jp3WWklax6CwnpGusTWa7hrSTnLv/KN224jYJtJNVNCNbanePCRtRjpa+Arp9O62wHxaa+PVpNN8jeZfuz101vd6PW7Betsy67dxTzXabzwITC58P9tGxOYRUXc7aLK+1VWVO1QuBU6UtH9ecb4A/CYilheG+Zik7SSNJV3P+X4uH04+ZShpNOkCX61TJY2RNAL4VGHcVq0m3fm1e035JcBbScnp4i7G/wHwoRzDdqQLh3VJeoekMbn3MdIX/ELuf6RODK1otPy3A3vndt+cdLqnqNn8LgP+XdIoSSNJp5O+293gIuJB0qH+FyVtLmlf0sXT77U6jRz/Zrl3s9zf6eIc53b56PZ9pFMf3Y3zBdJ3+R+ShudE8hF6sMwNbEX6vlcDSDqRdMTUiv8B3izpEEmbkq6R1N2+JR0uaR9Jw0gX3Z+n9+vYUYV5n0nafh+MiNWkHfO7JQ3LZwBeXhjvEWBMHo+IeJGUnP9L0g453tGS3pSH/wFwgqQJOfme0c04NyWtJ6uBdZImk06tN5W//x8Bn5W0paQJpJsROs0H/kHSuyRtLOlfSNf+ftrNGHviNtJ3MCL/wPxwH0zz03k59ybdMNK535hJ2gZ2Bcjb/5RGE2myvtVVicQUEb8APk36JfMQacWdWjPYj4HFpC/gZ6TrUgCfI9008Xgu/1GdWVwKXE26A2cZ6YJzd+J7hnxnTz58PSiXryBdQAzgl11M4lukQ9nb8/D1Yuz0GuA3kp4inRo8LSL+kOs+C1yUY3hnNxah7vJHxP2kHdjPSXdc1f4/ybeBCXl+V9SZ7lmka2t3AHfmZevpP1pOI52fXglcTroQe003xn+Wl07b3Zv7O51Buh72R9JNFudExJU9jPODpF+ny0jtdSnpukevRcTdpOsOvybtsPch3azSyrhLSHfOXUrahh4j3V1Wz06kRPYE6TTMDbyUXL8GvF3pn5nP60b4l5LaeS3p4vaxhbr3kX4wPkq6CeHmQt21pKPXhyWtyWWfIN0kcEs+Pf9z4BV5OReQbo64Ng9zbTdiJJ8u/hApwT0GvIvGp+DrmUE65fUw6cfNdwrTfpR0NPBR0rJ+HHhzRKzZcDJ97hLS/mU5aVvv7o/vem4gtfEvgK9ExNW5/GukNrta0pOkGyEO7GI6Xa1vdSlfnLIekjQbWBkRG/yPlpmZdd+A/We5KshPGPhn0i2XZmbWBypxKm8gknQm6cL0OYVTbWZm1ks+lWdmZpXiIyYzM6uUQXWNaeTIkTF+/Ph2h2FmNmAsXrx4TUSMaj5k/xlUiWn8+PEsWrSo3WGYmQ0Yklp5eka/8qk8MzOrFCcmMzOrFCcmMzOrFCcmMzOrFCcmMzOrFCcmMzOrlNISk6Sxkq6TdE9+4d1pdYaRpPMkLZV0h6QDCnWTJN2X6xq+JsLMzAaXMo+Y1gEfjYi9SK8lPjW/v6RoMrBn/kwHvgmQ39txfq6fAEyrM66ZmQ1CpSWmiHgoIm7N3U+S3sNR+6rsKcDFkdwCbCtpZ2AisDQilkXEc8DcPKyZmQ1y/fLkh/x6iFcDv6mpGs3674Zfkcvqldd9EZWk6aSjLcaNa+Uty9Uy/vSftW3ey88+ui3zHYrLbGatK/3mB0lbk95M++GIeKK2us4o0UX5hoURsyKiIyI6Ro2q1OOezMysB0o9YpK0CSkpfS8i6r1OfAUwttA/hvRq7U0blJuZ2SBX5l15Ar4N3BMRX20w2Dzg+Hx33kHA4xHxELAQ2FPSbpI2BabmYc3MbJAr84jpYOA44E5Jt+WyTwHjACJiJjAfOApYCjwDnJjr1kmaAVwFDANmR8SSEmM1M7OKKC0xRcSvqH+tqDhMAKc2qJtPSlxmZjaE+MkPZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKU5MZmZWKaW9KFDSbODNwKqIeFWd+o8Bxxbi2AsYFRFrJS0HngReANZFREdZcZqZWbWUecQ0B5jUqDIizomI/SNif+CTwA0RsbYwyOG53knJzGwIKS0xRcSNwNqmAybTgMvKisXMzAaOtl9jkrQl6cjqh4XiAK6WtFjS9PZEZmZm7VDaNaZuOAa4qeY03sERsVLSDsA1ku7NR2AbyIlrOsC4cePKj9bMzErV9iMmYCo1p/EiYmX+uwq4HJjYaOSImBURHRHRMWrUqFIDNTOz8rU1MUnaBjgU+HGhbCtJwzu7gSOBu9oToZmZ9bcybxe/DDgMGClpBXAGsAlARMzMg70VuDoini6MuiNwuaTO+C6NiCvLitPMzKqltMQUEdNaGGYO6bbyYtkyYL9yojIzs6qrwjUmMzOzv3NiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSiktMUmaLWmVpLsa1B8m6XFJt+XPZwp1kyTdJ2mppNPLitHMzKqnzCOmOcCkJsP8MiL2z5/PA0gaBpwPTAYmANMkTSgxTjMzq5DSElNE3Ais7cGoE4GlEbEsIp4D5gJT+jQ4MzOrrHZfY3qtpNslLZC0dy4bDTxYGGZFLqtL0nRJiyQtWr16dZmxmplZP2hnYroV2DUi9gO+DlyRy1Vn2Gg0kYiYFREdEdExatSoEsI0M7P+1LbEFBFPRMRTuXs+sImkkaQjpLGFQccAK9sQopmZtUHbEpOknSQpd0/MsTwKLAT2lLSbpE2BqcC8dsVpZmb9a+OyJizpMuAwYKSkFcAZwCYAETETeDvwr5LWAc8CUyMigHWSZgBXAcOA2RGxpKw4zcysWkpLTBExrUn9N4BvNKibD8wvIy4zM6u2dt+VZ2Zmth4nJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzq5SWEpOkH0o6WlLLiUzSbEmrJN3VoP5YSXfkz82S9ivULZd0p6TbJC1qdZ5mZjbwtZpovgm8C/i9pLMlvbKFceYAk7qo/wNwaETsC5wJzKqpPzwi9o+IjhZjNDOzQaClxBQRP4+IY4EDgOXANfko50RJmzQY50ZgbRfTvDkiHsu9twBjuhW5mZkNSt05Nbc9cAJwMvA74GukRHVNH8RxErCg0B/A1ZIWS5reJK7pkhZJWrR69eo+CMXMzNpp41YGkvQj4JXAJcAxEfFQrvp+b68BSTqclJgOKRQfHBErJe1AOjq7Nx+BbSAiZpFPA3Z0dERvYjEzs/ZrKTEBF0bE/GKBpM0i4m+9uQYkaV/gQmByRDzaWR4RK/PfVZIuByYCdROTmZkNLq2eyjurTtmvezNjSeOAHwHHRcT9hfKtJA3v7AaOBOre2WdmZoNPl0dMknYCRgNbSHo1oFz1MmDLJuNeBhwGjJS0AjgD2AQgImYCnwG2By6QBLAuH33tCFyeyzYGLo2IK3uycGZmNvA0O5X3JtIND2OArxbKnwQ+1dWIETGtSf3JpBspasuXAfttOIaZmQ0FXSamiLgIuEjS2yLih/0Uk5mZDWHNTuW9OyK+C4yX9JHa+oj4ap3RzMzMeqzZqbyt8t+tyw7EzMwMmp/K++/893P9E46ZmQ11zU7lnddVfUR8qG/DMTOzoa7ZqbzF/RKFmZlZ1spdeWZmZv2m2am8cyPiw5J+Qnqw6noi4p9Ki8zMzIakZqfyLsl/v1J2IGZmZtD8VN7i/PcGSZuSnjAewH0R8Vw/xGdmZkNMq6+9OBqYCTxAel7ebpLeHxELuh7TzMyse1p97cV/kl51vhRA0suBn7H+y/3MzMx6rdXXXqzqTErZMmBVCfGYmdkQ1+yuvH/OnUskzQd+QLrG9A5gYcmxmZnZENTsVN4xhe5HgENz92pgu1IiMjOzIa3ZXXkn9lcgZmZm0PpdeZsDJwF7A5t3lkfEe0uKy8zMhqhWb364BNiJ9EbbG0hvtH2yqxEkzZa0StJdDeol6TxJSyXdIemAQt0kSfflutNbjNHMzAaBVhPTHhHxaeDp/Py8o4F9mowzB5jURf1kYM/8mQ58E0DSMOD8XD8BmCZpQotxmpnZANdqYno+//2LpFcB2wDjuxohIm4E1nYxyBTg4khuAbaVtDMwEVgaEcvy0yXm5mHNzGwIaPUfbGdJ2g74NDCP9EbbT/dy3qOBBwv9K3JZvfIDG01E0nTSERfjxo3rcTDjT/9Zj8c1a8brl5Vp+dlHtzuEPtVSYoqIC3PnDcDufTRv1ZtVF+V1RcQsYBZAR0dHw+HMzGxgaOlUnqTtJX1d0q2SFks6V9L2vZz3CmBsoX8MsLKLcjMzGwJavcY0l/QIorcBbwfWAN/v5bznAcfnu/MOAh6PiIdIT5TYU9Ju+YnmU/OwZmY2BLR6jWlERJxZ6D9L0lu6GkHSZcBhwEhJK4AzgE0AImImMB84ClgKPAOcmOvWSZoBXAUMA2ZHxJKWl8jMzAa0VhPTdZKmkp6VB+moqcuruRExrUl9AKc2qJtPSlxmZjbENHuI65O8dEPCR4Dv5qqNgKdIR0FmZmZ9ptmz8ob3VyBmZmbQ+qk8JP0T8Prce31E/LSckMzMbChr9Xbxs4HTgLvz57RcZmZm1qdaPWI6Ctg/Il4EkHQR8DvAD1g1M7M+1er/MQFsW+jepq8DMTMzg9aPmL4A/E7SdaQ79F4PfLK0qMzMbMhqmpgkbQS8CBwEvIaUmD4REQ+XHJuZmQ1BTRNTRLwoaUZE/AA/GsjMzErW6jWmayT9f0ljJY3o/JQamZmZDUmtXmN6L+kJEB+oKe+rV2CYmZkBrSemCaSkdAgpQf0SmFlWUGZmNnS1mpguAp4Azsv903LZO8sIyszMhq5WE9MrImK/Qv91km4vIyAzMxvaWr354Xf5ZX4ASDoQuKmckMzMbChr9YjpQNLbZv+U+8cB90i6k/RqpX1Lic7MzIacVhPTpFKjMDMzy1pKTBHxx55MXNIk4GukV6RfGBFn19R/DDi2EMtewKiIWCtpOfAk8AKwLiI6ehKDmZkNLC2/j6m7JA0DzgeOAFYACyXNi4i7O4eJiHOAc/LwxwD/LyLWFiZzeESsKStGMzOrnu48Xby7JgJLI2JZRDwHzAWmdDH8NOCyEuMxM7MBoMzENBp4sNC/IpdtQNKWpOtYPywUB3C1pMWSpjeaiaTpkhZJWrR69eo+CNvMzNqpzMSkOmXRYNhjgJtqTuMdHBEHAJOBUyW9vt6IETErIjoiomPUqFG9i9jMzNquzMS0Ahhb6B8DrGww7FRqTuNFxMr8dxVwOenUoJmZDXJlJqaFwJ6SdpO0KSn5bPDaDEnbAIcCPy6UbSVpeGc3cCRwV4mxmplZRZR2V15ErJM0A7iKdLv47IhYIumUXN/5ENi3AldHxNOF0XcELpfUGeOlEXFlWbGamVl1lJaYACJiPjC/pmxmTf8cYE5N2TKg+Gw+MzMbIso8lWdmZtZtTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYpTkxmZlYppSYmSZMk3SdpqaTT69QfJulxSbflz2daHdfMzAan0l6tLmkYcD5wBLACWChpXkTcXTPoLyPizT0c18zMBpkyj5gmAksjYllEPAfMBab0w7hmZjaAlZmYRgMPFvpX5LJar5V0u6QFkvbu5rhImi5pkaRFq1ev7ou4zcysjcpMTKpTFjX9twK7RsR+wNeBK7oxbiqMmBURHRHRMWrUqB4Ha2Zm1VBmYloBjC30jwFWFgeIiCci4qncPR/YRNLIVsY1M7PBqczEtBDYU9JukjYFpgLzigNI2kmScvfEHM+jrYxrZmaDU2l35UXEOkkzgKuAYcDsiFgi6ZRcPxN4O/CvktYBzwJTIyKAuuOWFauZmVVHaYkJ/n56bn5N2cxC9zeAb7Q6rpmZDX5+8oOZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVVKqYlJ0iRJ90laKun0OvXHSrojf26WtF+hbrmkOyXdJmlRmXGamVl1lPZqdUnDgPOBI4AVwEJJ8yLi7sJgfwAOjYjHJE0GZgEHFuoPj4g1ZcVoZmbVU+YR00RgaUQsi4jngLnAlOIAEXFzRDyWe28BxpQYj5mZDQBlJqbRwIOF/hW5rJGTgAWF/gCulrRY0vRGI0maLmmRpEWrV6/uVcBmZtZ+pZ3KA1SnLOoOKB1OSkyHFIoPjoiVknYArpF0b0TcuMEEI2aRTgHS0dFRd/pmZjZwlHnEtAIYW+gfA6ysHUjSvsCFwJSIeLSzPCJW5r+rgMtJpwbNzGyQKzMxLQT2lLSbpE2BqcC84gCSxgE/Ao6LiPsL5VtJGt7ZDRwJ3FVirGZmVhGlncqLiHWSZgBXAcOA2RGxRNIpuX4m8Blge+ACSQDrIqID2BG4PJdtDFwaEVeWFauZmVVHmdeYiIj5wPyaspmF7pOBk+uMtwzYr7bczMwGPz/5wczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKsWJyczMKqXUxCRpkqT7JC2VdHqdekk6L9ffIemAVsc1M7PBqbTEJGkYcD4wGZgATJM0oWawycCe+TMd+GY3xjUzs0GozCOmicDSiFgWEc8Bc4EpNcNMAS6O5BZgW0k7tziumZkNQhuXOO3RwIOF/hXAgS0MM7rFcQGQNJ10tAXwlKT7ehFzIyOBNSVMt2xdxq0v9WMk3VdKm/fDMg/KdaXiBmrsfRZ3L9frXfsihr5UZmJSnbJocZhWxk2FEbOAWd0LrXskLYqIjjLnUYaBGjcM3Ngdd/8bqLEP1Lj7Q5mJaQUwttA/BljZ4jCbtjCumZkNQmVeY1oI7ClpN0mbAlOBeTXDzAOOz3fnHQQ8HhEPtTiumZkNQqUdMUXEOkkzgKuAYcDsiFgi6ZRcPxOYDxwFLAWeAU7satyyYm1BqacKSzRQ44aBG7vj7n8DNfaBGnfpFFH30o2ZmVlb+MkPZmZWKU5MZmZWKU5MdUh6h6Qlkl6U1PB2TknLJd0p6TZJi/ozxgbxtBp35R73JGmEpGsk/T7/3a7BcJVo8948bqudWoj7MEmP5/a9TdJn2hFnLUmzJa2SdFeD+qq2d7O4K9nebRcR/tR8gL2AVwDXAx1dDLccGNnueLsTN+lmkgeA3Um35d8OTKhA7F8GTs/dpwNfqmqbt9KGpJt6FpD+J+8g4DcVaONW4j4M+Gm7Y60T++uBA4C7GtRXrr1bjLuS7d3uj4+Y6oiIeyKijCdIlKrFuKv6uKcpwEW5+yLgLW2MpZnePG6rnar63TcVETcCa7sYpIrt3UrcVocTU+8EcLWkxfnRSANBo8dAtduOkf6Hjfx3hwbDVaHNW2nDKrZzqzG9VtLtkhZI2rt/Quu1KrZ3qwZie5eqzCc/VJqknwM71an6t4j4cYuTOTgiVkraAbhG0r35F1Jp+iDulh/31Ne6ir0bk+n3Nq+jN4/baqdWYroV2DUinpJ0FHAF6en/VUDfGOEAAAH4SURBVFfF9m7FQG3vUg3ZxBQRb+yDaazMf1dJupx0qqTUnWQfxN3Ko6JK0VXskh6RtHNEPJRPwaxqMI1+b/M6evO4rXZqGlNEPFHoni/pAkkjI6LqD0mtYns3NYDbu1Q+lddDkraSNLyzGzgSqHvnTcVU9XFP84D35O73ABsc/VWozXvzuK12ahq3pJ0kKXdPJO0jHu33SLuviu3d1ABu73K1++6LKn6At5J+gf0NeAS4KpfvAszP3buT7mq6HVhCOpVW+bhz/1HA/aQ7tNoed45pe+AXwO/z3xFVbvN6bQicApySu0V62eUDwJ10cXdnxeKekdv2duAW4HXtjjnHdRnwEPB8XsdPGiDt3SzuSrZ3uz9+JJGZmVWKT+WZmVmlODGZmVmlODGZmVmlODGZmVmlODGZmVmlODGZmVmlODGZmVmlODGZlUTSa/K7gTbPT61YIulV7Y7LrOr8D7ZmJZJ0FrA5sAWwIiK+2OaQzCrPicmsRPmZdAuBv5IeN/NCm0MyqzyfyjMr1whga2A46cjJzJrwEZNZiSTNI70pdjdg54iY0eaQzCpvyL6Pyaxsko4H1kXEpZKGATdLekNEXNvu2MyqzEdMZmZWKb7GZGZmleLEZGZmleLEZGZmleLEZGZmleLEZGZmleLEZGZmleLEZGZmlfK/RgD7VS3LuqMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEWCAYAAABbgYH9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAcv0lEQVR4nO3dd7RkVZmw8eclaCOg0NBKbFoMKKgI0yqGz8AYEIwz6pglaOsy4dJPRR3HURjFMA4636iDomTRZcSAihKMgEQV24itIKlJAkaQ9/tj7ytFddW9Vd13V7g+v7XuunXifs8++5z3pDoVmYkkSfNtvXEHIElamEwwkqQmTDCSpCZMMJKkJkwwkqQmTDCSpCZGmmAiIiPi7ms57aqIeHSfYf8nIn7aa9yIeGNEfGTtIp4zpmV1mTao3SdFxAvmad59l2me5n9hRDxyvuY3YJkRER+LiGsj4qxRlj1JImLfiPj2EOM3a88RcWNE7Fg/HxkRh8zXvNcilrXeP8xD2UOtk2nQvX8ahzkTTG3cf6wN8Yq6g9hkFMENKjO/lZk79Rn29sx8IbSv8Mx8fGYeNdd4g2xIsy3TsHrtODJzl8w8bT7mP4SHAY8BtsvMB3YPjIh9IuLbEXFdRFweER+OiE07ht8+Ij4aEdfX4a8eZfCToLM9zyYiTouIOcfLzE0y86J1jWsh7qC17gY9g3liZm4C7A48APjX7hHGmSUXmgVclzsAqzLz932G3wk4BNgGuDewHfDujuH/DtyjzudRwOsiYq9m0VYLcX1M8zLVM2Ev74/QWreXzJz1D1gFPLqj+93AF+vnBF4G/Bz4Ve33IuAXwDXAicA2HdMm8ErgIuCqOq/16rC7AacAV9dhxwGbdcXxBuDHwLXAx4BFddgjgUt6xUzZKR1bP/+mxnBj/XtEjfO+HdPeGfgjsKRHXawPvKfGd1Fd9gQ2qMNPA15YP98dOB34XR3/E7X/N+s0v68x/MtM/MDrgcuBY/osU7/l3xf4dlesWWNYAdwE/KWW94UedXR74DDg0vp3GHD7zroFXgNcCVwG7DdLe9mmrvdrajt4Ue1/APAn4K81jrcO0Pb+CfhhR/dvgcd2dB8MnNBn2lnjpiSzo4HVwK8pB00zbXFf4DvAf9XlOAQ4EvgAcFKN/zvAVrWurgV+AuzWMf+DgF8CN9R19tSOYWusr67Yn1djuhp4E/3b8yLg2DredcD3gbsA/1Hr+U811v83y/aawN3r5yOBDwEn17hPB3aow5bR0dY72zvlYKBz3V7X0a7eQ9nurqjz3qhj+tfW9XIpsH9nLD3q5LS6XN+hbJ93B/YDVtZYLwJePMT634LSTq8HzqK0pW93DH9Irc/f1f8P6YrlEOC7dXm/UOd3XJ3f94FlfZZjph5fUOvlKuBNHcOPBA7pXo6u/cBrgR9Q9iFH1HV+Uq2HrwObd5W1otbxZcBrOua1Hre206uBTwKLu6Y9oMb5Tfq0t1m34WESDLA9cCFwcEfjPBlYDGwE7FkrbHdK4/pv4JtdO71T6/hLgZ9x2x3yY+p0S+oCHdYVx49qDIspDe2QIRPMTKV1biQfAN7Z0X0gdSfcoy5eQtmRzMRwKv0TzMcpO4f16op5WPfOv6sR3Qy8sy7/Rn2Wqd/y70ufBNOr0faoo7cBZ1CS6xLKhnNwV2xvAzYE9gb+QG3EPero9Fqni4D7U3bg/zjIjrXHvA6jJhBg87pMd+kY/jQ6ElDXtLPGTUkunwc2re3iZ8ABHXHeDLwC2KCujyMpbfsf6rKdAvwKeD7lwOMQ4NSO8p9OSbbrUQ4ifg9sPVc9ADtTdloPr23hvTWWXu35xZSd2x1qDP8A3LG7LXa1ib9tr33ayQ0dZb9vJk5mSTCztMHDKDvxxbWevwC8ow7bi5J07gNsDBzP3AnmN8AudZ1sCOxDOTANysHiH4DdB1z/J1B2qBvXGH7bsayLKQcNz6tlPat2b9ERyy9q2XeiHED8DHh0Hf9o4GN9lmOmHj9MaVe7An8G7t1rW6X3fuAMSlLZlpI8zwV2q+vsFOAtXWV9vC7nfSnb40xbelWd13Z12v8FPt417dF12o2Ypb313YYH2MhXUY9KKEdVH+C2jXPPjnGPAN7V0b0J5eh5Wcf4e3UMfynwjT7lPgU4ryuOl3R07w38cpaVMGiCeRBwMbcevZ4NPKNPTKd0xfBY+ieYo4HDKfcbuufTK8H8hXpGMssy9Vv+fVm3BPNLYO+OYY+jXMqaieOPXXV2JbBHj+XannIUu2lHv3cAR861Y+0xr8dQNup7dsw7u+roMTNx9pi+b9yUjePPwM4dw14MnNYR52+65nck8OGO7lcAKzu670s9cu8Tz/nAk+eqB+Df6Dgro2zcf6F3e96fcjBwvx7z+Vtb7GoTe/bo19lOOsvepK7P7RkywVB2+r8H7tbR78Hceub0UeDQjmH3ZO4E87Y52szngAMHXP83AffqGPZ2bk0wzwPO6pr394B9O2LpPOv4T+Ckju4nAuf3iXGmHrfr6HcW8Mxe2yq99wPP6ej+NPDBrnb5ua6yOpfzXcAR9fNK6sFf7d661ssGHdPu2DG8b3vr9zfodcynZOZmmblDZr40M//YMezijs/bUJIQAJl5I+V0ats+4/+6TkNE3DkiToiI30bE9ZRTsS274ug57brIzDMpG8IjIuJelDOpE/uMvk2PGPp5HWUjO6s+sbX/HKGszsw/zTHOvC9/dZv11mPeV2fmzR3df6DsfHrN55rMvKFrXtv2GLeviNiDckT7tMz8We19Y/1/x45R70g54u6nX9xbArdjzWXu105nXNHx+Y89uv9WJxHx/Ig4vz6wcB3lKLm7PfdymzaW5X7V1X3GPQb4KnBCRFwaEe+KiA3nmH+v5eo5vG6/17B27WwJ5Uj3nI46+ErtD8NtS2vEBhARj4+IMyLimjr/vbltHfdb/0soO9F+5XdvDzPDO9vHwG2hj8t7xDWoYcvut9/YAfhsx/pZSTmguEufaYdub/Nxoyw7Pl9agwYgIjamXJv8bcc423d8XlqngXKkm5TseEfguZQdNANMuzaxdjqqlvc84FOz7Ogv6xFD74IyL8/MF2XmNpSj4w/M8eRYv9g69Vv+31M2ZgAiYqsh532b9cba1e3MfBZ3PvlV5/XbPuOvISJ2oyT4/TPzGzP9M/NaSv3v2jH6rpRLtsO6inKk1r3MnXEOsj56iogdKJdAXk65rLIZ5fJmd3vu5TZtLCLuQNmG1pCZN2XmWzNzZ8o9gydQLtnNFv9cy9VZ9iaUy0WXUtoYdLQzyj2ofvO9irKz26UenG6WmXfK8rAQDLEt9SojIm5POXp/D+Wy6WbAlxmsjldTLp/1K797e5gZPnA7Xge32Za5bR2vrX77jYuBx3esn80yc1Fm9twO5mhvPc33kxjHA/tFxP1rA3g7cGZmruoY57URsXlEbE+53/GJ2n9T6qW4iNiWciOr28siYruIWAy8sWPaQa0GbgF27Op/DPBUSpI5epbpPwm8ssawOeUGWU8R8fSI2K52XktZUX+t3Vf0iGEQ/Zb/AmCXWu+LKJdROs1V3seBf42IJRGxJeUyzbHDBpeZF1NOod8REYsi4n6Um4THDTJ9RNyHcpT7isz8Qo9Rjq5xbl7PNl9EuaQwbJx/pazL/4iITWtCeDVrscx9bExZ36sBImI/yhnMID4FPCEiHhYRt6PcQ+i5nUbEoyLivhGxPuXm8k2sexvbu6Psgynb78WZuZqyg31uRKxfz8jv1jHdFcB2dToy8xZKkv2viLhzjXfbiHhcHf+TwL4RsXNNom8ZMs7bUe4brAZujojHUy5Zz6mu/88A/x4Rd4iInSk33Wd8GbhnRDw7IjaIiH+h3Bv74pAxro3zKetgcT1QfNU8zPPNdTl3oTwYMbPf+BBlG9gBoG7/T+43kznaW0/zmmDqEeebKUcWl1Ea4DO7Rvs8cA6lIr9EuW8D8FbKwwG/q/0/06OI44GvUZ4YuYhyY3WY+P5AfRKlnhbuUftfQrlRlsC3ZpnFhymniBfU8XvFOOMBwJkRcSPliPzAzPxVHfbvwFE1hmcMsQg9l79eRnob5QmSnwPd30c4Ati5lve5HvM9hHLv6QfAD+uyre0X7p5FuX57KfBZyg3Hkwec9jWUyxdHRPne1Y0R0XmG8hbK/aJfUx4meHdmfmUt43wF5WjxIkp9HU+5L7DOMvPHlOvy36PseO9LeShjkGkvpDzpdTxlG7qW8jRUL1tREtL1lMsbp3Nrknwf8LQoX2p9/xDhH0+p52soN3Gf0zHsRZQDv6spN9u/2zHsFMrZ5OURcVXt93rKzfAz6mXvrwM71eU8ifIQwCl1nFOGiJF6GfaVlER1LfBs+l/a7uXllEtJl1MOUj7WMe+rKUfnr6Es6+uAJ2TmVWvOZt4dQ9m/rKJs68MeRPdyOqWOvwG8JzO/Vvu/j1JnX4uIGyg3/B80y3xma289Rb1583cvIj4KXJqZa3zHR5I0vKn9stV8iohllO9c7DbeSCRp4fi7/zZsRBxMuQH77o5LWJKkdeQlMklSE3/3ZzCSpDYm8h7MlltumcuWLRt3GJI0Vc4555yrMnPJ3GOOxkQmmGXLlnH22WePOwxJmioRMcgbEUbGS2SSpCZMMJKkJkwwkqQmTDCSpCZMMJKkJkwwkqQmRpJgImKziPhURPwkIlZGxINHUa4kaXxG9T2Y9wFfycyn1d+LuMNcE0iSplvzBBMRdwQeTvnNbjLzL5TfGJckLWCjOIPZkfKrcx+LiF0pPzZ2YP2t8b+JiBXACoClSwf59VSN27KDvjS2slcdus/YypY0mFHcg9mA8kuVH8zM3Si/IrjGTw1n5uGZuTwzly9ZMjGv0pEkraVRJJhLgEsy88za/SlKwpEkLWDNE0xmXg5cHBE71V7/CPy4dbmSpPEa1VNkrwCOq0+QXQTsN6JyJUljMpIEk5nnA8tHUZYkaTL4TX5JUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMbjKKQiFgF3AD8Fbg5M5ePolxJ0viMJMFUj8rMq0ZYniRpjLxEJklqYlQJJoGvRcQ5EbGi1wgRsSIizo6Is1evXj2isCRJrYwqwTw0M3cHHg+8LCIe3j1CZh6emcszc/mSJUtGFJYkqZWRJJjMvLT+vxL4LPDAUZQrSRqf5gkmIjaOiE1nPgOPBX7UulxJ0niN4imyuwCfjYiZ8o7PzK+MoFxJ0hg1TzCZeRGwa+tyJEmTxceUJUlNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2YYCRJTZhgJElNmGAkSU2MLMFExPoRcV5EfHFUZUqSxmeUZzAHAitHWJ4kaYxGkmAiYjtgH+AjoyhPkjR+ozqDOQx4HXBLvxEiYkVEnB0RZ69evXpEYUmSWmmeYCLiCcCVmXnObONl5uGZuTwzly9ZsqR1WJKkxkZxBvNQ4EkRsQo4AdgzIo4dQbmSpDFqnmAy8w2ZuV1mLgOeCZySmc9tXa4kabz8HowkqYmhEkxEfDoi9omItUpMmXlaZj5hbaaVJE2XYRPFB4FnAz+PiEMj4l4NYpIkLQBDJZjM/HpmPgfYHVgFnBwR342I/SJiwxYBSpKm09CXuiJiC2Bf4IXAecD7KAnn5HmNTJI01TYYZuSI+AxwL+AY4ImZeVkd9ImIOHu+g5MkTa+hEgzwkcz8cmePiLh9Zv45M5fPY1ySpCk37CWyQ3r0+958BCJJWlgGOoOJiK2AbYGNImI3IOqgOwJ3aBSbJGmKDXqJ7HGUG/vbAe/t6H8D8MZ5jkmStAAMlGAy8yjgqIj458z8dOOYJEkLwKCXyJ6bmccCyyLi1d3DM/O9PSaTJP0dG/QS2cb1/yatApEkLSyDXiL73/r/rW3DkSQtFINeInv/bMMz85XzE44kaaEY9BLZrL9GKUlSt2GeIpMkaWCDXiI7LDNfFRFfALJ7eGY+ad4jkyRNtUEvkR1T/7+nVSCSpIVl0Etk59T/p0fE7ShvVE7gp5n5l4bxSZKm1LCv698H+BDwS8r7yO4aES/OzJNaBCdJml7Dvq7/P4FHZeYvACLibsCXABOMJOk2hn1d/5UzyaW6CLhyHuORJC0Qgz5F9k/144UR8WXgk5R7ME8Hvt8oNknSFBv0EtkTOz5fATyifl4NbD6vEUmSFoRBnyLbr3UgkqSFZdinyBYBBwC7AItm+mfm/vMclyRpyg17k/8YYCvKL1yeTvmFyxtmmyAiFkXEWRFxQURcGBG+kVmS/g4Mm2DunplvBn5f30+2D3DfOab5M7BnZu4K3B/YKyL2GD5USdI0GTbB3FT/XxcR9wHuBCybbYIsbqydG9a/Nd5nJklaWIb9ouXhEbE58GbgRMovXL55rokiYn3KK//vDvxPZp7ZY5wVwAqApUuXDhmWJM2fZQd9aSzlrjp0n7GU28pQCSYzP1I/ng7sOMR0fwXuHxGbAZ+NiPtk5o+6xjkcOBxg+fLlnuFI0pQb6hJZRGwREf8dEedGxDkRcVhEbDHo9Jl5HXAasNeQcUqSpsyw92BOoLwa5p+BpwFXAZ+YbYKIWFLPXIiIjYBHAz8ZPlRJ0jQZ9h7M4sw8uKP7kIh4yhzTbA0cVe/DrAd8MjO/OGS5kqQpM2yCOTUinkl5FxmUs5hZ74Zl5g+A3dYiNknSFBv0ZZc3UB4tDuDVwLF10HrAjcBbmkQnSZpag76LbNPWgUiSFpZhL5EREU8CHl47T/N+iiSpl2EfUz4UOBD4cf07sPaTJOk2hj2D2Ru4f2beAhARRwHnAQfNd2CSpOk27PdgADbr+Hyn+QpEkrSwDHsG83bgvIg4lfJE2cOBN8x7VJKkqTdwgomI9YBbgD2AB1ASzOsz8/JGsUmSptjACSYzb4mIl2fmJylvUpYkqa9h78GcHBH/NyK2j4jFM39NIpMkTbVh78HsT/lG/0u7+g/86n5J0t+HYRPMzpTk8jBKovkW8KH5DkqSNP2GTTBHAdcD76/dz6r9njGfQUmSpt+wCWanzNy1o/vUiLhgPgOSJC0Mw97kPy8i9pjpiIgHAd+Z35AkSQvBsGcwDwKeHxG/qd1LgZUR8UMgM/N+8xqdJGlqDZtg9moShSRpwRkqwWTmr1sFIklaWNbmZZeSJM3JBCNJasIEI0lqwgQjSWrCBCNJasIEI0lqwgQjSWrCBCNJaqJ5gqk/TnZqRKyMiAsj4sDWZUqSxm/YV8WsjZuB12TmuRGxKXBORJycmT8eQdmSpDFpfgaTmZdl5rn18w3ASmDb1uVKksZrFGcwfxMRy4DdgDN7DFsBrABYunTpKMPSFFp20JfGUu6qQ/cZS7kwvmWW1tbIbvJHxCbAp4FXZeb13cMz8/DMXJ6Zy5csWTKqsCRJjYwkwUTEhpTkclxmfmYUZUqSxmsUT5EFcASwMjPf27o8SdJkGMUZzEOB5wF7RsT59W/vEZQrSRqj5jf5M/PbQLQuR5I0WfwmvySpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpCROMJKkJE4wkqQkTjCSpiZEkmIj4aERcGRE/GkV5kqTxG9UZzJHAXiMqS5I0AUaSYDLzm8A1oyhLkjQZNhh3ADMiYgWwAmDp0qVrPZ9lB31pvkKSJK2DibnJn5mHZ+byzFy+ZMmScYcjSVpHE5NgJEkLiwlGktTEqB5T/jjwPWCniLgkIg4YRbmSpPEZyU3+zHzWKMqRJE0OL5FJkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmjDBSJKaMMFIkpowwUiSmhhJgomIvSLipxHxi4g4aBRlSpLGq3mCiYj1gf8BHg/sDDwrInZuXa4kabxGcQbzQOAXmXlRZv4FOAF48gjKlSSN0QYjKGNb4OKO7kuAB3WPFBErgBW188aI+GnH4C2Bq5pF2I5xj17T2OOdreY8tXVu3PNowPY1W+w7zFsw82AUCSZ69Ms1emQeDhzecwYRZ2fm8vkOrDXjHr1pjd24R2ta44bpin0Ul8guAbbv6N4OuHQE5UqSxmgUCeb7wD0i4q4RcTvgmcCJIyhXkjRGzS+RZebNEfFy4KvA+sBHM/PCIWfT89LZFDDu0ZvW2I17tKY1bpii2CNzjdshkiStM7/JL0lqwgQjSWpi4hJMRDw9Ii6MiFsiou+jeBGxKiJ+GBHnR8TZo4yxnyFin6hX50TE4og4OSJ+Xv9v3me8iajzueovivfX4T+IiN3HEWe3AeJ+ZET8rtbv+RHxb+OIs1tEfDQiroyIH/UZPpH1DQPFPql1vn1EnBoRK+s+5cAe40xsvf9NZk7UH3BvYCfgNGD5LOOtArYcd7zDxk550OGXwI7A7YALgJ3HHPe7gIPq54OAd05qnQ9Sf8DewEmU72DtAZw5AW1jkLgfCXxx3LH2iP3hwO7Aj/oMn7j6HiL2Sa3zrYHd6+dNgZ9NQzvv/pu4M5jMXJmZP517zMkzYOyT+OqcJwNH1c9HAU8ZYyxzGaT+ngwcncUZwGYRsfWoA+0yiet9IJn5TeCaWUaZxPoGBop9ImXmZZl5bv18A7CS8laUThNb7zMmLsEMIYGvRcQ59TUz06LXq3O6G86o3SUzL4PSsIE79xlvEup8kPqbxDoeNKYHR8QFEXFSROwymtDW2STW9zAmus4jYhmwG3Bm16CJr/dRvCpmDRHxdWCrHoPelJmfH3A2D83MSyPizsDJEfGTerTS1DzEPtCrc+bbbHEPMZux1HmXQepvLHU8h0FiOhfYITNvjIi9gc8B92ge2bqbxPoe1ETXeURsAnwaeFVmXt89uMckE1XvY0kwmfnoeZjHpfX/lRHxWcoliOY7u3mIfSyvzpkt7oi4IiK2zszL6in2lX3mMZY67zJI/U3i64nmjKlzB5KZX46ID0TElpk5cS9l7DKJ9T2QSa7ziNiQklyOy8zP9Bhl4ut9Ki+RRcTGEbHpzGfgsUDPp0Qm0CS+OudE4AX18wuANc7EJqjOB6m/E4Hn16ds9gB+N3MJcIzmjDsitoqIqJ8fSNk+rx55pMObxPoeyKTWeY3pCGBlZr63z2iTX+/jfsqg+w94KiUz/xm4Avhq7b8N8OX6eUfKUzgXABdSLk9NRex569MfP6M8VTT22IEtgG8AP6//F09ynfeqP+AlwEvq56D8yN0vgR8yy9OIExb3y2vdXgCcATxk3DHXuD4OXAbcVNv3AdNQ3wPGPql1/jDK5a4fAOfXv72npd5n/nxVjCSpiam8RCZJmnwmGElSEyYYSVITJhhJUhMmGElSEyYYSVITJhhJUhMmGGkAEfGA+psbi+pbDS6MiPuMOy5pkvlFS2lAEXEIsAjYCLgkM98x5pCkiWaCkQZU3yH2feBPlFeK/HXMIUkTzUtk0uAWA5tQfmFw0ZhjkSaeZzDSgCLiRMovUd4V2DozXz7mkKSJNpbfg5GmTUQ8H7g5M4+PiPWB70bEnpl5yrhjkyaVZzCSpCa8ByNJasIEI0lqwgQjSWrCBCNJasIEI0lqwgQjSWrCBCNJauL/A3DQbljB4pCTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAEWCAYAAABSaiGHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAbZklEQVR4nO3debgkZXn38e8PUAZZBGSisjluURHXjNEYo7hFBLcYTTQuIEb0SlR89VUxaHBBxSWKMW9icANEUC81EYMmYlhMXFBQjMK4IgKyDZsCGhW53z+qDjZN95w+Z855eqbn+7muc52urup67nrqqbq7nqquSlUhSdJy22zaAUiSNg0mHElSEyYcSVITJhxJUhMmHElSEyYcSVITU004SSrJXRb52fOSPGrMuD9K8t1R0yb5myTvW1zE88a0ql+mLfrhzybZb4nmPXaZlmj+ZyfZa6nmN2GZSfLBJFcl+WrLsjckSfZP8t8LmH7Z2nOSa5PcqX99VJLDlmrei4hl0fuHJSh7QetkYzC8f5qGBSecvrH/om+Yl/Y7jG2WI7jFqqr/qqq7jRn3pqr6S1j+FVBVj62qo+ebbpINa13LtFCjdiRVdc+qOnUp5r8ADwEeDexaVb8/PDLJXklu6Nva3N9+A+O3TPKBJD9LckmSl7YMfkMw2J7XJcmpSeadrqq2qapz1zeuWdxha/0t9gjn8VW1DXB/4AHAq4cnmGYWnTUzXJd3AM6rquvWMc1F/U5w7m8wgb8WuGs/n4cDr0iy9/KF25nF9bExL1N/pOzpgYYW217WayVV1U+AzwJ79kFUkr9O8n3g+/17z0vygyRXJjkhyc5Ds9knyblJLk/ytrmGk+TOSU5OckU/7sNJth/67AOSnNN3yXwwyYr+s3sluXBUzElem+TYfvAL/f+r+2/PD+vjvNfA9L/TH9GtHDGvzZO8vY/vXGDfofE3fqtMcpckpyX5aT/9R/v352L4Zh/Dn8/Fn+SVSS4BPjhmmcYt/82+Xc4dRSU5EHgG3c752iSf7scPdtNsmeSIJBf1f0ck2XKwbpO8LMllSS5O8pxRdd1Pv3O/3q/s28Hz+vefC7wP+IM+jteNm8c6PBt4Q1VdVVVrgPcC+4+JY51xJ7l1kmOSrE3y4ySvHmiL+yf5YpJ3JrkSeG26o8R/TNdtem0//nZ9XV2V5DtJ7jcw/4OT/DDJNf06+5NJFzLJs/qYrkhyyNC4G9tzkhVJju2nuzrJ15LcNskbgT8C/qGP9R/66Udtr8NH2zslOamP+7Qkd+inu1nvwFx7T3IP4D38dt1e3Y/fst9ezk/XO/KeJFsNfP7l/Xq5KMkB89TJqUnemOSLwM+BOyV5TpI1faznJnn+wPTzrf/b9O30Z+m6d+88VN6D+/r8af//wUOxHJbkS3PbVD+/D/fz+1qSVWOWY64e9+vr5fLBdZyh3ogM7QfSbbcvT/I/Sa5L8v5+nX+2r4fPJ9lhqNgD+jq+OMnLBua12UA7vSLJx5LsOBTnc5OcD5w8rr2ta71RVQv6A84DHtW/3g04m26jByjgJGBHYCvgEcDldEdCWwLvBr4wMK8CTumn3x34HvCX/bi70HW3bAmspEsORwzF8e0+hh2BLwKH9eP2Ai4cE/NrgWP716v6GLYYmPYfgbcMDB8EfHpMXbwA+M5ADKcMzg84dWB5jgcOoUvyK4CHDNXDXQaG9wKuB97SL/9WY5Zp3PLvD/z3UKw3lgEcNTftmDp6PfAV4Hf6uv/SwDqei+31wC2Afeg2+B3G1NFpfZ2uAO4LrAUeOS7Ooc/uBfwKuBT4EfBOYOt+3A79Mt12YPqnAN9ax7zGxg0cA3wK2LZvF98DnjsQ5/XAi4At+vVxFF3b/r1+2U7uY3w2sDlwGHDKQPlPBXbu1/+fA9cBt5+vHoA9gGuBh/Zt4R19LKPa8/OBTwO36mP4PWC74bY41CZu3F7HtJNrBsp+11ycjN52bixj1DIBRwAn9OVt28f65n7c3v163hPYGjiOoe1iaF6nAucD9+zXyS3ovvDdGQjwsH793n/C9f8R4GN92XsCPxlY1h2Bq4Bn9WU9vR++zUAsP+jLvjVwDl37eVQ//THAB8csx1w9vpeuXd0H+CVwj1HbKqP3A18BbgvsAlwGfB24X7/OTgYOHSrr+H4570W3Pc61pZf089q1/+w/A8cPffaY/rNbsY72NnabXkiyGVjAa4GrgR/T7UwGG+sjBqZ9P/DWgeFtgF8Dqwam33tg/F8B/zmm3CcB3xiK4wUDw/sAP1zHSpk04TwQuADYrB8+A/izMTGdPBTDHzM+4RwDHEl3vmJ4PqMSzq+AFfM0tHHLvz/rl3B+COwzMO4xdF1fc3H8YqjOLgMeNGK5dgN+A2w78N6bgaPGxTn0+dvR7XA3A+5I96XjnwfmXUN19Oi5OEfMa2zcdBvLL4E9BsY9Hzh1IM7zh+Z3FPDegeEXAWsGhu8FXL2OZTsLeOJ89QD8LfCRgeGt+7Yxqj0fQPfl4N4j5nMqoxPOI0a8N9hOBsvepl+fu7HAhEOXBK4D7jzw3h8AP+pffwA4fGDc7zJ/wnn9uPrtp/lX4KAJ1/+vgbsPjHsTv004zwK+OjTvLwP7D8RyyMC4vwM+OzD8eOCsMTHO1eOuA+99FXjaqG2V0fuBZwwMfwL4p6F2+a9DZQ0u51uB9/ev19B/GeyHb9/XyxYDn73TwPix7W3c32K71J5UVdtX1R2q6q+q6hcD4y4YeL0zXVICoKquBa6gy8Sjpv9x/5m5rqyPJPlJkp8BxwI7DcUx8rPro6pOp9swHpbk7nRHWieMmXznETGM8wq6je6r6a4IW2eXAbC2qv53nmmWfPl7N1lvI+Z9RVVdPzD8c7qd0aj5XFlV1wzNa5cR095MVV1SVedU1Q1V9SO6OnxKP/ra/v92Ax/Zju4b+Tjj4t4JuCU3X+Zx7XTOpQOvfzFi+MY6SfLsJGf1XQ9X032LHm7Po9ykjVV3vuuKMdN+CPgP4CN9l8lbk9xinvmPWq6R4/vt90oW185W0n0TPnOgDv69fx8Wti3dLDaAJI9N8pV03bdX030JG6zjcet/Jd1OdVz5w9vD3PjB9jFxWxjjkhFxTWqhZY/bb9wB+JeB9bOG7gvGbcd8dsHtbTlOtNXA64voFgKAJFsDt6E7XJ2z28Dr3fvPQPdNuOiy53bAM+l22Ezw2cXEOujovrxnAR9fx47/4hExjC6o23k+r6p2pvv2/I9Z95Vp42IbNG75r6PbuAFIcrsFzvsm643F1e3cfHZMsu3QvH4yZvr5FH0bqKqr6Or/PgPj70PXxbtQl9N9kxte5sE4J1kfI/XnPd4LvJCuG2Z7uu7Q4fY8yk3aWJJb0W1DN1NVv66q11XVHsCDgcfRdfGtK/75lmuw7G3oupcuomtjMNDO6I5Ix833crqd3z37L6vbV9Wtq7v4CBawLY0qI905xk8Ab6frZt0e+AyT1fFauu62ceUPbw9z4xfbjhfiJtsyN63jxRq337gAeOzA+tm+qlZUd65+zo11Pk97G2m5r+w4DnhOkvv2DeJNwOlVdd7ANC9PskOS3ejOl3y0f39b+q67JLsALx8x/79Osmt/YutvBj47qbXADcCdht7/EPAndEnnmHV8/mPAi/sYdgAOHjdhkqcm2bUfvIpuxf2mH750RAyTGLf83wTu2df7Crpul0HzlXc88OokK5PsRNetc+w6ph+pqi6gO+R+c3+C8d7Ac4EPT/L5/gTp7unsBhxOd55lzjF9nDv0R6PPo+uCWGicv6Fbl29Msm2fIF7KIpZ5jK3p1vdagP5k9Z4TfvbjwOOSPCTJLenOQYzcbpM8PMm9kmwO/Iwuia5vG9tnoOw30G2/F1TVWrod7jPTXTxzADc90X4psGv/OarqBrqk+84kv9PHu0uSx/TTfwzYP8kefVI9dIFx3pLuvMNa4Pokj6Xr4p5Xv/4/SXcxyK2S7AHsNzDJZ4DfTfIXSbZI8ud0Xb3/tsAYF+MsunWwY//F8SVLMM/X9Mt5T+A5/Ha/8R66beAOAP32/8RxM5mnvY20rAmnqv4TeA3dN4+L6Rrk04Ym+xRwJl3Fnkh33gfgdXQXG/y0f/+TI4o4DvgccG7/t6AfqVXVz4E3Al/sDyMf1L9/Id2JtwL+ax2zeC/dIeU3++lHxTjnAcDpSa6l66I7qO8mgi4hHN3H8GcLWISRy19V36PbMX2e7uqj4d9DvB/Yoy/vX0fM9zC6c1f/A3yrX7bF/gDw6XT9vxcB/0J3AvOkCT97f7q+8uvoEte3gRcPjD+U7nzTj+kuTnhbVf37IuN8UV/OuXT1dRzdeYX1VlXn0PXrf5luR3wvuos8Jvns2cBf9/FcTPdlZeQVmHTffj9Ot/GvoauTuaT5LuAp6a6g+/sFhH8cXT1fSXdS+BkD455H90XwCrqT918aGHcy3dHmJUku7997Jd3J9a/03eSfB+7WL+dn6S4qOLmf5uQFxEjfbftiusR1FfAXjO8KH+WFdF1Pl9B9afngwLyvoPv2/jK6ZX0F8Liquvzms1lyH6Lbv5xHt60v9Ev1KKfR1fF/Am+vqs/177+Lrs4+l+QaugsIHriO+ayrvY2U/uSPhiT5AN1vQG72GyNJ0sJttD/2Wk7prpl/Mt2lhZKkJeCvc4ckeQNd183bBrq8JEnryS41SVITHuFIkprYKM7h7LTTTrVq1apphyFJG5Uzzzzz8qq62X0gp2WjSDirVq3ijDPOmHYYkrRRSTLJHRuasUtNktSECUeS1IQJR5LUhAlHktSECUeS1IQJR5LUxLIlnCQfSPfs8G8PvLdjuuejf7//P/ysbUnSjFrOI5yj6J5TPuhgukdI35Xu1thjnx8jSZoty5ZwquoLdM/QGPREuqdp0v9/0nKVL0nasLS+08Btq+pigKq6eO7Jf6MkORA4EGD33Sd52qzU3qqDT5xa2ecdvu/Uyp6WadX3pljXy2GDvWigqo6sqtVVtXrlyg3mVkCSpEVqnXAuTXJ7gP7/ZY3LlyRNSeuEcwKwX/96P+BTjcuXJE3Jcl4WfTzwZeBuSS5M8lzgcODRSb4PPLofliRtApbtooGqevqYUY9crjIlSRuuDfaiAUnSbDHhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKamErCSfJ/kpyd5NtJjk+yYhpxSJLaaZ5wkuwCvBhYXVV7ApsDT2sdhySprWl1qW0BbJVkC+BWwEVTikOS1EjzhFNVPwHeDpwPXAz8tKo+NzxdkgOTnJHkjLVr17YOU5K0xKbRpbYD8ETgjsDOwNZJnjk8XVUdWVWrq2r1ypUrW4cpSVpi0+hSexTwo6paW1W/Bj4JPHgKcUiSGppGwjkfeFCSWyUJ8EhgzRTikCQ1NI1zOKcDHwe+Dnyrj+HI1nFIktraYhqFVtWhwKHTKFuSNB3eaUCS1IQJR5LUhAlHktSECUeS1IQJR5LUhAlHktSECUeS1IQJR5LUhAlHktSECUeS1IQJR5LUhAlHktSECUeS1IQJR5LUhAlHktTEVJ6HIy21VQefOO0QNhnWtRbLIxxJUhMmHElSEyYcSVITJhxJUhMmHElSEyYcSVITJhxJUhMmHElSEyYcSVITJhxJUhMmHElSExMlnCSfSLJvEhOUJGlRJk0g/wT8BfD9JIcnufsyxiRJmkETJZyq+nxVPQO4P3AecFKSLyV5TpJbLGeAkqTZMHEXWZLbAPsDfwl8A3gXXQI6aVkikyTNlImeh5Pkk8DdgQ8Bj6+qi/tRH01yxnIFJ0maHZM+gO19VfWZwTeSbFlVv6yq1QstNMn2wPuAPYECDqiqLy90PpKkjcekXWqHjXhvfRLEu4B/r6q7A/cB1qzHvCRJG4F1HuEkuR2wC7BVkvsB6UdtB9xqMQUm2Q54KN35IKrqV8CvFjMvSdLGY74utcfQJYZdgXcMvH8N8DeLLPNOwFrgg0nuA5wJHFRV1y1yfpKkjcA6E05VHQ0cneRPq+oTS1jm/YEXVdXpSd4FHAy8ZnCiJAcCBwLsvvvuS1S0JC3cqoNPnFrZ5x2+79TKXmrzdak9s6qOBVYleenw+Kp6x4iPzedC4MKqOr0f/jhdwhme95HAkQCrV6+uRZQjSdqAzNeltnX/f5ulKrCqLklyQZK7VdV3gUcC5yzV/CVJG6b5utT+uf//uiUu90XAh5PcEjgXeM4Sz1+StIGZr0vt79c1vqpevJhCq+osYMG/35Ekbbzm61I7s0kUkqSZN8lVapIkrbf5utSOqKqXJPk03S1obqKqnrBskUmSZsp8XWof6v+/fbkDkSTNtvm61M7s/5/WX1F2d7ojne/2t6SRJGkikz6eYF/gPcAP6e6ndsckz6+qzy5ncJKk2THp4wn+Dnh4Vf0AIMmdgRMBE44kaSKTPp7gsrlk0zsXuGwZ4pEkzaj5rlJ7cv/y7CSfAT5Gdw7nqcDXljk2SdIMma9L7fEDry8FHta/XgvssCwRSZJm0nxXqXmPM0nSkpj0KrUVwHOBewIr5t6vqgOWKS5J0oyZ9KKBDwG3o3sC6Gl0TwC9ZrmCkiTNnkkTzl2q6jXAdf391fYF7rV8YUmSZs2kCefX/f+rk+wJ3BpYtSwRSZJm0qQ//DwyyQ7Aa4AT6J4A+ppli0rSvFYdfOK0Q5AWZKKEU1Xv61+eBtxp+cKRJM2qibrUktwmybuTfD3JmUmOSHKb5Q5OkjQ7Jj2H8xG6W9n8KfAU4HLgo8sVlCRp9kx6DmfHqnrDwPBhSZ60HAFJkmbTpEc4pyR5WpLN+r8/o7tbtCRJE5nv5p3X0N2sM8BLgWP7UZsB1wKHLmt0kqSZMd+91LZtFYgkabZNeg6HJE8AHtoPnlpV/7Y8IUmSZtGkl0UfDhwEnNP/HdS/J0nSRCY9wtkHuG9V3QCQ5GjgG8DByxWYJGm2THqVGsD2A69vvdSBSJJm26RHOG8CvpHkFLor1h4KvGrZopIkzZx5E06SzYAbgAcBD6BLOK+sqkuWOTZJ0gyZN+FU1Q1JXlhVH6O7U7QkSQs26Tmck5L83yS7Jdlx7m9ZI5MkzZRJz+EcQHfHgb8aet9HFUiSJjJpwtmDLtk8hC7x/BfwnuUKSpI0eybtUjsauAfw98C7+9dHr0/BSTZP8o0k3rFAkjYBkx7h3K2q7jMwfEqSb65n2QcBa4Dt1nM+kqSNwKRHON9I8qC5gSQPBL642EKT7ArsC7xvvmklSbNh0iOcBwLPTnJ+P7w7sCbJt4CqqnsvsNwjgFcAY+9GneRA4ECA3XfffYGzlyRtaCZNOHsvVYFJHgdcVlVnJtlr3HRVdSRwJMDq1atrqcqXJE3HRAmnqn68hGX+IfCEJPsAK4DtkhxbVc9cwjIkSRuYhdy8c0lU1auqateqWgU8DTjZZCNJs695wpEkbZomfuLncqiqU4FTpxmDJKkNj3AkSU2YcCRJTZhwJElNmHAkSU2YcCRJTZhwJElNmHAkSU2YcCRJTZhwJElNmHAkSU2YcCRJTZhwJElNmHAkSU2YcCRJTZhwJElNTPV5OJotqw4+cdohSNqAeYQjSWrChCNJasKEI0lqwoQjSWrChCNJasKEI0lqwoQjSWrChCNJasKEI0lqwoQjSWrChCNJasKEI0lqwoQjSWrChCNJasKEI0lqwoQjSWqiecJJsluSU5KsSXJ2koNaxyBJam8aT/y8HnhZVX09ybbAmUlOqqpzphCLJKmR5kc4VXVxVX29f30NsAbYpXUckqS2pnoOJ8kq4H7A6SPGHZjkjCRnrF27tnVokqQlNrWEk2Qb4BPAS6rqZ8Pjq+rIqlpdVatXrlzZPkBJ0pKaSsJJcgu6ZPPhqvrkNGKQJLU1javUArwfWFNV72hdviRpOqZxhPOHwLOARyQ5q//bZwpxSJIaan5ZdFX9N5DW5UqSpss7DUiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkppo/jyc1lYdfOK0Q2juvMP3nXYIknQzHuFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmjDhSJKaMOFIkpow4UiSmphKwkmyd5LvJvlBkoOnEYMkqa3mCSfJ5sD/Ax4L7AE8PckereOQJLU1jSOc3wd+UFXnVtWvgI8AT5xCHJKkhraYQpm7ABcMDF8IPHB4oiQHAgf2g9cm+e4iytoJuHwRn9uo5S03Gdwk62DIpl4Hm/ryw0ZcB0Pb80LdYYnCWBLTSDgZ8V7d7I2qI4Ej16ug5IyqWr0+89jYWQfWwaa+/GAdbCim0aV2IbDbwPCuwEVTiEOS1NA0Es7XgLsmuWOSWwJPA06YQhySpIaad6lV1fVJXgj8B7A58IGqOnuZiluvLrkZYR1YB5v68oN1sEFI1c1On0iStOS804AkqQkTjiSpiZlPOEnekOR/kpyV5HNJdp52TK0leVuS7/T18C9Jtp92TC0leWqSs5PckGSTujR2U7+NVJIPJLksybenHYs2gYQDvK2q7l1V9wX+DfjbaQc0BScBe1bVvYHvAa+acjytfRt4MvCFaQfSkreRAuAoYO9pB6HOzCecqvrZwODWjPiR6ayrqs9V1fX94Ffofvu0yaiqNVW1mDtVbOw2+dtIVdUXgCunHYc607jTQHNJ3gg8G/gp8PAphzNtBwAfnXYQamKi20hJrcxEwknyeeB2I0YdUlWfqqpDgEOSvAp4IXBo0wAbmK8O+mkOAa4HPtwythYmWf5N0ES3kZJamYmEU1WPmnDS44ATmcGEM18dJNkPeBzwyJrBH18toA1sSryNlDYoM38OJ8ldBwafAHxnWrFMS5K9gVcCT6iqn087HjXjbaS0QZn5Ow0k+QRwN+AG4MfAC6rqJ9ONqq0kPwC2BK7o3/pKVb1giiE1leRPgHcDK4GrgbOq6jHTjaqNJPsAR/Db20i9ccohNZXkeGAvuscTXAocWlXvn2pQm7CZTziSpA3DzHepSZI2DCYcSVITJhxJUhMmHElSEyYcSVITJhxJUhMmHElSEyYcaRGSPKB/vtCKJFv3z9vZc9pxSRsyf/gpLVKSw4AVwFbAhVX15imHJG3QTDjSIvX3J/sa8L/Ag6vqN1MOSdqg2aUmLd6OwDbAtnRHOpLWwSMcaZGSnED3FM07ArevqhdOOSRpgzYTz8ORWkvybOD6qjouyebAl5I8oqpOnnZs0obKIxxJUhOew5EkNWHCkSQ1YcKRJDVhwpEkNWHCkSQ1YcKRJDVhwpEkNfH/AbvONIFLmZlMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEWCAYAAAAgpUMxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdBklEQVR4nO3de9x15Zz48c+3nk5UKj3R0aMYlCH9HpXDkFNSKIcQUpT40U8OM4QxQj9qHCZmxtAoPSUdfoqacko6OEaRDkLKo1I6iUoZqu/vj+u6x3p2e9/3vu/ufV/34fN+vfZrr/P6rmtda333uvbaa0dmIknSTFupdQCSpIXJBCRJasIEJElqwgQkSWrCBCRJasIEJElqYkYTUERkRDxsivMuj4hnDhj3dxHx837TRsS7IuIzU4t4wpiW1G1aVPu/EhF7TdOyB27TNC3/0ojYYbqWN+Q6IyI+GxG3RMQPZnLdc0lEnB0R+w457Q4RcU2nf9r2a0S8IiK+3umf8vE7DbHsHRHfbrHuuv6h98lcEREHRcTnWsYwYQKqJ747I+L2iLi+nkDWnInghpWZ38rMRwwY98HM3BfunTBGEMdzMnPZRNMNcyCPt02TFRFHRcTBPcvfKjPPno7lT8KTgWcBm2Tmtr0jI2LDiDg1Iq6tZbSkZ/xqEXFkRNwaEb+NiLf2jN86Ii6IiDvq+9aj3JjZaJj9OuxxkJnHZuaO0xHXfDyB674b9groeZm5JrAN8HjgH3snGNVJfSGax2X5EGB5Zv5xwPh7gK8CLxow/iDg4XU5TwPeHhE7AUTEqsApwOeAdYFlwCl1+MjUq7p515Q9l+vgXI59rppymWfmuC9gOfDMTv+HgdNqdwJvBC4HflWHvRb4JfA74FRgo868CbwJuBK4qS5rpTpuC+CbwM113LHAOj1xvBP4KXAL8Flg9TpuB+CafjFTTlqfq91X1Rhur6+n1jj/tjPvBsCdwOI+ZbEy8JEa35V12xNYVMefDexbux8GnAP8oU5/Qh1+bp3njzWGl47FD7wD+C1wzIBtGrT9ewPf7ok1awz7AX8B/lzX9199ymg14DDg2vo6DFitW7bA24AbgOuAV49TXzaq+/13tR68tg7fB/gTcHeN433jLGNRjX9Jz/DfADt2+j8AHF+7d6zjozP+KmCnAes4Cvh34HTgNuA8YIvO+CcCP6z774fAEzvjzgb+L/CdWlceVuN9A+VYuK3GtgXwPeBW4ERg1Tr/usBpwI11X55GuSrsLn/fAXGvUWO/pdaFf+hTT8b267bA+XX91wMfG3AcPKHWoe8A/1L33cH01CvGP34Poh5ntX9JnX5RLau76/6/Hfi3Os0jgTPq+n4OvKQz/wMp9ehW4Ae1PL89oEzG1rVP3bZz6/D/Rzme/kA57raaxP5/FvCzOu+/UY7lsWN7JcqH8F9TjomjgQf0xPJq4Oq6n15P+eB+EfD7se0fsC0HUerK0TWuS4Glvcd1z3Yc3HOsvp2/Hqu7ATsDv6jl/K6edX0BOKGu60fAY3uO5ZMo9fRXwJv6zPu5uo/2ZUB9Gze/TCYBAZvWAvlApzDOANajHBhPp1TMbSgntX8dqwyd6c+q029WC6V7wn5WnW9xrTCH9cRxSY1hPcrBskLBD5GAxirHos60nwQO7fQfQD1J9ymL11Mq5VgMZzE4AR0HvJtSWVcHnjxOJdoBuAs4tG7/GgO2adD2782ABNRbSQeU0fuB71OS72Lgu519PBbb+4FVKJX5DmDdAWV0Ti3T1YGtKZX3GYPiHLCMeyUgykk7gQd1hr0YuLh2vwX4Ss9yTgPeNmAdR1EOyG3r+o7lr8lsPcqJY886bo/a/8DOfr4K2KqOX6XGdiqwdh3+38CZwObAAyjJYq/OyfVFwP2AtSgnyi91YjubwQnoEOBbNcZNa50YVPe/B+xZu9cEth/nONi77uf/U7dpjd79xfjH70EMSED9tgm4P+UE/eq6vm0o546t6vjjKSfi+wOPpny4mCgBHV2nX6MOf00t37EPWBcOuf/Xp5xEX1z37Vtq2ezbWe4v675dEzgZOKYnlk9RjoEdKYn3S5Tja2NKcnjqgG05qE6/M+UD74eA749z7jiKFc+DdwH/VON+LeX4+3wth63qsjfvrOsvne38e0qiWYVy3rqgLmvVuq1XAs/umXe3Ou0aDKhv4x7rQ5wMllM+tfyekvE/2dnBCTy9M+0RwD93+tesQS7pTL9TZ/wbgDMHrHc34Mc9cby+078zcEWn4KeagLajHAhjn+TOp/NJrCemb/bEsCODE9DRwOF0PtmOU4l2oFyhrN4zrHebBm3/3ty3BHQFsHNn3LMpTWVjcdzZU2Y39KtclBPi3cBanWEfAo4aFOeAcu6XgDatw7pl9KxOnO+hnkA6448FDhqwjqOAz/SU589q957AD3qm/x6wd2c/v79PeT+p038B8I5O/0fpfKDqmXdr4JZO///Uoz7TXsmKx9B+ferJ2H49F3gfsH7PMpbQPwFd1TPdCvuLcY5fJp+AXgp8q2d9nwbeSznx/gV4ZGfcBwfVnc66Nh+nTq1Tpxm7Uhlv/7+KFU/6QbmyGDu2zwTe0Bn/iBrvok4sG3fG3wy8tNN/EvDmAXEeBHyj078lcGe/47r32Oavx+rKtX+tOv12PfVyt866utu5EuWq6e8o58Xe+vBO4LOdec/tGd+3vo33GrbterfMXCczH5KZb8jMOzvjru50b0RJUgBk5u218DceMP2v6zxExAYRcXxE/CYibqVc2q3fE0ffee+LzDyP0hz21Ih4JOVK7NQBk2/UJ4ZB3k6puD+odya9ZoJQbszMP00wzbRvf7XCfuuz7Jsz865O/x2UDxf9lvO7zLytZ1kb95l2sm6v72t3hq1NaToYG782K+qO7+e3ne7uNvWWB9x7O67m3q7vdN/Zp39NgIi4X0R8OiJ+Xev6ucA6EbHyOLGOmUwd3Af4G+BnEfHDiHjuBMvut03jTXNf6uBDgO0i4vdjL+AVwIMpV+GL+qxr6NgiYuWIOCQirqhlvLyO6p5Txtv//7OsLGfXgee52r0IeFBn2FB1YYDeuFafxHcsN2fm3Z319Iulu+7udt5DSbQbUfbPRj37512suI299WWy9W1absPOTve1lMABiIj7U5obftOZZtNO92Z1HiiflBN4TGauDbyScgJniHmnEmvXsrq+PYEvjJMIrusTQ/8VZf42M1+bmRsBrwM+OcGdb4Ni6xq0/X+kNOcAEBEPnuSyV9hvTK1sx5azXkSs1bOs3wyYfmiZeQul/B/bGfxYSpMw9f0xEdGtM4/pjJ+M3vKAe2/HMPtrkLdRPjVvV+v6U+rw3vrez2Tq4OWZuQel6edQ4Av1mBwU+7TVQUoiGW/ZVwPn1A+2Y681M/N/U5qN7uqzrol01/FyYFfgmZQm0CV1+KTLuNapbiz9jpe7WPFEPyp3MH45T1Z3O1cCNqFs39WU7/W7+2etzNy5M+8K+3Sc+jbQdN+983ng1fV22NUol83nZebyzjT/EBHrRsSmlO9bTqjD16I29UXExpQvV3u9MSI2iYj1KNn4hD7TjOdGyp1Wm/cMPwZ4ASUJHT3O/CcCb6oxrAscOGjCiNg9IjapvbdQdtbYJ5Pr+8QwjEHb/xNgq1ruq1Muj7smWt9xwD9GxOKIWJ/S7jvp3wdk5tWU748+FBGrR8RjKJ+Kjh12GTX+1WrvarV/zNE1znXr1eprKU0QUJp47qbsn9UiYv86/JuT3Q7gy8DfRMTLI2JRRLyU0hRy2hSW1c9alE+iv6/78r2TmPdE4J21DDahfGfTV0S8MiIW10+2v6+D72bwcTCMQcfvhcBTImKziHgApbmmq7cOnkYp4z0jYpX6enxEPKp+gj8ZOKheLW4J7DXJONeifA93M+WE/cFJzHs65Xh6Yb3yeBMrnuiPA94SEQ+N8pOUD1JuMrqrz7Km24XAy+sV3k6UG6nui//V2c43U8rs+5QbP26NiHdExBp1fY+OiMcPWtA49W2gaU1AmXkmpS3+JMqniC2Al/VMdgqlHfJCyo4+og5/H+WLyD/U4Sf3WcXnga9T2sGvpNypM5n47qDevVQvK7evw6+h3AGSlC94B/lP4GuUE/6PBsQ45vHAeRFxO6VJ74DM/FUddxCwrMbwkklsQt/tz8xfUG4S+AblLqzeH+wdAWxZ1/elPss9mPLd10XAxXXbJlW2HXtQPm1eC3wReG9mnjGJ+e/kr81tP+OvzQhQTtRXUJo8zgE+nJlfBcjMP1O+N3wVpfK/htJ0/OfJbkBm3gw8l3KlcjOlOfW5mXnTZJc1wGGUL21vohzsX53EvO+jbP+vKHXhmHGm3Qm4tNbBjwMvy8w/DToOhtT3+K37+ARKHbqAeyfrjwMvjvIj5E/UZtodKeeHaynNTmM34QDsT2kq+i3lQ8ZnJxEjlA8rv6Zctf6UUs5Dqft5d8oNHzdTbv3/TmeSIynlfi5lP/yJcT4ITLMDgOdR6vgrKDc33BenUL6PG7vp5oWZ+Zf6IeB5lO8nf0Wpq5+hXE0O0re+jbfyqF8eLXgRcSRwbWbe6zdOkqTp5w+2KL8MB14IPK5tJJK0cMy7X3BPVkR8gPJbig93msgkSSNmE5wkqYkFfwUkSWpjTnwHtP766+eSJUtahyFJc8oFF1xwU2Yubh3HIHMiAS1ZsoTzzz+/dRiSNKdExDBPkGjGJjhJUhMmIElSEyYgSVITJiBJUhMmIElSEyYgSVITJiBJUhMmIElSEyYgSVITc+JJCJoblhx4erN1Lz9kl2brljQ1XgFJkpowAUmSmjABSZKaMAFJkpowAUmSmjABSZKaMAFJkpowAUmSmjABSZKaMAFJkpowAUmSmjABSZKaMAFJkpowAUmSmhhZAoqITSPirIi4LCIujYgD6vD1IuKMiLi8vq87qhgkSbPXKK+A7gLelpmPArYH3hgRWwIHAmdm5sOBM2u/JGmBGVkCyszrMvNHtfs24DJgY2BXYFmdbBmw26hikCTNXjPyHVBELAEeB5wHPCgzr4OSpIANZiIGSdLsMvIEFBFrAicBb87MWycx334RcX5EnH/jjTeOLkBJUhMjTUARsQol+RybmSfXwddHxIZ1/IbADf3mzczDM3NpZi5dvHjxKMOUJDUwyrvgAjgCuCwzP9YZdSqwV+3eCzhlVDFIkmavRSNc9pOAPYGLI+LCOuxdwCHAiRGxD3AVsPsIY5AkzVIjS0CZ+W0gBox+xqjWK0maG3wSgiSpCROQJKkJE5AkqQkTkCSpCROQJKkJE5AkqQkTkCSpCROQJKkJE5AkqQkTkCSpCROQJKkJE5AkqQkTkCSpiVH+HYM0Y5YceHqT9S4/ZJcm65XmA6+AJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTZiAJElNmIAkSU2YgCRJTYwsAUXEkRFxQ0Rc0hl2UET8JiIurK+dR7V+SdLsNsoroKOAnfoM/5fM3Lq+vjzC9UuSZrGRJaDMPBf43aiWL0ma21p8B7R/RFxUm+jWbbB+SdIsMNMJ6D+ALYCtgeuAjw6aMCL2i4jzI+L8G2+8cabikyTNkBlNQJl5fWbenZn3AP8JbDvOtIdn5tLMXLp48eKZC1KSNCNmNAFFxIad3hcAlwyaVpI0vy0a1YIj4jhgB2D9iLgGeC+wQ0RsDSSwHHjdqNYvSZrdRpaAMnOPPoOPGNX6JElzi09CkCQ1YQKSJDVhApIkNTFUAoqIkyJil4gwYUmSpsWwCeU/gJcDl0fEIRHxyBHGJElaAIZKQJn5jcx8BbAN5fbpMyLiuxHx6ohYZZQBSpLmp6Gb1CLigcDewL7Aj4GPUxLSGSOJTJI0rw31O6CIOBl4JHAM8LzMvK6OOiEizh9VcJKk+WvYH6J+pve/eyJitcz878xcOoK4JEnz3LBNcAf3Gfa96QxEkrSwjHsFFBEPBjYG1oiIxwFRR60N3G/EsUmS5rGJmuCeTbnxYBPgY53htwHvGlFMkqQFYNwElJnLgGUR8aLMPGmGYpIkLQATNcG9MjM/ByyJiLf2js/Mj/WZTZKkCU3UBHf/+r7mqAORJC0sEzXBfbq+v29mwpEkLRQTNcF9Yrzxmfmm6Q1HkrRQTNQEd8GMRCFJWnCGuQtOkqRpN1ET3GGZ+eaI+C8ge8dn5vNHFpkkaV6bqAnumPr+kVEHIklaWCZqgrugvp8TEatSnoidwM8z888zEJ8kaZ4a9u8YdgE+BVxBeR7cQyPidZn5lVEGJ0mav4b9O4aPAk/LzF8CRMQWwOmACUgL2pIDT2+27uWH7NJs3dJ0GPbvGG4YSz7VlcANI4hHkrRATHQX3Atr56UR8WXgRMp3QLsDPxxxbJKkeWyiJrjndbqvB55au28E1h1JRJKkBWGiu+BePVOBSJIWlmHvglsd2AfYClh9bHhmvmZEcUmS5rlhb0I4Bngw5R9Sz6H8Q+ptowpKkjT/DZuAHpaZ7wH+WJ8Ptwvwt6MLS5I03w2bgP5S338fEY8GHgAsGUlEkqQFYdgfoh4eEesC7wFOpfxD6ntGFpWkCbX6Eaw/gNV0GSoBZeZnauc5wOajC0eStFAM1QQXEQ+MiH+NiB9FxAURcVhEPHDUwUmS5q9hvwM6nvLonRcBLwZuAk4YVVCSpPlv2O+A1svMD3T6D46I3UYRkCRpYRj2CuisiHhZRKxUXy+hPA1bkqQpmehhpLdRHj4awFuBz9VRKwG3A+8daXSSpHlr3CugzFwrM9eu7ytl5qL6Wikz1x5v3og4MiJuiIhLOsPWi4gzIuLy+u4DTSVpgRq2CY6IeH5EfKS+njvELEcBO/UMOxA4MzMfDpxZ+yVJC9Cwt2EfAhwA/LS+DqjDBsrMc4Hf9QzeFVhWu5cB3sggSQvUsHfB7QxsnZn3AETEMuDHTP4K5kGZeR1AZl4XERsMmjAi9gP2A9hss80muRpJo+LfkGu6DN0EB6zT6X7AdAfSKzMPz8ylmbl08eLFo16dJGmGDXsF9EHgxxFxFuWOuKcA75zC+q6PiA3r1c+GlB+3SpIWoAmvgCJiJeAeYHvg5Pp6QmYeP4X1nQrsVbv3Ak6ZwjIkSfPAhFdAmXlPROyfmSdSEshQIuI4YAdg/Yi4hvKboUOAEyNiH+AqYPcpRS1JmvOGbYI7IyL+nvL8tz+ODczM3rvc6IzbY8CoZwwfniRpvho2Ab2G8kSEN/QM968ZJElTMmwC2pKSfJ5MSUTfAj41qqAkSfPfsAloGXAr8Inav0cd9pJRBCVJmv+GTUCPyMzHdvrPioifjCIgSdLCMOwPUX8cEduP9UTEdsB3RhOSJGkhGPYKaDvgVRFxVe3fDLgsIi4GMjMfM5LoJEnz1rAJqPep1pIk3SdDJaDM/PWoA5EkLSyTeRipJEnTxgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElqwgQkSWpiUesANP2WHHh66xCkkViIdXv5Ibu0DmFkvAKSJDVhApIkNWECkiQ1YQKSJDVhApIkNWECkiQ10eQ27IhYDtwG3A3clZlLW8QhSWqn5e+AnpaZNzVcvySpIZvgJElNtLoCSuDrEZHApzPz8N4JImI/YD+AzTbbbMoravnL6fn8C2ZJuq9aXQE9KTO3AZ4DvDEintI7QWYenplLM3Pp4sWLZz5CSdJINUlAmXltfb8B+CKwbYs4JEntzHgCioj7R8RaY93AjsAlMx2HJKmtFt8BPQj4YkSMrf/zmfnVBnFIkhqa8QSUmVcCj53p9UqSZhdvw5YkNWECkiQ1YQKSJDXhX3KP0EL8+2BJGpZXQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJpokoIjYKSJ+HhG/jIgDW8QgSWprxhNQRKwM/DvwHGBLYI+I2HKm45AktdXiCmhb4JeZeWVm/hk4Hti1QRySpIYWNVjnxsDVnf5rgO16J4qI/YD9au/tEfHzIZe/PnDTfYpwdIxtaoxtaoxtamZVbHHoCr2Tje0h0xrMNGuRgKLPsLzXgMzDgcMnvfCI8zNz6VQCGzVjmxpjmxpjmxpjmzktmuCuATbt9G8CXNsgDklSQy0S0A+Bh0fEQyNiVeBlwKkN4pAkNTTjTXCZeVdE7A98DVgZODIzL53GVUy62W4GGdvUGNvUGNvUGNsMicx7ff0iSdLI+SQESVITJiBJUhNzPgFFxIcj4mcRcVFEfDEi1hkw3Yw//icido+ISyPinogYeOtkRCyPiIsj4sKIOH+Wxdai3NaLiDMi4vL6vu6A6Was3CYqhyg+UcdfFBHbjDKeSca2Q0T8oZbThRHxTzMU15ERcUNEXDJgfMsymyi2VmW2aUScFRGX1ePzgD7TNCu3aZeZc/oF7Agsqt2HAof2mWZl4Apgc2BV4CfAljMQ26OARwBnA0vHmW45sP4Ml9uEsTUst38GDqzdB/bbpzNZbsOUA7Az8BXK79y2B86bof04TGw7AKfNZP2q630KsA1wyYDxTcpsyNhaldmGwDa1ey3gF7Olro3iNeevgDLz65l5V+39PuV3Rb2aPP4nMy/LzGGf4DCjhoyt1WOTdgWW1e5lwG4zsM7xDFMOuwJHZ/F9YJ2I2HCWxNZEZp4L/G6cSVqV2TCxNZGZ12Xmj2r3bcBllKfHdDUrt+k25xNQj9dQPhn06vf4n96d2lICX4+IC+ojiGaLVuX2oMy8DsoBCWwwYLqZKrdhyqFVWQ273idExE8i4isRsdUMxDWM2X5cNi2ziFgCPA44r2fUbC+3obV4FM+kRcQ3gAf3GfXuzDylTvNu4C7g2H6L6DNsWu4/Hya2ITwpM6+NiA2AMyLiZ/UTWuvYmpTbJBYzknLrY5hyGFlZTWCY9f4IeEhm3h4ROwNfAh4+8sgm1qrMhtG0zCJiTeAk4M2ZeWvv6D6zzJZym5Q5kYAy85njjY+IvYDnAs/I2kjaY2SP/5kotiGXcW19vyEivkhpVrnPJ9JpiK1JuUXE9RGxYWZeV5sWbhiwjJGUWx/DlEOrR0xNuN7uCSwzvxwRn4yI9TOz9QM3Z+1juVqWWUSsQkk+x2bmyX0mmbXlNllzvgkuInYC3gE8PzPvGDDZrH38T0TcPyLWGuum3FTR986cBlqV26nAXrV7L+BeV2szXG7DlMOpwKvqHUrbA38Ya0YcsQlji4gHR0TU7m0px/3NMxDbRFqV2YRalVld5xHAZZn5sQGTzdpym7TWd0Hc1xfwS0p76IX19ak6fCPgy53pdqbcUXIFpQlqJmJ7AeXTyn8D1wNf642NcvfST+rr0tkUW8NyeyBwJnB5fV+vdbn1Kwfg9cDra3dQ/mjxCuBixrnrsUFs+9cy+gnlRp0nzlBcxwHXAX+pdW2fWVRmE8XWqsyeTGlOu6hzTtt5tpTbdL98FI8kqYk53wQnSZqbTECSpCZMQJKkJkxAkqQmTECSpCZMQJKkJkxAkqQmTEDSFETE4+t/saxen8pwaUQ8unVc0lziD1GlKYqIg4HVgTWAazLzQ41DkuYUE5A0RfXZaz8E/kR5VMvdjUOS5hSb4KSpWw9Yk/LPlas3jkWac7wCkqYoIk6l/APpQ4ENM3P/xiFJc8qc+D8gabaJiFcBd2Xm5yNiZeC7EfH0zPxm69ikucIrIElSE34HJElqwgQkSWrCBCRJasIEJElqwgQkSWrCBCRJasIEJElq4v8DFW/Qe19NqHMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEWCAYAAAAgpUMxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAeUklEQVR4nO3deZxcVZ338c8XggRJhERaZIutuLANBCcsjzqIskVwQcUFFVmNPsgIyowEGIcgqPFBFPfHKEjYYQQFQR0jsogikGBkERCEsIYkLBEioCT85o9zergpqrqrO337dFd/369Xvaruen7n3nPvr+5StxQRmJmZDbXVSgdgZmajkxOQmZkV4QRkZmZFOAGZmVkRTkBmZlaEE5CZmRUxpAlIUkh69QCnXSBp1xbD/kXSHc3GlXSMpB8MLOI+Y+rOdRqTu38uaf9BmnfLOg3S/G+VtPNgza/NMiXph5Iel3T9UJY9kki6UtIhbY67s6QHKt2Dtl4lfVjSLyvdA95+ByGWAyRdU6LsXH7b62SkkDRD0lklY+gzAeUd39OSlklalHcg44YiuHZFxG8i4nUthn0xIg6BFyaMGuJ4W0TM7mu8djbk3urUX5JOl3Riw/y3jIgrB2P+/fAmYDdg44jYvnGgpL0kXSNpqaSHJX1f0vjK8DUlnSbpiTz8Mw3TT5Y0T9JT+X1y/VUaXtpZr+1uBxFxdkTsPhhxdeIO3FZdu0dA74iIccDrge2A/2gcoa6d+mjUwcvyFcCCiPhbi+HrACcCGwKbAxsDJ1WGzwBek+fzFuCzkqYCSHoRcDFwFjABmA1cnPvXJh/Vddyp7JHcBkdy7CPVgJd5RPT6AhYAu1a6TwIuzZ8D+CRwJ3BP7vcx4C7gMeASYMPKtAF8CrgbeCTPa7U8bFPg18CjedjZwLoNcRwN/Al4HPghMDYP2xl4oFnMpJ3WWfnzfTmGZfn15hznP1WmfRnwNNDVZFmsDnwlx3d3rnsAY/LwK4FD8udXA1cBf83jn5/7X52n+VuO4QM98QNHAQ8DZ7aoU6v6HwBc0xBr5BimAc8C/8jl/bTJMloTOAV4KL9OAdasLlvgSGAxsBA4sJf2smFe74/ldvCx3P9g4BlgRY7j+Dba3nuAmyvdDwK7V7pPAM7Ln3fPw1UZfh8wtcW8Twe+DVwGPAlcB2xaGf4G4Ia8/m4A3lAZdiXwBeC3ua28Oi/vQ0nbwpM5tk2Ba4EngAuAF+XpJwCXAkvyuryUdFRYnf8hLeJeK8f+eG4L/96knfSs1+2Bubn8RcBXW2wH/ye3od8CX8vr7kQa2hW9b78zyNtZ7u7O44/Jy2pFXv/LgG/lcTYD5uTy7gDeX5n+paR29ARwfV6e17RYJj1lHZzrdnXu/1+k7emvpO1uy36s/92A2/O03yJtyz3b9mqkL+H3kraJM4B1GmI5ELg/r6dPkL643wQs7al/i7rMILWVM3JctwJTGrfrhnqc2LCtfpbnt9W9gT2BP+flfExDWT8Czs9l3Qhs07AtX0hqp/cAn2oy7Vl5HR1Ci/bW6zbexk5gAc836E3yAjmhsjDmABNJG8ZbSQ3z9aSd2jd7GkNl/Cvy+JPyQqnusHfL03XlBnNKQxy35BgmkjaWlRZ8Gwmop3GMqYz7HeDLle7DyTvpJsviE6RG2RPDFbROQOcCx5Ia61jgTb00op2B5cCXc/3XalGnVvU/gBYJqLGRtlhGnwd+T0q+XcDvKuu4J7bPA2uQGvNTwIQWy+iqvEzHApNJjXeXVnH20fZO4fkEMyHXaf3K8H3ICQr4NPDzhukvBY5sMe/TSRvk9qSd5NmVsiaSdhz75WH75u6XVtbzfcCWefgaObZLgJfk/n8HLgdeRTqy+xOwf2Xn+l7gxcB40o7yJ5XYrqR1ApoJ/CbHuEluE63a/rXAfvnzOGDHXraDA/J6/tdcp7Ua1xe9b78zaJGAmtUJWJu0gz4wl/d60r5jyzz8PNKOeG1gK9KXi74S0Bl5/LVy/4Py8u35gjW/zfW/Hmknuk9et5/Oy+aQynzvyut2HHARcGZDLP+ftA3sTkq8PyFtXxuRksObW9RlRh5/T9IX3i8Bv+9l33E6K+8HlwP/meP+GGn7Oycvhy3zvF9VKevZSj3/jZRo1iDtt+bleb0o1/VuYI+GaffO465Fi/bW6zbexk5gAelby1JSxv9OZQUH8NbKuKcC/6/SPS4H2V0Zf2pl+KHA5S3K3Rv4Q0Mcn6h07wn8pbLgB5qAdiBtCD3f5OZS+SbWENOvG2LYndYJ6AxgFpVvtr00op1JRyhjG/o11qlV/Q9g1RLQX4A9K8P2IJ0q64nj6YZltrhZ4yLtEFcA4yv9vgSc3irOXtrdbqSd/msr846GZbRbJc7PkXcgleFnAzNazP904AcNy/P2/Hk/4PqG8a8FDqis5883Wd5vrHTPA46qdJ9M5QtVw7STgccr3f/bjpqMezcrb0PTmrSTnvV6NXA8sF7DPLppnoDuaxhvpfVFL9sv/U9AHwB+01De94DjSDveZ4HNKsO+2KrtVMp6VS/tad08Ts+RSm/r/6OsvNMX6ciiZ9u+HDi0Mvx1Od4xlVg2qgx/FPhApftC4IgWcc4AflXp3gJ4utl23bht8/y2unruHp/H36GhXe5dKataz9VIR03/QtovNraHo4EfVqa9umF40/bW26vdc9d7R8S6EfGKiDg0Ip6uDLu/8nlDUpICICKW5YW/UYvx783TIOllks6T9KCkJ0iHdus1xNF02lUREdeRToe9WdJmpCOxS1qMvmGTGFr5LKnhXp/vTDqoj1CWRMQzfYwz6PXPVlpvTeb9aEQsr3Q/Rfpy0Ww+j0XEkw3z2qjJuC1J2pH0rW2fiPhz7r0sv7+kMupLSKcOeoZXhzUOb+bhyudqnRqXB7ywHvfzQosqn59u0j0OQNKLJX1P0r25rV8NrCtp9V5i7dGfNngw8Frgdkk3SHp7H/NuVqfexlmVNvgKYId8w8lSSUuBDwMvJx2Fj2lSVtuxSVpd0kxJf8nLeEEeVN2n9Lb+/3dekfauLfdz+fMYYP1Kv7baQguNcY3txzWWRyNiRaWcZrFUy67W8zlSot2QtH42bFg/x7ByHRvbS3/b26Dchh2Vzw+RAgdA0tqk0w0PVsbZpPJ5Up4G0jflALaOiJcAHyHtwGlj2oHEWjU7l7cf8KNeEsHCJjE0Lyji4Yj4WERsCHwc+E4fd761iq2qVf3/RjqdA4Ckl/dz3iutNwa2bHvmM7F651qe14Mtxn8BSduSvgAcFBGX9/SPiMdJy3+byujbkE4Jk9+3llRtM1tXhvdH4/KAF9ajnfXVypGkb8075La+U+7f2N6b6U8bvDMi9iWd+vky8KO8TbaKfdDaICmR9Dbv+4Gr8hfbnte4iPi/pNNGy5uU1ZdqGR8C3gXsSjoF2p3793sZ5zZVjaXZ9rKclXf0dXmK3pdzf1XruRrpxp+HSOvnnob1Mz4i9qxMu9I67aW9tTTYd++cAxyYb4ddk3TYfF1ELKiM8++SJkjahHS95fzcfzz5VJ+kjUgXVxt9UtLGkiaSsvH5TcbpzRLgOdL5zKozgXeTktAZvUx/AfCpHMMEYHqrESW9T9LGufNx0srq+WayqEkM7WhV/z8CW+blPpZ0eFzVV3nnAv8hqUvSeqTzvv3+fUBE3E+6fvQlSWMlbU36VnR2O9NL2gr4BfCvEfHTJqOckeOckI9WP0Y6BQHpFM8K0vpZU9Jhuf+v+1sP4GfAayV9SNIYSR8gnQq5dADzamY86Zvo0rwuj+vHtBcAR+dlsDHpmk1Tkj4iqSt/s12ae6+g9XbQjlbb73xgJ0mTJK1DOl1T1dgGLyUt4/0krZFf20naPH+DvwiYkY8WtwD272ec40nX4R4l7bC/2I9pLyNtT+/JRx6fYuUd/bnApyW9UuknKV8k3WS0vMm8Btt84EP5CG8q6UaqVfHPlXoeQVpmvyfd+PGEpKMkrZXL20rSdq1m1Et7a2lQE1D+xvo50jnOhaS7gD7YMNrFpPOQ80kr+tTc/3jShci/5v4XNSniHOCXpPPgd5Pu1OlPfE+R717Kh5U75v4PkO4ACdIF3la+D/w3aYd/Y4sYe2wHXCdpGekb/eERcU8eNgOYnWN4fz+q0LT++TTV54Ffke7CavzB3qnAFrm8nzSZ74mka183ATfnuvVr2VbsS/q2+RDwY+C4iJjT5rRHkk6/nKr0u7NlkqpHMMeRrlfdS7rZ4aSI+AVARPyDdN3wo6TGfxDp1PE/+luBiHgUeHuO51HS6dS3R8Qj/Z1XC6eQLto+QtrYf9GPaY8n1f8eUls4s5dxpwK35jb4deCDEfFMq+2gTU2337yOzye1oXm8MFl/HdhH6UfI38inaXcn7R8eIp126rkJB+Aw0qmih0lfMn7YjxghfVm5l3TU+ifScm5LXs/vI93w8Sjp1v/fVkY5jbTcryath2fo5YvAIDsceAepjX+YdHPDqriYdD2u56ab90TEs/lLwDtI1yfvIbXVH5COJltp2t56K1z54tGoJ+k04KGIeMFvnMzMbPD5B1ukX4aTfnOybdlIzMxGj477BXd/STqB9FuKkyqnyMzMrGY+BWdmZkWM+iMgMzMrY0RcA1pvvfWiu7u7dBhmZiPKvHnzHomIrtJxtDIiElB3dzdz584tHYaZ2YgiqZ0nSBTjU3BmZlaEE5CZmRXhBGRmZkU4AZmZWRFOQGZmVoQTkJmZFeEEZGZmRTgBmZlZEU5AZmZWxIh4EoLZcNU9/bJiZS+YuVexss0Gg4+AzMysiNoSkKSxkq6X9EdJt0o6PvefIelBSfPza8+6YjAzs+GrzlNwfwfeGhHLJK0BXCPp53nY1yLiKzWWbWZmw1xtCSjSP90ty51r5Jf//c7MzICarwFJWl3SfGAxMCcirsuDDpN0k6TTJE1oMe00SXMlzV2yZEmdYZqZWQG1JqCIWBERk4GNge0lbQV8F9gUmAwsBE5uMe2siJgSEVO6uobt/ymZmdkADcldcBGxFLgSmBoRi3Jieg74PrD9UMRgZmbDS513wXVJWjd/XgvYFbhd0gaV0d4N3FJXDGZmNnzVeRfcBsBsSauTEt0FEXGppDMlTSbdkLAA+HiNMZiZ2TBV511wNwHbNum/X11lmpnZyOFH8VhHKPlIHDMbGD+Kx8zMinACMjOzIpyAzMysCCcgMzMrwgnIzMyKcAIyM7MinIDMzKwIJyAzMyvCCcjMzIpwAjIzsyKcgMzMrAgnIDMzK8IJyMzMinACMjOzIpyAzMysCCcgMzMrwgnIzMyKcAIyM7MinIDMzKyI2hKQpLGSrpf0R0m3Sjo+958oaY6kO/P7hLpiMDOz4avOI6C/A2+NiG2AycBUSTsC04HLI+I1wOW528zMRpnaElAky3LnGvkVwLuA2bn/bGDvumIwM7Pha0ydM5e0OjAPeDXw7Yi4TtL6EbEQICIWSnpZi2mnAdMAJk2aVGeYZiNS9/TLipS7YOZeRcq1zlPrTQgRsSIiJgMbA9tL2qof086KiCkRMaWrq6u+IM3MrIghuQsuIpYCVwJTgUWSNgDI74uHIgYzMxte6rwLrkvSuvnzWsCuwO3AJcD+ebT9gYvrisHMzIavOq8BbQDMzteBVgMuiIhLJV0LXCDpYOA+4H01xmBmZsNUbQkoIm4Ctm3S/1Fgl7rKNTOzkcFPQjAzsyKcgMzMrAgnIDMzK8IJyMzMinACMjOzIpyAzMysCCcgMzMrwgnIzMyKcAIyM7MinIDMzKwIJyAzMyui1j+kM7POU+qP8MB/htdpfARkZmZFOAGZmVkRTkBmZlaEE5CZmRXhBGRmZkX4LjgbNCXvjjKzkcdHQGZmVoQTkJmZFVFbApK0iaQrJN0m6VZJh+f+MyQ9KGl+fu1ZVwxmZjZ81XkNaDlwZETcKGk8ME/SnDzsaxHxlRrLNjOzYa62BBQRC4GF+fOTkm4DNqqrPDMzG1mG5BqQpG5gW+C63OswSTdJOk3ShBbTTJM0V9LcJUuWDEWYZmY2hGpPQJLGARcCR0TEE8B3gU2ByaQjpJObTRcRsyJiSkRM6erqqjtMMzMbYrUmIElrkJLP2RFxEUBELIqIFRHxHPB9YPs6YzAzs+GpzrvgBJwK3BYRX63036Ay2ruBW+qKwczMhq8674J7I7AfcLOk+bnfMcC+kiYDASwAPl5jDGZmNkzVeRfcNYCaDPpZXWWamdnI4SchmJlZEU5AZmZWhBOQmZkV4QRkZmZFOAGZmVkRbSUgSRdK2kuSE5aZmQ2KdhPKd4EPAXdKmilpsxpjMjOzUaCtBBQRv4qIDwOvJ/14dI6k30k6MD9ux8zMrF/aPqUm6aXAAcAhwB+Ar5MS0pxeJjMzM2uqrSchSLoI2Aw4E3hH/q8fgPMlza0rODMz61ztPornBxGx0iN0JK0ZEX+PiCk1xGVmZh2u3VNwJzbpd+1gBmJmZqNLr0dAkl5O+hvttSRty/MPF30J8OKaYzMzsw7W1ym4PUg3HmwMfLXS/0nSXyuYmZkNSK8JKCJmA7MlvTciLhyimMzMbBTo6xTcRyLiLKBb0mcah1f/6dTMzKw/+joFt3Z+H1d3IGZmNrr0dQrue/n9+KEJx8zMRou+TsF9o7fhEfGpwQ3HzMxGi75Owc0bkijMzGzUaecuuAGRtAlwBvBy4DlgVkR8XdJE4Hygm/Rg0/dHxOMDLcfMzEamvk7BnRIRR0j6KRCNwyPinb1Mvhw4MiJulDQemCdpDul3RZdHxExJ04HpwFEDroGZmY1IfZ2COzO/f6W/M84PLF2YPz8p6TbSUxXeBeycR5sNXIkTkJnZqNPXKbh5+f0qSS8iPRE7gDsi4h/tFiKpG9gWuA5Yv+dp2hGxUNLLWkwzDZgGMGnSpHaLMjOzEaLdv+TeC/gL8A3gW8Bdkt7W5rTjgAuBIyLiiXYDi4hZETElIqZ0dXW1O5mZmY0Q7f4dw8nAWyLiLgBJmwKXAT/vbaL8b6kXAmdHxEW59yJJG+Sjnw2AxQML3czMRrJ2/45hcU/yye6mj8QhScCpwG0Nj+y5BNg/f94fuLjNGMzMrIP0dRfce/LHWyX9DLiAdA3ofcANfcz7jcB+wM2S5ud+xwAzgQskHQzcl+dlZmajTF+n4N5R+bwIeHP+vASY0NuEEXENz/9/UKNd2orOzMw6Vl93wR04VIGYmdno0tZNCJLGAgcDWwJje/pHxEE1xWVmZh2u3ZsQziQ9UmcP4CrSP6Q+WVdQZmbW+dpNQK+OiM8Bf8vPh9sL+Kf6wjIzs07XbgJ6Nr8vlbQVsA7pYaJmZmYD0u4PUWdJmgB8jvQ7nnH5s5mZ2YC0lYAi4gf541XAq+oLx8zMRot2nwX3UknflHSjpHmSTpH00rqDMzOzztXuNaDzSI/eeS+wD/AI6U/lzMzMBqTda0ATI+KESveJkvauIyAzMxsd2j0CukLSByWtll/vJz0N28zMbED6ehjpk6SHjwr4DHBWHrQasAw4rtbozMysY/X1LLjxQxWImZmNLu1eA0LSO4GdcueVEXFpPSGZmdlo0O5t2DOBw4E/5dfhuZ+ZmdmAtHsEtCcwOSKeA5A0G/gDML2uwMzMrLO1exccwLqVz+sMdiBmZja6tHsE9EXgD5KuIN0RtxNwdG1R2Srpnu475K0zlWrbC2buVaTcTtdnApK0GvAcsCOwHSkBHRURD9ccm5mZdbA+T8Hl6z6HRcTCiLgkIi5uJ/lIOk3SYkm3VPrNkPSgpPn5tecqxm9mZiNUu9eA5kj6N0mbSJrY8+pjmtOBqU36fy0iJufXz/oVrZmZdYx2rwEdRHoiwqEN/Vv+NUNEXC2pe2BhmZlZp2v3CGgL4NvAH4H5wDeBLQdY5mGSbsqn6CYMcB5mZjbCtZuAZgObA98gJZ/Nc7/++i6wKTAZWAic3GpESdMkzZU0d8mSJQMoyszMhrN2T8G9LiK2qXRfIemP/S0sIhb1fJb0faDl43wiYhYwC2DKlCnR37LMzGx4a/cI6A+SduzpkLQD8Nv+FiZpg0rnu4FbWo1rZmadrd0joB2Aj0q6L3dPAm6TdDMQEbF14wSSzgV2BtaT9ADprxt2ljSZdEPDAuDjqxa+mZmNVO0moGa3U/cqIvZt0vvU/s7HzMw6U1sJKCLurTsQMzMbXfrzMFIzM7NB4wRkZmZFOAGZmVkRTkBmZlaEE5CZmRXhBGRmZkU4AZmZWRFOQGZmVoQTkJmZFeEEZGZmRTgBmZlZEU5AZmZWhBOQmZkV4QRkZmZFOAGZmVkRTkBmZlaEE5CZmRXhBGRmZkU4AZmZWRG1JSBJp0laLOmWSr+JkuZIujO/T6irfDMzG97qPAI6HZja0G86cHlEvAa4PHebmdkoVFsCioirgccaer8LmJ0/zwb2rqt8MzMb3ob6GtD6EbEQIL+/rNWIkqZJmitp7pIlS4YsQDMzGxrD9iaEiJgVEVMiYkpXV1fpcMzMbJANdQJaJGkDgPy+eIjLNzOzYWKoE9AlwP758/7AxUNcvpmZDRN13oZ9LnAt8DpJD0g6GJgJ7CbpTmC33G1mZqPQmLpmHBH7thi0S11lmpnZyFFbAjIz6xTd0y8rVvaCmXsVK7tuw/YuODMz62xOQGZmVoQTkJmZFeEEZGZmRTgBmZlZEU5AZmZWhBOQmZkV4QRkZmZFOAGZmVkRTkBmZlaEE5CZmRXhBGRmZkU4AZmZWRFOQGZmVoQTkJmZFeEEZGZmRTgBmZlZEU5AZmZWhBOQmZkVMaZEoZIWAE8CK4DlETGlRBxmZlZOkQSUvSUiHilYvpmZFeRTcGZmVkSpI6AAfikpgO9FxKzGESRNA6YBTJo0aYjDGxzd0y8rHYKZ2bBV6gjojRHxeuBtwCcl7dQ4QkTMiogpETGlq6tr6CM0M7NaFUlAEfFQfl8M/BjYvkQcZmZWzpAnIElrSxrf8xnYHbhlqOMwM7OySlwDWh/4saSe8s+JiF8UiMPMzAoa8gQUEXcD2wx1uWZmNrz4NmwzMyvCCcjMzIpwAjIzsyKcgMzMrAgnIDMzK8IJyMzMinACMjOzIpyAzMysCCcgMzMrwgnIzMyKcAIyM7MinIDMzKwIJyAzMyvCCcjMzIpwAjIzsyKcgMzMrAgnIDMzK6LEX3IPqe7pl5UOwczMmvARkJmZFeEEZGZmRRRJQJKmSrpD0l2SppeIwczMyhryBCRpdeDbwNuALYB9JW0x1HGYmVlZJY6Atgfuioi7I+IfwHnAuwrEYWZmBZW4C24j4P5K9wPADo0jSZoGTMudyyTdMcDy1gMeGeC0I8VoqCO4np1kNNQRBqGe+vIqlf+KVZq6ZiUSkJr0ixf0iJgFzFrlwqS5ETFlVecznI2GOoLr2UlGQx1h9NRzoEqcgnsA2KTSvTHwUIE4zMysoBIJ6AbgNZJeKelFwAeBSwrEYWZmBQ35KbiIWC7pMOC/gdWB0yLi1hqLXOXTeCPAaKgjuJ6dZDTUEUZPPQdEES+4/GJmZlY7PwnBzMyKcAIyM7MiOj4BSTpB0k2S5kv6paQNS8dUB0knSbo91/XHktYtHVMdJL1P0q2SnpPUUbe3joZHVEk6TdJiSbeUjqVOkjaRdIWk23J7Pbx0TMNRxycg4KSI2DoiJgOXAv9ZOqCazAG2ioitgT8DRxeOpy63AO8Bri4dyGAaRY+oOh2YWjqIIbAcODIiNgd2BD7ZoetzlXR8AoqIJyqda9PkR6+dICJ+GRHLc+fvSb+v6jgRcVtEDPSpGMPZqHhEVURcDTxWOo66RcTCiLgxf34SuI30FBir6Pg/pAOQ9AXgo8BfgbcUDmcoHAScXzoI65e2HlFlI4+kbmBb4LqykQw/HZGAJP0KeHmTQcdGxMURcSxwrKSjgcOA44Y0wEHSVz3zOMeSDv/PHsrYBlM79exAbT2iykYWSeOAC4EjGs7GGB2SgCJi1zZHPQe4jBGagPqqp6T9gbcDu8QI/oFXP9ZnJ/EjqjqMpDVIyefsiLiodDzDUcdfA5L0mkrnO4HbS8VSJ0lTgaOAd0bEU6XjsX7zI6o6iCQBpwK3RcRXS8czXHX8kxAkXQi8DngOuBf4REQ8WDaqwSfpLmBN4NHc6/cR8YmCIdVC0ruBbwJdwFJgfkTsUTaqwSFpT+AUnn9E1RcKhzToJJ0L7Ez6m4JFwHERcWrRoGog6U3Ab4CbSfsegGMi4mflohp+Oj4BmZnZ8NTxp+DMzGx4cgIyM7MinIDMzKwIJyAzMyvCCcjMzIpwAjIzsyKcgMzMrAgnILMBkLRd/u+lsZLWzv/5slXpuMxGEv8Q1WyAJJ0IjAXWAh6IiC8VDslsRHECMhug/My2G4BngDdExIrCIZmNKD4FZzZwE4FxwHjSkZCZ9YOPgMwGSNIlpH8ufSWwQUQcVjgksxGlI/4PyGyoSfoosDwizpG0OvA7SW+NiF+Xjs1spPARkJmZFeFrQGZmVoQTkJmZFeEEZGZmRTgBmZlZEU5AZmZWhBOQmZkV4QRkZmZF/A/PYQ5H9P1sOgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaYAAAEWCAYAAAAtuzN2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAfn0lEQVR4nO3debgcZZn38e+PBJNIAiRwQEiCB5QRA4PoGxaXUUZAMoCQUVFQMCwaedUBHR0J6AygoOHVcXAZRzNsAcKSAZQI4hDDKsqSACohYJAtgZCEJbIpGLjfP57nSKXTfU6fk9OnqnN+n+vqq7uqnqq6q+qpurueqq5WRGBmZlYVG5QdgJmZWZETk5mZVYoTk5mZVYoTk5mZVYoTk5mZVYoTk5mZVUplEpOkkPTGPo77kKS9Gwz7O0n31Ssr6URJZ/Yt4h5j6szLNDR3Xy1pSj9Nu+Ey9dP0F0ras7+m1+Q8JekcSU9Lum0g591OJF0v6RNNlt1T0tJCd79tV0kfk3RNobvP+28/xHKEpF+WMe88/6a3SbuQdLKkC8qa/zolpnxA/JOk5yQtzweWkf0VXH+IiJsi4k0Nhn09Ij4BayeSFsTxDxExs6dyzezg3S1Tb0k6V9KpNdPfMSKu74/p98K7gH2AcRGxW+3AfJB9Jde1rteUwvBhks6W9IykxyX9c834u0haIOmF/L5L6xepWprZrs3uBxExKyLe1x9xrY8Hdls3/XHG9P6IGAm8DdgV+EptgVYd7Aej9Xhdvh54KCKe76bMYxExsvAqJvqTge3zdP4e+JKkSQCSXgNcAVwAjAZmAlfk/i2TzwIr0yrRX9q5DrZz7O2qL+u833aaiHgUuBrYKQcTkj4jaTGwOPf7pKT7JT0laY6krWsms5+kByQ9IembXTu1pDdIulbSk3nYLEmb1oy7q6R7clPQOZKG53HXaM4oqjldvTG/r8rfxt+T4/zbQvkt8hliR51pDZH0rRzfA8D+NcP/+q1Q0hsl3SDpj7n8Jbl/Vwy/yTF8pCt+ScdLehw4p8EyNVr+tZo5us7KJE0FPkY6iD8n6ad5eLG5c5ikMyQ9ll9nSBpWXLeSviBphaRlko6st65z+a3zdn8q14NP5v5HA2cCb89xnNJoGt34OPC1iHg6IhYB/w0ckYftCQwFzoiIFyPiu4CA9zaI81xJ/ynpKknPSrpV0hsKw98h6fa8/W6X9I7CsOslnSbpZuAFYLu8vj8taXGe3tdynf610hne7K4kKWm0pCslrczb8kpJ45pZAZJG5NiflnQP6YticXhxu+4maX6e/3JJ387FaveDt+c6dLOk/5D0FHByvXpF4/13jWYhFc7KJJ0G/B3w/Ty/7+cyO0iam+vKfZI+XBh/s1yPnlFq9n0DDRTmdbSkR4Brc///UTqz/qOkGyXtWBinp+2/j6R787jfJ9WlrmEbSPqKpIfzPnGepE1qYjlS0pK8nY6RtKuk30pa1bX8DZbl5FxXzstxLZQ0sTB8jdYWFVpD9Oq++iW9uq9OlrSfpN/n9XxizSyHS7okz+sOSW8pTHtrSZflevqgpGNr4rxU0gWSngGO6Ka+1RcRfX4BDwF758/jgYWkgwNAAHOBMcAI0kHgCdKZ1TDge8CNhWkFcF0uvw3we+ATedgbSc08w4AO0s5zRk0cd+cYxgA3A6fmYXsCSxvEfDJwQf7cmWMYWij7A+D0QvdxwE8brItjgHsLMVxXnB5wfWF5LgK+TPpiMBx4V816eGOhe09gNXB6Xv4RDZap0fIfAfyyJta/zgM4t6tsg3X0VeAWYIu87n9V2MZdsX0V2BDYj3QwHt1gHd2Q1+lwYBdgJbBXozhrxt0TeAlYDjwI/AewUR42Oi/TloXyHwJ+lz9/Hri6ZnpXAl9oMK9zgaeA3UgJbRZwcR42BngaODwPOzR3b1bYzo8AO+bhG+bY5gAb5/4vAvOA7YBNgHuAKXn8zYAPAq8FRgH/A/ykENv15HpUJ+7pwE05xvG5TjSq+78GDs+fRwJ7dLMfHJG38z/lZRpRu73ofv89mbyf1ZtH7TIBGwFLgCPz/N5GOnbsmIdfDMzO5XYCHqVB3SnM67xcfkTuf1Rev8OAM4C7mtz+mwPPkOrXhqS6tbqwrEcB9+dtOxK4HDi/JpYfkvaB9wF/Bn5C2r/GAiuA9zRYlpNz+f2AIcA3gFu6OXacy5rHwdXAv+W4P0na/y7M62HHPO3tCvP6S2E5v0ja7zYkHbcW5Gm9Ji/rA8C+NeNOzmVH0KC+NdzfuxvY04tU0Z8DVgEPkw46Iwor6b2FsmcB/6/QPTIH31koP6kw/NPAvAbznQzcWRPHMYXu/YA/FDZIXxPT7qQdZIPcPR/4cIOYrq2J4X00TkznATNI11Nqp1MvMb0EDK/pV7tMjZb/CNYtMf0B2K8wbF9Sk1tXHH+qWWcr6lU60oHyZWBUod83gHMbxVkz/uuACaSKvi3py8mPCtOOmnW0TyHOfyUfWArDZwEnN5jXucCZNevz3vz5cOC2mvK/Bo4obOev1lnf7yx0LwCOL3T/O4UvWjXj7gI8Xej+az2qU/YB1tyHptapJ13b9UbgFGDzmml0Uj8xPVJTbo3tRTf7L71PTB8BbqqZ34+Ak0gH5L8AOxSGfb1R3SnMa7tu6tamucwmTWz/j7NmMhCwlFf37XnApwvD35TjHVqIZWxh+JPARwrdlwGfaxDnycAvCt0TgD/V269r921e3VeH5O5RufzuNfVycmFexeXcAFhGOrvdvU59OAE4pzDujTXD69a3Rq/+aMqbHBGbRsTrI+LTEfGnwrAlhc9bk5IXABHxHGmjjG1Q/uE8TlcT2sWSHs2nhheQvrnQ07jrIiJuBZ4H3iNpB9KZ25wGxbeuE0MjXyJV6Nvy6fhRPYSyMiL+3EOZfl/+bI3tVmfaT0bE6kL3C6QvHfWm81REPFszrbF1yq4lIh6PiHsi4pWIeJC0Dj+UBz+X3zcujLIx8GxheHFY7fB6Hi98Li5T7fqAtZdjCWtbXvj8pzrdIwEkvVbSj3JT0DOkHXpTSUO6ibVLb+rg0cDfAPcqNUce0MO06y1Td2XWpQ6+Htg9N22tkrSK1OT8OtJZ+9A682o6NqVm9+mS/pDX8UN5UPGY0t32/+u0Ih11Gx7n8uehwJaFfk3VhQZq4xqu5q/hPBkRLxfmUy+W4ryLy/kKKQFvTdo+W9dsnxNZcxlr60uv6lurL8xG4fNjpAUCQNJGpGaLRwtlxhc+b5PHgfTNOoCdI2Jj4DAK7bo9jNuXWItm5vkdDlzaTYJYVieG+jNKB9lPRsTWwKeAH6j7O/EaxVbUaPmfJzULASDpdb2c9hrbjb6t267pjJE0qmZajzYo35Mg14GIeJq0/t9SGP4WUtMy+X1nScU6s3NheG/Urg9Yezma2V6NfIH0LXv3XNffnfvX1vd6elMHF0fEoaQmpNOBS/M+2Sj2fquDpATT3bSXADfkL7xdr5ER8X9JzU+r68yrJ8V5fBQ4CNib1JTamfv3eh3nOlWMpd7+spo1E0CrvED367m3isu5ATCOtHxLgAdrts+oiNivMO4a27Sb+lbXQN4xdCFwpNJtu8NIp9+3RsRDhTL/onTxdzzpes4luf8ocpOhpLHAv9SZ/mckjZM0hpS9L6lTpjsrgVdI7aVF5wP/SEpO53Uz/mzg2BzDaGBao4KSDtarF7SfJm3Erm8yy+vE0IxGy/8bYMe83oeTTrOLeprfRcBXJHVI2pzUrtzr3zdExBLS9alvSBouaWfSt6hZzYyfL95uo2Q86XrKFYUi5+U4R+ez20+SmjIgNRW9TNo+wyR9Nve/trfLAfwM+BtJH1W6eP8RUpPKlX2YVj2jSN9cV+VteVIvxp0NnJDXwTjSNaG6JB0mqSN/E16Ve79M4/2gGY3237uAd+fttwmp2aeotg5eSVrHh0vaML92lfTm/I3/ctINGK+VNAGY0ss4R5Gu8z1JOpB/vRfjXkXanz6Qz1SOZc0EcBHweUnbKv105uvAJTWtCq1yF/DRfEY4CXjPOk7v/xSW83OkdXYLcBvwjNINWSPy/HaStGujCXVT3+oasMQUEfNIbf2Xkb51vAE4pKbYFaR2zrtIFeCs3P8U0gXQP+b+l9eZxYXANaR29geAU+uU6S6+F4DTgJvz6ekeuf9S4A5S8ripm0n8N/C/pERwR4MYu+wK3CrpOVLT4HG5eQpS4piZY/hwownUUXf5I+L3pJsTfkG6O7L2TqqzgAl5fj+pM91TSdfWfgv8Li9br9ZtwaGkb6ePAT8GToqIuU2O+zbStZznSQnubtJBoctJpOthD5NusvhmRPwcICJeIl2X/DhppziK1AT9Um8XICKeBA4gndk8SWpSPCAinujttBo4g3Sx+AnSQeDnvRj3FNLyP0iqC+d3U3YSsDDXwe8Ah0TEnxvtB02qu//mbXwJqQ4tYO0k/h3gQ0p3qX03N/e+j3R8eIzUfNV18w/AZ0lNTo+Tvnyc04sYIX2JeZh0lnsPaT03JW/ng0lfjJ4k/UTh5kKRs0nr/UbSdvgz3XxB6GfHAe8n1fGPkW6qWBdXkK73dd3s84GI+Ev+cvB+0vXPB0l19UzS2Wcjdetbo8LKF6asG5LOJv2GZq3faJmZWf/yj816IKkT+ADw1nIjMTMbHNa7X6X3J0lfIzUZfbPQ1GZmZi3kpjwzM6sUnzGZmVmltPU1ps033zw6OzvLDsPMrK0sWLDgiYhY65mfVdHWiamzs5P58+eXHYaZWVuR1MzTMkrjpjwzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6uUtn7yg1lPOqddVdq8H5q+f2nzNmtnPmMyM7NKcWIyM7NKaVliknS2pBWS7i70+6akeyX9VtKPJW1aGHaCpPsl3Sdp31bFZWZm1dbKM6ZzgUk1/eYCO0XEzsDvgRMAJE0ADgF2zOP8QNKQFsZmZmYV1bLEFBE3Ak/V9LsmIlbnzluAcfnzQcDFEfFi/gvz+4HdWhWbmZlVV5nXmI4Crs6fxwJLCsOW5n5rkTRV0nxJ81euXNniEM3MbKCVkpgkfRlYDczq6lWnWNQbNyJmRMTEiJjY0VHZP2A0M7M+GvDfMUmaAhwA7BURXclnKTC+UGwc8NhAx2ZmZuUb0DMmSZOA44EDI+KFwqA5wCGShknaFtgeuG0gYzMzs2po2RmTpIuAPYHNJS0FTiLdhTcMmCsJ4JaIOCYiFkqaDdxDauL7TES83KrYzMysulqWmCLi0Dq9z+qm/GnAaa2Kx8zM2oOf/GBmZpXixGRmZpXixGRmZpXiv70wa5Gy/nLDf7dh7c5nTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmVilOTGZmViktS0ySzpa0QtLdhX5jJM2VtDi/jy4MO0HS/ZLuk7Rvq+IyM7Nqa+UZ07nApJp+04B5EbE9MC93I2kCcAiwYx7nB5KGtDA2MzOrqJYlpoi4EXiqpvdBwMz8eSYwudD/4oh4MSIeBO4HdmtVbGZmVl0DfY1py4hYBpDft8j9xwJLCuWW5n5rkTRV0nxJ81euXNnSYM3MbOBV5eYH1ekX9QpGxIyImBgREzs6OloclpmZDbSBTkzLJW0FkN9X5P5LgfGFcuOAxwY4NjMzq4CBTkxzgCn58xTgikL/QyQNk7QtsD1w2wDHZmZmFTC0VROWdBGwJ7C5pKXAScB0YLako4FHgIMBImKhpNnAPcBq4DMR8XKrYjMzs+pqWWKKiEMbDNqrQfnTgNNaFY+ZmbWHqtz8YGZmBjgxmZlZxTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpbTsyQ9mRZ3Trio7BDNrEz5jMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSnFiMjOzSiklMUn6vKSFku6WdJGk4ZLGSJoraXF+H11GbGZmVq4BT0ySxgLHAhMjYidgCHAIMA2YFxHbA/Nyt5mZDTJlNeUNBUZIGgq8FngMOAiYmYfPBCaXFJuZmZVowBNTRDwKfAt4BFgG/DEirgG2jIhlucwyYIt640uaKmm+pPkrV64cqLDNzGyANJWYJF0maX9J65zI8rWjg4Btga2BjSQd1uz4ETEjIiZGxMSOjo51DcfMzCqm2UTzX8BHgcWSpkvaYR3muTfwYESsjIi/AJcD7wCWS9oKIL+vWId5mJlZm2oqMUXELyLiY8DbgIeAuZJ+JelISRv2cp6PAHtIeq0kAXsBi4A5wJRcZgpwRS+na2Zm64GhzRaUtBlwGHA4cCcwC3gXKYns2ex0IuJWSZcCdwCr87RmACOB2ZKOJiWvg5udppmZrT+aSkySLgd2AM4H3t91kwJwiaT5vZ1pRJwEnFTT+0XS2ZOZmQ1izZ4xnRkRPyv2kDQsIl6MiIktiMvMzAapZm9+OLVOv1/3ZyBmZmbQwxmTpNcBY0k/hn0roDxoY9IPY83MzPpVT015+wJHAOOAbxf6Pwuc2KKYzMxsEOs2MUXETGCmpA9GxGUDFJOZmQ1iPTXlHRYRFwCdkv65dnhEfLvOaGZmZn3WU1PeRvl9ZKsDMTMzg56b8n6U308ZmHDMzGyw66kp77vdDY+IY/s3HDMzG+x6aspbMCBRmJmZZc3clWdmZjZgemrKOyMiPifpp0DUDo+IA1sWmZmZDUo9NeWdn9+/1epAzMzMoOemvAX5/QZJryE9YTyA+yLipQGIz8zMBplm//Zif+CHwB9Iz8vbVtKnIuLqVgZnZmaDT7N/e/HvwN9HxP0Akt4AXAU4MZmZWb9q9m8vVnQlpewBYEUL4jEzs0Gup7vyPpA/LpT0M2A26RrTwcDtLY7NzMwGoZ6a8t5f+LwceE/+vBIY3ZKIzMxsUOvprrwjByoQM+sfndOuKm3eD03fv7R52/qj2bvyhgNHAzsCw7v6R8RRLYrLzMwGqWZvfjgfeB3pH21vIP2j7bOtCsrMzAavZhPTGyPiX4Hn8/Pz9gf+tnVhmZnZYNVsYvpLfl8laSdgE6CzJRGZmdmg1mximiFpNPCvwBzgHuD0vs5U0qaSLpV0r6RFkt4uaYykuZIW53ff9WdmNgg1lZgi4syIeDoiboiI7SJii65/t+2j7wA/j4gdgLcAi4BpwLyI2B6Yl7vNzGyQaSoxSdpM0vck3SFpgaQzJG3WlxlK2hh4N3AWQES8FBGrgIOArv9/mglM7sv0zcysvTXblHcx6RFEHwQ+BDwBXNLHeW5H+oHuOZLulHSmpI2ALSNiGUB+36KP0zczszbWbGIaExFfi4gH8+tUYNM+znMo8DbgvyLircDz9KLZTtJUSfMlzV+5cmUfQzAzs6pqNjFdJ+kQSRvk14dJTxfvi6XA0oi4NXdfSkpUyyVtBZDf6z4kNiJmRMTEiJjY0dHRxxDMzKyquk1Mkp6V9AzwKeBC4KX8uhj4fF9mGBGPA0skvSn32ot0l98cYEruNwW4oi/TNzOz9tbTs/JGtWi+/wTMyv+K+wBwJClJzpZ0NPAI6QnmZmY2yDT7R4FIOpB0Nx3A9RFxZV9nGhF3ARPrDNqrr9M0M7P1Q7O3i08HjiM1ud0DHJf7mZmZ9atmz5j2A3aJiFcAJM0E7sQ/gjUzs37W7F15sObt4Zv0dyBmZmbQ/BnT14E7JV0HiHSt6YSWRWVmZoNWj4lJ0gbAK8AewK6kxHR8vu3bzMysX/WYmCLiFUmfjYjZpN8amZmZtUyz15jmSvqipPH57ynGSBrT0sjMzGxQavYa01FAAJ+u6b9d/4ZjZmaDXbOJaQIpKb2LlKBuAn7YqqDMzGzwajYxzQSeAb6buw/N/T7ciqDMzGzwajYxvSki3lLovk7Sb1oRkJmZDW7N3vxwp6Q9ujok7Q7c3JqQzMxsMGv2jGl34OOSHsnd2wCLJP0OiIjYuSXRmZnZoNNsYprU0ijMzMyyphJTRDzc6kDMzMygdw9xNTMzazknJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzqxQnJjMzq5TSEpOkIZLulHRl7h4jaa6kxfl9dFmxmZlZeco8YzoOWFTongbMi4jtgXm528zMBplSEpOkccD+wJmF3geR/hWX/D55oOMyM7PyNfu3F/3tDOBLwKhCvy0jYhlARCyTtEW9ESVNBaYCbLPNNq2Oc73SOe2qskMwM+vRgJ8xSToAWBERC/oyfkTMiIiJETGxo6Ojn6MzM7OylXHG9E7gQEn7AcOBjSVdACyXtFU+W9oKWFFCbGZmVrIBP2OKiBMiYlxEdAKHANdGxGHAHGBKLjYFuGKgYzMzs/JV6XdM04F9JC0G9sndZmY2yJR18wMAEXE9cH3+/CSwV5nxmJlZ+ap0xmRmZubEZGZm1eLEZGZmleLEZGZmleLEZGZmleLEZGZmleLEZGZmlVLq75jMbP1S1oOCH5q+fynztdbwGZOZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVWKE5OZmVXKgCcmSeMlXSdpkaSFko7L/cdImitpcX4fPdCxmZlZ+co4Y1oNfCEi3gzsAXxG0gRgGjAvIrYH5uVuMzMbZAY8MUXEsoi4I39+FlgEjAUOAmbmYjOByQMdm5mZla/Ua0ySOoG3ArcCW0bEMkjJC9iiwThTJc2XNH/lypUDFaqZmQ2Q0hKTpJHAZcDnIuKZZseLiBkRMTEiJnZ0dLQuQDMzK0UpiUnShqSkNCsiLs+9l0vaKg/fClhRRmxmZlauMu7KE3AWsCgivl0YNAeYkj9PAa4Y6NjMzKx8Q0uY5zuBw4HfSbor9zsRmA7MlnQ08AhwcAmxmZlZyQY8MUXELwE1GLzXQMZiZmbV4yc/mJlZpTgxmZlZpTgxmZlZpZRx88Og1zntqrJDMDOrLJ8xmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpTgxmZlZpfiRRGbW9sp6zNdD0/cvZb7rO58xmZlZpTgxmZlZpTgxmZlZpTgxmZlZpQzqmx/8v0hmti7KPIaszzde+IzJzMwqxYnJzMwqxYnJzMwqxYnJzMwqxYnJzMwqpXKJSdIkSfdJul/StLLjMTOzgVWpxCRpCPCfwD8AE4BDJU0oNyozMxtIlUpMwG7A/RHxQES8BFwMHFRyTGZmNoCq9gPbscCSQvdSYPdiAUlTgam58zlJ97Uols2BJ1o07YHQzvG3c+zQ3vG3c+zQ3vH3Knadvk7zev06jd1iVUtMqtMv1uiImAHMaHkg0vyImNjq+bRKO8ffzrFDe8ffzrFDe8ffzrH3t6o15S0Fxhe6xwGPlRSLmZmVoGqJ6XZge0nbSnoNcAgwp+SYzMxsAFWqKS8iVkv6LPC/wBDg7IhYWFI4LW8ubLF2jr+dY4f2jr+dY4f2jr+dY+9XioieS5mZmQ2QqjXlmZnZIOfEZGZmleLE1A1JX5P0W0l3SbpG0tZlx9QsSd+UdG+O/8eSNi07pt6QdLCkhZJekdQWt9C28+O0JJ0taYWku8uOpbckjZd0naRFuc4cV3ZMvSFpuKTbJP0mx39K2TGVzdeYuiFp44h4Jn8+FpgQEceUHFZTJL0PuDbfUHI6QEQcX3JYTZP0ZuAV4EfAFyNifskhdSs/Tuv3wD6knz3cDhwaEfeUGliTJL0beA44LyJ2Kjue3pC0FbBVRNwhaRSwAJjcRutewEYR8ZykDYFfAsdFxC0lh1YanzF1oyspZRtR82PfKouIayJide68hfSbsLYREYsiolVP9WiFtn6cVkTcCDxVdhx9ERHLIuKO/PlZYBHpKTJtIZLncueG+dU2x5pWcGLqgaTTJC0BPgb8W9nx9NFRwNVlB7Geq/c4rbY5OK4vJHUCbwVuLTeS3pE0RNJdwApgbkS0Vfz9bdAnJkm/kHR3nddBABHx5YgYD8wCPltutGvqKfZc5svAalL8ldJM/G2kx8dpWWtJGglcBnyuprWj8iLi5YjYhdSysZuktmpO7W+V+oFtGSJi7yaLXghcBZzUwnB6pafYJU0BDgD2igpeTOzFum8HfpxWifK1mcuAWRFxednx9FVErJJ0PTAJaLsbUfrLoD9j6o6k7QudBwL3lhVLb0maBBwPHBgRL5QdzyDgx2mVJN88cBawKCK+XXY8vSWpo+uuWUkjgL1po2NNK/iuvG5Iugx4E+nusIeBYyLi0XKjao6k+4FhwJO51y3tckchgKR/BL4HdACrgLsiYt9yo+qepP2AM3j1cVqnlRxS0yRdBOxJ+uuF5cBJEXFWqUE1SdK7gJuA35H2VYATI+Jn5UXVPEk7AzNJ9WYDYHZEfLXcqMrlxGRmZpXipjwzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyYzM6sUJyazfiRp1/wfWMMlbZT/X2dQP/fMrLf8A1uzfibpVGA4MAJYGhHfKDkks7bixGTWz/Kz8m4H/gy8IyJeLjkks7bipjyz/jcGGAmMIp05mVkv+IzJrJ9JmkP6B9ttSX/5Xan/8TKrukH/f0xm/UnSx4HVEXGhpCHAryS9NyKuLTs2s3bhMyYzM6sUX2MyM7NKcWIyM7NKcWIyM7NKcWIyM7NKcWIyM7NKcWIyM7NKcWIyM7NK+f8lyhrIz0Kd1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEWCAYAAAA3h9P4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAfCUlEQVR4nO3de7gcVZnv8e8PiAkSFCIBIUQ2KqKgGJgIzOhRBAWEURBFg6OCgOgIR1QcCahjFKJxdIDxfkAYAnLLDHLIgLeIQVQUDPdLRCMEEhJIQJCgXEx454+1Nql0unf33uzavTr8Ps+zn65aqy5vVa2qt+vStRURmJmZlWq9bgdgZmY2ECcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OidS1RSQpJLx3iuAslvalF3f+RdEezYSWdKOm7Q4u4bUx9eZk2yP0/lHToME275TIN0/Rvk7THcE2vw3lK0n9KekjStSM573VFY5vrYPizJZ2cu9doU8MQy9PtXdJhkn45XNMeQixXSjqyS/Me1DbpFcN9zBmsQSWqHOxjkh6VdH8+0IytK7ihiIhfRMT2Leq+GBFHQv0NKiLeEhEz2w3XScIeaJkGq3qwqkx/x4i4cjimPwivA94MbB0RuzZWStpS0mxJS/I66muoHy3pLEmPSLpP0ica6idJuk7SX/PnpIb6j+fx/pynM3r4F7FcnbYpSdMkfa+D6XXU3juY3zp5oLdnZihnVG+NiLHALsBrgM80DuBGNnzW4XW5DbAwIv7Sov4p4EfAO1rUTwO2y9N5I/ApSfsCSHoOcCnwPWBTYCZwaS5H0j7AVGAvoA94MfD5Z7xEbayL2zKfGffsLYR1cZuUbMjrOyI6/gMWAm+q9H8FuCx3B3A08Afgrlz2QWAB8CdgNrBVZdwAPgrcCTyQp7VernsJ8DPgwVx3HrBJQxwnALcDDwH/CYzJdXsAi5vFTDq4fS9335NjeDT/vSHH+arKuJsDjwHjm6yL9YGv5vjuzMsewAa5/krgyNz9UuDnwJ/z8Bfl8qvyOH/JMby7P37geOA+4NwWy9Rq+Q8DftkQa+QYjgL+BjyZ5/c/TdbRaOA0YEn+Ow0YXV23wHHAMmAp8IEB2stWebv/KbeDD+byI4DHgVU5js8PMI0Ncvx9DeX3AntX+k8CLszde+d6VervAfbN3ecDX6zU7QXcN0AMAXyY1LYfAr7ZP23Sl73PAHfndXIO8Pxc15fHPSLP/6q8fX4FnAo8TGo7/5DLF+VpHFqZ9/7ADcAjuX5apa5/+hu0iHtn4HpgBXARcCFwcov95Pi8zlYAd+R1sm9uK3/L2+mmStuenpfjMVLbupLV7b1/Gb9OavO/A/Ya4Dgyjdb75d/n8sOB+Xn9/xjYpjL+m/M8/gx8g7SvHdlinUwD/pv0JeYR4EhgV+DXeXsszdN4Tofbv91xoOk+UInlv3IsK4BbgJeR9u1leXvv3Ww5Kuvxk8DNedkvooPjQO4+G/gW8MO8nn8FvJC0vz+U1+fOnRxzcv0/AjfmdXg1sFPDuMfnOJ8g7dNrtbcBc89AlS1WTP8BbSJwG3BSZSXMAcYBGwJ75o23C+ng93XgqoaVNjcP/yLg96x5YH9zHm88aQc/rSGOW3MM4/JKbrUDVmOexuodoo+GnTxvuC9X+o8lH8ybrIsP543ZH8NcWieqC4BPkw5qY4DXNWs8lfhXAl/Oy79hi2VqtfyH0b6BnjzAdv0C8BtSkh5PanQnNcT2BWAUsB/wV2DTFuvo53mdjgEmAcvJDbJZnC2msVaiIp0lBbBFpeydwC25++PADxumcxlwXO6+CXh3pW6zPL0XtIgh8vibkNrqclYnvcNJB6AXA2OB7wPnNrSxc4CN8rY8LK/DD5AOcieTDs7fzNt7b9LOO7ayzl+V285OwP3Aga3acCXm55CS58fztnonKeGstZ8A25MOiltVpvuSxn2mMu0rc8w75u0zirUT1crKvN9NOpCOa2xvHe6XB+Z1/Io8v88AV1e23SN5+Ublea5k4ET1tzzN9fI2+Ttg9zztPlJC/FiH27/dcWCgfWAa6QvbPnne5wB3kY4Vo0hf9O9qczy+lpQMx+W4PzyI48ADednHkE4M7gLez+p2ObfDY84upMS6Wx730Dz86Mq4N+ZxN2SA9tZyWdsdKJqsmEdJWfPuvAE2rKyEPSvDngn8W6V/bG4gfZXh963UfwS4osV8DwRuaIjjw5X+/YA/Nu6ATQ7C0xh4h9gtr8D+M7t5wLtaxPSzhhj2pnWiOgc4nXQ/ptlBsDFRPcma31aaLVOr5T+MZ5ao/gjsV6nbh3SJrj+OxxrW2TJg9ybLNZF0xrRxpexLwNmt4myxnpslqom5rLqO3lyJ87Pks6tK/Xnks5G8jNW2N6pxHk3WX/XLxSxgau6+AvhIpW57UjvvP+gF8OJK/WHAHyr9r2LtpPsgMKlFLKcBp7Zqw5XhXk86I66eVV5N80T10rwd3wSMapjONJonqi80KasmqsZ5Xwu8r7G9dbhf/hA4otK/HukL0jakA+tvKnUinfUPlKiualZXGeZjwCUdbv+WxwHa7wPTgDmVureSjq/r5/6N87Q2aRHnQuC9lf5/A74ziOPAGZW6/wvMb2iXDzfMq9Ux59vkL7OV+juAN1TGPbxS17K9tfobyrXlAyNik4jYJiI+EhGPVeoWVbq3IiUzACLiUdIOOKHF8HfncZC0uaQLJd0r6RHSqfFmDXE0HfeZiIhrSJfh3iDp5aQVOrvF4Fs1iaGVT5F2oGvzE3aHtwlleUQ83maYYV/+bI3t1mTaD0bEykr/X0lfQppN508RsaJhWhOaDDtYj+bP51XKnkc6E+mvfx5rGqi+v3sFrd1X6a4uc7P1tQGwRaWsuq0gnRX1ewwgIhrLxgJI2k3SXEnLJf2Z9A2+cV9oZivg3shHhkpsa4mIBaSD8zRgWd732rWnxmVq1GzeQ22j2wD/IelhSQ+TLqOJ1JbW2A/zPNvFtka9pJdJuiw/XPMI8EXWXscDbf9Wx4FO9oHG7f5ARKyq9EPz/atdXJ1onHfTNljR6pizDXBc//bJ22gia27v6jYadHsb7pug1Ya5hLQAAEjaCHgB6bpkv4mV7hflcSB96wjSdc7nAe8lNUw6GHcosVbNzPN7H/DfAySMpU1iaD6jiPsi4oMRsRXwIeBbbZ70axVbVavl/wvw3P4KSS8c5LTX2G4Mbd32T2ecpI0bpnVvi+E7FhEPkdb/qyvFryZdiiZ/7iSp2mZ2aqhvHPf+iHhwCOE0W18rWXOn72R7tnI+6cvSxIh4PvAd1t4XmlkKTGhYBwO10fMj4nWkZQnSpWdoHXu7ZWo276ZtlHRvZKDpLgI+lL8g9/9tGBFX07Af5nlObDKNgWL/Nuny3Xb5eHMina1jGufPmuu4tn2gA+2OA0PR6pizCJjesH2eGxEXVIZfY50P0N6aqvNpnfOBD+THhEeTvqVcExELK8P8i6RNJU0k3Q+6KJdvTL7EKGkC8C9Npn+0pK0ljSM1rIuaDDOQ5aQny17cUH4u8HZSsjpngPFnAR/NMWxKeoqsKUkHS9o69z5E2jD935rubxJDJ1ot/03Ajnm9jyF9a6lqN78LgM9IGi9pM+BfSWe0gxIRi0iXmr4kaYyknUgPFZzX6TRy/P2PjY/O/f3OyXFums9+P0i6nAHpMtQq0vYZLemYXP6zyrhHSNohb7vPVMYdrAuAj0vaNv9U44ukh2VWthmvUxuTvpU/LmlX4D0djvdrUsL8qKQNJB1EemhgLZK2l7Rn3k8fJ32brrbPviE82bd5nvcoSQeT7i/9INfdCEzJdZNJ95f6NdsvvwOcIGnHHO/z8zQBLie194PyE2UfZc3E14mNSfe5Hs1t6Z8HMW7L48Bw7APPQLvjwFC0OuacAXw4n/1L0kaS9m9I0E9r096aqi1RRcQVpHsFF5O+dbwEmNIw2KXAdaSGeznpvhakR4V3Id2AvZx0g7rR+cBPSE/a3Em6+TeY+P5KfnIpn67unssXk56UCuAXA0ziDNLTRzfl4ZvF2O81wDWSHiV9Oz42Iu7KddOAmTmGdw1iEZouf0T8nvSww09JTyk1/vDyTGCHPL//32S6J5Puzd1Megrpega5bisOId1zWAJcAnwuIuYMYvzHWH2Z73esvhQC8DnSvaa7STesvxIRPwKIiCdJ9zXfT7qfejjpkvWTuf5HpOv5c/P4d+fpDcVZpC83V5FuRj9Out4/XD4CfEHSCtKXhlmdjJSX9SDSvYqHSA80tGqjo4EZpJvr95GSzIm57r/y54OSrh9E3NeQfj7wAGk/e2fljPWzpOPBQ6R9/fxK3GvtlxFxCekb94X50tytwFvy8A8AB+f4H8zz/NUg4oT05Nx7SJd+z2BwX3rbHQee6T4wJB0cB4ai1TFnHumL4jdI23QBqd21MlB7a6r/EUurkHQWsCQi1vqNmJmZjSz/2K2B0hsQDiL9BsXMzLqsZ39RXgdJJ5EuK3ylcmnOzMy6yJf+zMysaD6jMjOzovX0ParNNtss+vr6uh2GmVlPue666x6IiPHdjqNTPZ2o+vr6mDdvXrfDMDPrKZIGepNOcXzpz8zMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK1tNvpjArWd/Uy7sy34Uz9u/KfM3q4jMqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6LVlqgkTZQ0V9J8SbdJOjaXT5N0r6Qb899+lXFOkLRA0h2S9qkrNjMz6x11/puPlcBxEXG9pI2B6yTNyXWnRsRXqwNL2gGYAuwIbAX8VNLLImJVjTGamVnhajujioilEXF97l4BzAcmDDDKAcCFEfFERNwFLAB2rSs+MzPrDSNyj0pSH7AzcE0uOkbSzZLOkrRpLpsALKqMtpgmiU3SUZLmSZq3fPnyGqM2M7MS1J6oJI0FLgY+FhGPAN8GXgJMApYC/94/aJPRY62CiNMjYnJETB4/fnxNUZuZWSlqTVSSRpGS1HkR8X2AiLg/IlZFxFPAGay+vLcYmFgZfWtgSZ3xmZlZ+ep86k/AmcD8iDilUr5lZbC3A7fm7tnAFEmjJW0LbAdcW1d8ZmbWG+p86u+1wPuAWyTdmMtOBA6RNIl0WW8h8CGAiLhN0izgdtITg0f7iT8zM6stUUXEL2l+3+kHA4wzHZheV0xmzwZ9Uy/v2rwXzti/a/O2dZffTGFmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVrTaEpWkiZLmSpov6TZJx+bycZLmSPpD/ty0Ms4JkhZIukPSPnXFZmZmvaPOM6qVwHER8Qpgd+BoSTsAU4ErImI74IrcT66bAuwI7At8S9L6NcZnZmY9oLZEFRFLI+L63L0CmA9MAA4AZubBZgIH5u4DgAsj4omIuAtYAOxaV3xmZtYbRuQelaQ+YGfgGmCLiFgKKZkBm+fBJgCLKqMtzmWN0zpK0jxJ85YvX15n2GZmVoDaE5WkscDFwMci4pGBBm1SFmsVRJweEZMjYvL48eOHK0wzMytUrYlK0ihSkjovIr6fi++XtGWu3xJYlssXAxMro28NLKkzPjMzK1+dT/0JOBOYHxGnVKpmA4fm7kOBSyvlUySNlrQtsB1wbV3xmZlZb9igxmm/FngfcIukG3PZicAMYJakI4B7gIMBIuI2SbOA20lPDB4dEatqjM/MzHpAbYkqIn5J8/tOAHu1GGc6ML2umMzMrPf4zRRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMilbn29PNuq5v6uXdDsHMnqGOzqgkXSxpf0k+AzMzsxHVaeL5NvAe4A+SZkh6eY0xmZmZPa2jRBURP42IfwJ2ARYCcyRdLekD+d/Nm5mZ1aLjS3mSXgAcBhwJ3AD8BylxzaklMjMzMzp8mELS94GXA+cCb42IpbnqIknz6grOzMys06f+vhsRP6gWSBodEU9ExOQa4jIzMwM6v/R3cpOyXw9nIGZmZs0MeEYl6YXABGBDSTsDylXPA55bc2xmZmZtL/3tQ3qAYmvglEr5CuDEmmIyMzN72oCJKiJmAjMlvSMiLh6hmMzMzJ7W7tLfeyPie0CfpE801kfEKU1GMzMzGzbtLv1tlD/H1h2ImZlZM+0u/f2//Pn5kQnHzMxsTe0u/X1toPqI+OjwhmNmZramdpf+rhuRKMzMzFro5Kk/MzOzrhnwzRSSTsuf/yNpduNfm3HPkrRM0q2VsmmS7pV0Y/7br1J3gqQFku6QtM8zXTAzM1s3tLv0d27+/OoQpn028A3gnIbyUyNijelJ2gGYAuwIbAX8VNLLImLVEOZrZmbrkHaX/q7Lnz+X9BzSG9QDuCMinmwz7lWS+jqM4wDgwoh4ArhL0gJgV/w+QTOzZ71O/xX9/sAfga+RzpIWSHrLEOd5jKSb86XBTXPZBGBRZZjFuaxZLEdJmidp3vLly4cYgpmZ9YpO357+78AbI2KPiHgD8Ebg1CHM79vAS4BJwNI8XVj9stuqaDaBiDg9IiZHxOTx48cPIQQzM+slnSaqZRGxoNJ/J7BssDOLiPsjYlVEPAWcQbq8B+kMamJl0K2BJYOdvpmZrXva/eD3oNx5m6QfALNIZzoHA78d7MwkbVn578BvB/qfCJwNnC/pFNLDFNsB1w52+mZmtu5p99TfWyvd9wNvyN3LgU3XHnw1SRcAewCbSVoMfA7YQ9IkUrJbCHwIICJukzQLuB1YCRztJ/7MzAzaP/X3gaFOOCIOaVJ85gDDTwemD3V+Zma2bmp3RgWApDHAEaTfOY3pL4+Iw2uKy8zMDOj8YYpzgReS/uPvz0kPO6yoKygzM7N+nSaql0bEZ4G/5Pf/7Q+8qr6wzMzMkk4T1d/y58OSXgk8H+irJSIzM7OKju5RAafnt0h8lvQo+djcbWZmVquOElVEfDd3/hx4cX3hmFkv65t6eVfmu3DG/l2Zr42MTt/19wJJX5d0vaTrJJ0m6QV1B2dmZtbpPaoLSa9MegfwTuAB4KK6gjIzM+vX6T2qcRFxUqX/ZEkH1hGQmZlZVadnVHMlTZG0Xv57F9Cdi9FmZvas0u6ltCtI7+UT8Ange7lqPeBR0vv7zMzMatPuXX8bj1QgZmZmzXR6jwpJbwNen3uvjIjL6gnJzMxstU4fT58BHEv6Nxy3A8fmMjMzs1p1eka1HzAp/2deJM0EbgCm1hWYmZkZdP7UH8Amle7nD3cgZmZmzXR6RvVF4AZJc0lPAL4eOKG2qMzMzLK2iUrSesBTwO7Aa0iJ6viIuK/m2MzMzNonqoh4StIxETGL9OZ0MzOzEdPpPao5kj4paaKkcf1/tUZmZmZG5/eoDie9oeIjDeX+lx9mZlarThPVDqQk9TpSwvoF8J26gjIzM+vXaaKaCTwCfC33H5LL3lVHUGZmZv06TVTbR8SrK/1zJd1UR0BmZmZVnT5McYOk3ft7JO0G/KqekMzMzFbr9IxqN+D9ku7J/S8C5ku6BYiI2KmW6MzM7Fmv00S1b61RmJmZtdBRooqIu+sOxMzMrJnBvJTWzMxsxNWWqCSdJWmZpFsrZeMkzZH0h/y5aaXuBEkLJN0haZ+64jIzs95S5xnV2ax9b2sqcEVEbAdckfuRtAMwBdgxj/MtSevXGJuZmfWI2hJVRFwF/Kmh+ADSD4XJnwdWyi+MiCci4i5gAbBrXbGZmVnvGOl7VFtExFKA/Ll5Lp8ALKoMtziXrUXSUZLmSZq3fPnyWoM1M7PuK+VhCjUpi2YDRsTpETE5IiaPHz++5rDMzKzbRjpR3S9pS4D8uSyXLwYmVobbGlgywrGZmVmBRjpRzQYOzd2HApdWyqdIGi1pW2A74NoRjs3MzArU6ZspBk3SBcAewGaSFgOfA2YAsyQdAdwDHAwQEbdJmgXcDqwEjo6IVXXFZmZmvaO2RBURh7So2qvF8NOB6XXFY2ZmvamUhynMzMyacqIyM7OiOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVrTa3p5uVtU39fJuh2BmPcpnVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRuvL/qCQtBFYAq4CVETFZ0jjgIqAPWAi8KyIe6kZ8ZmZWjm7+48Q3RsQDlf6pwBURMUPS1Nx/fHdCM7Ne0q1/zLlwxv5dme+zTUmX/g4AZubumcCBXYzFzMwK0a1EFcBPJF0n6ahctkVELAXIn5s3G1HSUZLmSZq3fPnyEQrXzMy6pVuX/l4bEUskbQ7MkfS7TkeMiNOB0wEmT54cdQVoZmZl6MoZVUQsyZ/LgEuAXYH7JW0JkD+XdSM2MzMry4gnKkkbSdq4vxvYG7gVmA0cmgc7FLh0pGMzM7PydOPS3xbAJZL6539+RPxI0m+BWZKOAO4BDu5CbGZmVpgRT1QRcSfw6iblDwJ7jXQ8ZmZWtpIeTzczM1uLE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrWjf+Fb11Sd/Uy7sdgpnZoPmMyszMiuYzKjOzIermVYqFM/bv2rxHms+ozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7Oi+XdUXeA3RJiZdc5nVGZmVrTiEpWkfSXdIWmBpKndjsfMzLqrqEQlaX3gm8BbgB2AQyTt0N2ozMysm0q7R7UrsCAi7gSQdCFwAHB7HTPzvSIzs/KVlqgmAIsq/YuB3aoDSDoKOCr3PirpjgGmtxnwwLBGODIc98hy3CPLcQ8DfbnjQZvFvc2wBlOz0hKVmpTFGj0RpwOndzQxaV5ETB6OwEaS4x5ZjntkOe6R1atxVxV1j4p0BjWx0r81sKRLsZiZWQFKS1S/BbaTtK2k5wBTgNldjsnMzLqoqEt/EbFS0jHAj4H1gbMi4rZnMMmOLhEWyHGPLMc9shz3yOrVuJ+miGg/lJmZWZeUdunPzMxsDU5UZmZWtGdNopL0SUkhabNux9IJSSdJulnSjZJ+ImmrbsfUCUlfkfS7HPslkjbpdkydkHSwpNskPSWp+Ed5e/FVY5LOkrRM0q3djmUwJE2UNFfS/NxGju12TJ2QNEbStZJuynF/vtsxDdWzIlFJmgi8Gbin27EMwlciYqeImARcBvxrtwPq0BzglRGxE/B74IQux9OpW4GDgKu6HUg7PfyqsbOBfbsdxBCsBI6LiFcAuwNH98j6fgLYMyJeDUwC9pW0e5djGpJnRaICTgU+RcOPh0sWEY9UejeiR2KPiJ9ExMrc+xvSb+GKFxHzI2Kgt5yU5OlXjUXEk0D/q8aKFhFXAX/qdhyDFRFLI+L63L0CmE96i07RInk0947Kfz1xHGm0zicqSW8D7o2Im7ody2BJmi5pEfBP9M4ZVdXhwA+7HcQ6qNmrxoo/cK4LJPUBOwPXdDeSzkhaX9KNwDJgTkT0RNyNivod1VBJ+inwwiZVnwZOBPYe2Yg6M1DcEXFpRHwa+LSkE4BjgM+NaIAttIs7D/Np0iWT80YytoF0EnePaPuqMRt+ksYCFwMfa7jiUayIWAVMyveKL5H0yojoqXuEsI4kqoh4U7NySa8CtgVukgTpMtT1knaNiPtGMMSmWsXdxPnA5RSSqNrFLelQ4B+BvaKgH+oNYn2Xzq8aG2GSRpGS1HkR8f1uxzNYEfGwpCtJ9wh7LlGt05f+IuKWiNg8Ivoioo+0g+9SQpJqR9J2ld63Ab/rViyDIWlf4HjgbRHx127Hs47yq8ZGkNK33DOB+RFxSrfj6ZSk8f1P3UraEHgTPXIcabROJ6oeN0PSrZJuJl267IlHYoFvABsDc/Kj9d/pdkCdkPR2SYuBvwcul/TjbsfUSn5Ypf9VY/OBWc/wVWMjQtIFwK+B7SUtlnREt2Pq0GuB9wF75jZ9o6T9uh1UB7YE5uZjyG9J96gu63JMQ+JXKJmZWdF8RmVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JymwYSXpN/l9cYyRtlP8P0Cu7HZdZL/MPfs2GmaSTgTHAhsDiiPhSl0My62lOVGbDLL9/77fA48A/5DdYm9kQ+dKf2fAbB4wlvfNwTJdjMet5PqMyG2aSZpP+6+62wJYRcUyXQzLraevE/6MyK4Wk9wMrI+J8SesDV0vaMyJ+1u3YzHqVz6jMzKxovkdlZmZFc6IyM7OiOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXtfwHocIiOpnqaRwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaoAAAEWCAYAAAA3h9P4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAft0lEQVR4nO3de7gcVZnv8e+PEBMEBCIBIQls1IiCIngiMKPHCyBEUGAY0eioQYKMRxxQmZHgZYhCNA5zHMYLelAZw52MyiESEWMAUVEw3JSASIQAMYEEBEmUiwnv/LHWlkqne3fvsGv36vD7PM9+umqturxVtarerkvXVkRgZmZWqk26HYCZmdlAnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrWtUQlKSS9eAPHXSLpgBZ1/1vSHc2GlfRxSd/YsIjbxtSXl2nT3H+5pKlDNO2WyzRE018k6Q1DNb0O5ylJ/yXpYUnXD+e8NxaNba6D4b8l6bTcvU6bGoJY/treJR0l6adDNe0NiOVqScd0ad6D2ia9YqiPOYM1qESVg31M0mpJD+QDzRZ1BbchIuInEbFri7rPRsQxUH+Diog3R8TsdsN1krAHWqbBqh6sKtPfPSKuHorpD8JrgTcB4yNi78ZKSYdI+qmkRyTdL+nrkras1I+SdLakR3P9RxvG31PSDZL+nD/3bKj/SB7vj3k6o+pa0BJ12qYkzZB0XgfT66i9dzC/jfJAb8/MhpxRvTUitgBeBbwa+GTjAG5kQ2cjXpc7A0si4k8t6rcCTgN2BF4GjAdOr9TPACbm6bwR+JikyQCSngNcCpwHbAPMBi7N5Ug6CJgO7A/0AS8EPj10i9bcxrgt85lxz95C2Bi3Sck2eH1HRMd/wBLggEr/6cBluTuA44A7gbtz2fuBxcAfgLnAjpVxAzgeuAt4ME9rk1z3IuBK4KFcdz6wdUMcJwO3AQ8D/wWMznVvAJY2i5l0cDsvd9+bY1id/16f43xFZdztgMeAsU3WxQjg33N8d+VlD2DTXH81cEzufjHwY+CPefiLc/k1eZw/5Rje0R8/cBJwP3Bui2VqtfxHAT9tiDVyDMcCfwGezPP7XpN1NAo4A1iW/84ARlXXLXAisAJYDrxvgPayY97uf8jt4P25fBrwOLA2x/HpDtreEcCvK/2/Bw6s9J8KXJS7D8z1qtTfC0zO3RcAn63U7Q/cP8C8A/gAqW0/DHylf9qkL3ufBO7J6+QcYKtc15fHnZbnf03ePj8D/gN4JLedv83l9+VpTK3M+xDgJuDRXD+jUtc//U1bxL0XcCOwCrgYuAg4rcV+clJeZ6uAO/I6mZzbyl/ydrql0rZn5uV4jNS2rubp9t6/jF8itfnfAPsPcByZQev98m9y+dHA7Xn9XwHsXBn/TXkefwS+TNrXjmmxTmYA3yZ9iXkUOAbYG/h53h7L8zSe0+H2b3ccaLoPVGL57xzLKuDXwEtI+/aKvL0PbLYclfX4z8Cv8rJfTAfHgdz9LeBM4PK8nn8GvIC0vz+c1+denRxzcv1bgJvzOrwW2KNh3JNynE8Am9KkvQ24/7c7QDRZMf0HtAnAIuDUykqYD4wBNgP2yxvvVaSD35eAaxpW2lV5+J2A37Lugf1NebyxpB38jIY4bs0xjMkrudUOWI15Bk/vEH007OR5w32+0n8C+WDeZF18IG/M/hiuonWiuhD4BOmgNhp4bbPGU4l/DfD5vPybtVimVst/FO0b6GkDbNfPAL8gJemxpEZ3akNsnwFGAgcDfwa2abGOfpzX6WhgT2AluUE2i7NN2zuDpxPRNnmZtq/Uv42cyICPAJc3jH8ZcGLuvgV4R6Vu2zy957eYd+Txtya11ZU8nfSOJh2AXghsAXwXOLehjZ0DbJ635VF5Hb6PdJA7jXRw/kre3geSdt4tKuv8Fbnt7AE8ABzeqg1XYn4OKXl+JG+rt5ESznr7CbAr6aC4Y2W6L2rcZyrTvjrHvDvpoDOS9RPVmsq830E6kI5pbG8d7peH53X8sjy/TwLXVrbdo3n5RuZ5rmHgRPWXPM1N8jb5X8C+edp9pIT44Q63f7vjwED7wAzSF7aD8rzPAe4mHStGkr7o393meHw9KRmOyXF/YBDHgQfzso8mnRjcDbyXp9vlVR0ec15FSqz75HGn5uFHVca9OY+7GQO0t5bL2umBojLD1aSseU/eAJtVVsJ+lWG/CfxbpX+L3ED6KsNPrtR/EFjQYr6HAzc1xPGBSv/BwO8ad8AmB+EZDLxD7JNXYP+Z3ULg7S1iurIhhgNpnajOAc4i3Y9pdhBsTFRPsu63lWbL1Gr5j+KZJarfAQdX6g4iXaLrj+OxhnW2Ati3yXJNIJ0xbVkp+xzwrVZxDtDu3kT6FveSyrSjYR29qRLnp8hJrVJ/PvlsJC9jte2NzNPrazH/YN0vF3OA6bl7AfDBSt2upHbef9AL4IWV+qOAOyv9r2D9pPsQsGeLWM4A/qNVG64M9zrSGXH1rPJamieqF+fteAAwsmE6M2ieqD7TpKyaqBrnfT3wnsb21uF+eTkwrdK/CekL0s6kA+svKnUinfUPlKiuaVZXGebDwCUdbv+WxwHa7wMzgPmVureSjq8jcv+WeVpbt4hzCfDuSv+/AV8bxHHg65W6fwJub2iXjzTMq9Ux56vkL7OV+juA11fGPbpS17K9tfrbkGvLh0fE1hGxc0R8MCIeq9TdV+nekZTMAIiI1aQdcFyL4e/J4yBpO0kXSfq9pEdJp8bbNsTRdNxnIiKuI12Ge72kl5JW6NwWg+/YJIZWPkbaga7PT9gd3SaUlRHxeJthhnz5s3W2W5NpPxQRayr9fyZ9CWk2nT9ExKqGaY1rMmxLkvYlXap7W0T8Nhevzp/Pqwz6PNKZSH99ta5dfX/3Klq7v9JdXeZm62tTYPtKWXVbQTor6vcYQEQ0lm0BIGkfSVdJWinpj6Rv8I37QjM7Ar+PfGSoxLaeiFhMOjjPAFbkfa9de2pcpkbN5r2hbXRn4D/zgzWPkC6jidSW1tkP8zzbxbZOvaSXSLosP1zzKPBZ1l/HA23/VseBTvaBxu3+YESsrfRD8/2rXVydaJx30zZY0eqYszNwYv/2ydtoAutu7+o2GnR7G+qboNWGuYy0AABI2hx4Pum6ZL8Jle6d8jiQvnUE6Trn84B3kxomHYy7IbFWzc7zew/w7QESxvImMTSfUcT9EfH+iNgR+EfgzDZP+rWKrarV8v8JeG5/haQXDHLa62w3Nmzd9k9nTPVJvTyt37cYfj2S9iJ9UTg6Ihb0l0fEw6T1/8rK4K8kXYomf+4hqdpm9miobxz3gYh4qNPYKpqtrzWsu9N3sj1buYC0DiZExFbA11h/X2hmOTCuYR0M1EYviIjXkpYlSJeeoXXs7Zap2bybtlHSvZGBpnsf8I/5C3L/32YRcS0N+2Ge54Qm0xgo9q+SLt9NzMebj9PZOqZx/qy7jp/xPvAMtDsObIhWx5z7gJkN2+e5EXFhZfh11vkA7a2pOp/WuQB4X35MeBTpW8p1EbGkMsy/SNpG0gTS/aCLc/mW5EuMksYB/9Jk+sdJGi9pDKlhXdxkmIGsBJ4i3VuoOhf4O1KyOmeA8ecAx+cYtiE9RdaUpCMljc+9D5M2TP+3pgeaxNCJVst/C7B7Xu+jSd9aqtrN70Lgk5LGStoW+FfSGe2gRMR9pEtNn5M0WtIepIcKzu9kfEkvB34A/FNEfK/JIOfkOLfJZ7/vJ13OgHQZai1p+4yS9KFcfmVl3GmSdsvb7pOVcQfrQuAjknbJP9X4LOlhmTVtxuvUlqRv5Y9L2ht4V4fj/ZyUMI+XtKmkI0gPDaxH0q6S9sv76eOkb9PV9tm3AU/2bZfnPVLSkaT7S9/PdTcDU3LdJNL9pX7N9suvASdL2j3Hu1WeJsA8Uns/Ij9RdjzrJr5ObEm6z7U6t6X/M4hxWx4Hnuk+8Ay1Ow5siFbHnK8DH8hn/5K0udLPS7ZsNpE27a2p2hJV/gb8KeA7pG8dLwKmNAx2KXADqeHOI93XgvSo8KtIN2DnkW5QN7oA+CHpSZu7SDf/BhPfn8lPLuXT1X1z+VLSk1IB/GSASXyd9PTRLXn4ZjH2ezVwnaTVpG/HJ0TE3bluBjA7x/D2QSxC0+XPl8c+A/yI9JRS4w8vvwnsluf3/5tM9zTSvblfkZ5CupFBrtuKd5LuOSwDLgFOiYj5HY57Iulhjm8q/W5vtaRFlfpTSPea7iHdsD49In4AEBFPku5rvpd0P/Vo0iXrJ3P9D0jX86/K49+Tp7chziZ9ubmGdDP6cdL1/qHyQeAzklaRvjTM6WSkvKxHkO5VPEx6oKFVGx0FzCLdXL+flGQ+nuv+O38+JOnGQcR9HennAw+S9rO3Vc5YP0U6HjxM2tcvqMS93n4ZEZeQvnFflC/N3Qq8OQ//IHBkjv+hPM+fDSJOSE/OvYt06ffrDO5Lb7vjwDPZBzZYB8eBDdHqmLOQ9EXxy6RtupjU7loZqL011f+IpVVIOhtYFhHr/UbMzMyGl3/s1kBSH+mb6F7djcTMzMAvpV2HpFNJlxVOr1yaMzOzLvKlPzMzK5rPqMzMrGg9fY9q2223jb6+vm6HYWbWU2644YYHI2Jst+PoVE8nqr6+PhYuXNjtMMzMeoqkgd6kUxxf+jMzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzovX0mynM2umbPq9r814y65CuzdtsY+IzKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyKVuu7/iQtAVYBa4E1ETFJ0hjgYqAPWAK8PSIezsOfDEzLwx8fEVfUGZ9Znbr1nkG/Y9A2NsNxRvXGiNgzIibl/unAgoiYCCzI/UjaDZgC7A5MBs6UNGIY4jMzs4J149LfYcDs3D0bOLxSflFEPBERdwOLgb27EJ+ZmRWk7kQVwA8l3SDp2Fy2fUQsB8if2+XyccB9lXGX5rJ1SDpW0kJJC1euXFlj6GZmVoK6/x/VayJimaTtgPmSfjPAsGpSFusVRJwFnAUwadKk9erNzGzjUusZVUQsy58rgEtIl/IekLQDQP5ckQdfCkyojD4eWFZnfGZmVr7aEpWkzSVt2d8NHAjcCswFpubBpgKX5u65wBRJoyTtAkwErq8rPjMz6w11XvrbHrhEUv98LoiIH0j6JTBH0jTgXuBIgIhYJGkOcBuwBjguItbWGJ+ZmfWA2hJVRNwFvLJJ+UPA/i3GmQnMrCsmMzPrPX4zhZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaLUnKkkjJN0k6bLcP0bSfEl35s9tKsOeLGmxpDskHVR3bGZmVr7hOKM6Abi90j8dWBARE4EFuR9JuwFTgN2BycCZkkYMQ3xmZlawWhOVpPHAIcA3KsWHAbNz92zg8Er5RRHxRETcDSwG9q4zPjMzK1/dZ1RnAB8DnqqUbR8RywHy53a5fBxwX2W4pblsHZKOlbRQ0sKVK1fWE7WZmRWjtkQl6S3Aioi4odNRmpTFegURZ0XEpIiYNHbs2GcUo5mZlW/TGqf9GuBQSQcDo4HnSToPeEDSDhGxXNIOwIo8/FJgQmX88cCyGuMzM7MeUNsZVUScHBHjI6KP9JDElRHxbmAuMDUPNhW4NHfPBaZIGiVpF2AicH1d8ZmZWW+o84yqlVnAHEnTgHuBIwEiYpGkOcBtwBrguIhY24X4zMysIMOSqCLiauDq3P0QsH+L4WYCM4cjJjMz6w1+M4WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGjd+B2VPQv1TZ/X7RDMrEf5jMrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK1pHiUrSdyQdIsmJzczMhlWnieerwLuAOyXNkvTSGmMyMzP7q44SVUT8KCL+AXgVsASYL+laSe+TNLLOAM3M7Nmt40t5kp4PHAUcA9wE/Ccpcc2vJTIzMzM6fNefpO8CLwXOBd4aEctz1cWSFtYVnJmZWacvpf1GRHy/WiBpVEQ8ERGTaojLzMwM6PzS32lNyn4+lIGYmZk1M+AZlaQXAOOAzSTtBShXPQ94bs2xmZmZtb30dxDpAYrxwBcq5auAj9cUk5mZ2V8NmKgiYjYwW9LfR8R3hikmMzOzv2p36e/dEXEe0Cfpo431EfGFJqOZmZkNmXaX/jbPn1vUHYiZmVkz7S79/b/8+enhCcfMzGxd7S79fXGg+og4fmjDMTMzW1e7S383DEsUZmZmLXTy1N8GkTQauAYYlefz7Yg4RdIY4GKgj/SC27dHxMN5nJOBacBa4PiIuGJD529mZhuHdpf+zoiID0v6HhCN9RFx6ACjPwHsFxGr8xvWfyrpcuAIYEFEzJI0HZgOnCRpN2AKsDuwI/AjSS+JiLUbtmhmZrYxaHfp79z8+e+DnXBEBLA6947MfwEcBrwhl88GrgZOyuUXRcQTwN2SFgN741c1mZk9q7W79HdD/vyxpOeQ3qAewB0R8WS7iUsaQbrP9WLgKxFxnaTt+9++HhHLJW2XBx8H/KIy+tJc1jjNY4FjAXbaaad2IZiZWY/r9F/RHwL8Dvgi8GVgsaQ3txsvItZGxJ6kVzDtLenlA82m2SSaTPOsiJgUEZPGjh3bSfhmZtbDOv03H/8XeGNELAaQ9CJgHnB5JyNHxCOSrgYmAw9I2iGfTe0ArMiDLQUmVEYbDyzrMD4zM9tIdfpvPlb0J6nsLp5OME1JGitp69y9GXAA8BtgLjA1DzYVuDR3zwWmSBolaRdgInB9h/GZmdlGqt1Tf0fkzkWSvg/MIV2OOxL4ZZtp70B6oe0IUkKcExGXSfo5MEfSNODePC0iYpGkOcBtwBrgOD/xZ2Zm7S79vbXS/QDw+ty9EthmoBEj4lfAXk3KHwL2bzHOTGBmm5jMzOxZpN1Tf+8brkDMzMya6ehhivyWiWmkH+OO7i+PiKNrisvMzAzo/GGKc4EXkP7j749JT+StqisoMzOzfp0mqhdHxKeAP+X3/x0CvKK+sMzMzJJOE9Vf8ucj+Ue7W5FeKmtmZlarTn/we5akbYBPkX7vtEXuNjMzq1VHiSoivpE7fwy8sL5wzMzM1tXpu/6eL+lLkm6UdIOkMyQ9v+7gzMzMOr1HdRHplUl/D7wNeJD0zw/NzMxq1ek9qjERcWql/zRJh9cRkJmZWVWnieoqSVNI7/qDdFY1r56QzOyZ6JvevV1zyaxDujZv23i1eyntKtJLaAV8FDgvV21C+u+9p9QanZmZPeu1e9fflsMViJmZWTOdXvpD0qHA63Lv1RFxWT0hmZmZPa3Tx9NnASeQ/lfUbcAJuczMzKxWnZ5RHQzsGRFPAUiaDdwETK8rMDMzM+j8d1QAW1e6txrqQMzMzJrp9Izqs8BNkq4iPQH4OuDk2qIyMzPL2iYqSZsATwH7Aq8mJaqTIuL+mmMzMzNrn6gi4ilJH4qIOaQ3p5uZmQ2bTu9RzZf0z5ImSBrT/1drZGZmZnR+j+po0hsqPthQ7n/5YWZmteo0Ue1GSlKvJSWsnwBfqysoMzOzfp0mqtnAo8AXc/87c9nb6wjKzMysX6eJateIeGWl/ypJt9QRkJmZWVWnD1PcJGnf/h5J+wA/qyckMzOzp3V6RrUP8F5J9+b+nYDbJf0aiIjYo5bozMzsWa/TRDW51ijMzMxa6ChRRcQ9dQdiZmbWzGBeSjso+cfBV0m6XdIiSSfk8jGS5ku6M39uUxnnZEmLJd0h6aC6YjMzs95RW6IC1gAnRsTLSO8JPE7SbqR/DbIgIiYCC3I/uW4KsDvpUuOZkkbUGJ+ZmfWA2hJVRCyPiBtz9yrgdmAccBjpN1jkz8Nz92HARRHxRETcDSwG9q4rPjMz6w11nlH9laQ+YC/gOmD7iFgOKZkB2+XBxgH3VUZbmssap3WspIWSFq5cubLOsM3MrAC1JypJWwDfAT4cEY8ONGiTslivIOKsiJgUEZPGjh07VGGamVmhak1UkkaSktT5EfHdXPyApB1y/Q7Aily+FJhQGX08sKzO+MzMrHx1PvUn4JvA7RHxhUrVXGBq7p4KXFopnyJplKRdgInA9XXFZ2ZmvaHTH/xuiNcA7wF+LenmXPZxYBYwR9I04F7gSICIWCRpDnAb6YnB4yJibY3xmZlZD6gtUUXET2l+3wlg/xbjzARm1hWTmZn1nmF56s/MzGxDOVGZmVnRnKjMzKxoTlRmZlY0JyozMyuaE5WZmRWtzt9RWWH6ps/rdghmZoPmMyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRaktUks6WtELSrZWyMZLmS7ozf25TqTtZ0mJJd0g6qK64zMyst9R5RvUtYHJD2XRgQURMBBbkfiTtBkwBds/jnClpRI2xmZlZj6gtUUXENcAfGooPA2bn7tnA4ZXyiyLiiYi4G1gM7F1XbGZm1juG+x7V9hGxHCB/bpfLxwH3VYZbmsvMzOxZrpSHKdSkLJoOKB0raaGkhStXrqw5LDMz67bhTlQPSNoBIH+uyOVLgQmV4cYDy5pNICLOiohJETFp7NixtQZrZmbdN9yJai4wNXdPBS6tlE+RNErSLsBE4Pphjs3MzAq0aV0TlnQh8AZgW0lLgVOAWcAcSdOAe4EjASJikaQ5wG3AGuC4iFhbV2xmZtY7aktUEfHOFlX7txh+JjCzrnjMrH590+d1Zb5LZh3Slfna8CjlYQozM7OmnKjMzKxoTlRmZlY0JyozMyuaE5WZmRXNicrMzIrmRGVmZkVzojIzs6I5UZmZWdGcqMzMrGhOVGZmVjQnKjMzK5oTlZmZFc2JyszMiuZEZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMr2qbdDuDZqG/6vG6HYGbWM3xGZWZmRXOiMjOzojlRmZlZ0ZyozMysaH6Ywsx6XrceUFoy65CuzPfZxmdUZmZWNCcqMzMrmhOVmZkV7Vl9j8o/vDUzK19xZ1SSJku6Q9JiSdO7HY+ZmXVXUYlK0gjgK8Cbgd2Ad0rarbtRmZlZN5V26W9vYHFE3AUg6SLgMOC2rkZlZtZEN28fPJsejS8tUY0D7qv0LwX2qQ4g6Vjg2Ny7WtIdwxRbp7YFHux2EB3ohTh7IUZwnEOpF2KEAuLU59sOMlCMOw9pMDUrLVGpSVms0xNxFnDW8IQzeJIWRsSkbsfRTi/E2QsxguMcSr0QI/RGnL0QY6eKukdFOoOaUOkfDyzrUixmZlaA0hLVL4GJknaR9BxgCjC3yzGZmVkXFXXpLyLWSPoQcAUwAjg7IhZ1OazBKvayZINeiLMXYgTHOZR6IUbojTh7IcaOKCLaD2VmZtYlpV36MzMzW4cTlZmZFc2JqgaSTpX0K0k3S/qhpB27HVMzkk6X9Jsc6yWStu52TI0kHSlpkaSnJBX1qG0vvO5L0tmSVki6tduxDETSBElXSbo9b+8Tuh1TI0mjJV0v6ZYc46e7HdNAJI2QdJOky7odyzPlRFWP0yNij4jYE7gM+NduB9TCfODlEbEH8Fvg5C7H08ytwBHANd0OpKqHXvf1LWByt4PowBrgxIh4GbAvcFyB6/MJYL+IeCWwJzBZ0r5djmkgJwC3dzuIoeBEVYOIeLTSuzkNP1ouRUT8MCLW5N5fkH63VpSIuD0iSnv7CFRe9xURTwL9r/sqSkRcA/yh23G0ExHLI+LG3L2KdIAd192o1hXJ6tw7Mv8VuW9LGg8cAnyj27EMBSeqmkiaKek+4B8o94yq6mjg8m4H0UOave6rqANrr5LUB+wFXNfdSNaXL6fdDKwA5kdEcTFmZwAfA57qdiBDwYlqA0n6kaRbm/wdBhARn4iICcD5wIdKjTMP8wnSpZfzS42xQG1f92WDJ2kL4DvAhxuuTBQhItbmS/rjgb0lvbzbMTWS9BZgRUTc0O1YhkpRP/jtJRFxQIeDXgDMA06pMZyW2sUpaSrwFmD/6NKP6gaxLkvi130NMUkjSUnq/Ij4brfjGUhEPCLpatL9v9IeVHkNcKikg4HRwPMknRcR7+5yXBvMZ1Q1kDSx0nso8JtuxTIQSZOBk4BDI+LP3Y6nx/h1X0NIkoBvArdHxBe6HU8zksb2PxkraTPgAArctyPi5IgYHxF9pHZ5ZS8nKXCiqsusfOnqV8CBpKdvSvRlYEtgfn6U/mvdDqiRpL+TtBT4G2CepCu6HROk132RLuleQbrxP6fE131JuhD4ObCrpKWSpnU7phZeA7wH2C+3xZvzGUFJdgCuyvv1L0n3qHr+0e9e4FcomZlZ0XxGZWZmRXOiMjOzojlRmZlZ0ZyozMysaE5UZmZWNCcqMzMrmhOVmZkVzYnKbAhJenX+/16jJW2e/29Rce+DM+sl/sGv2RCTdBrpHWubAUsj4nNdDsmspzlRmQ2x/O6/XwKPA38bEWu7HJJZT/OlP7OhNwbYgvQexdFdjsWs5/mMymyISZpL+o+/uwA7RETX/h+Z2cbA/4/KbAhJei+wJiIukDQCuFbSfhFxZbdjM+tVPqMyM7Oi+R6VmZkVzYnKzMyK5kRlZmZFc6IyM7OiOVGZmVnRnKjMzKxoTlRmZla0/wFIiNmv6iLk2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbAAAAEWCAYAAAAHC8LZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deZhcZZn38e+PgAkSkEQaCEmgo0Y0QQSMAZd3RNYICowjGh0kbGZQHHAbSUQFhWgcfBVRwYmIhDXkVXmTAVEii4yyGTYhRCSypSGQZpOwk3DPH8/TclKp6q7udHXVSX6f6+qrz3mes9xnveuc89QpRQRmZmZls0GzAzAzM+sLJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyullktgkkLSm/o47v2S9qpR938k3V1tWElfkXRW3yLuMab2vEwb5v7LJU3pp2nXXKZ+mv4iSbv31/TqnKck/VzSk5JuGsh5rysq97k6hj9H0im5e7V9qh9i+cf+LukwSX/or2n3IZZrJB3VpHn3apuURX+fc3qrXxJYXojnJT0j6dF8AhraH9PuLxHxPxGxfY26b0XEUdD4HS0iPhARs3sarp5E3t0y9VbxJFaY/viIuKY/pt8L7wX2BkZFxMTKSkm7S3ol72tdf1MK9YMlnS3paUmPSPpCxfg7SbpZ0nP5/04V9Z/P4/09T2dwoxa0FdW7T0k6SdL5dUyvrv29jvmtkwnA1k5/XoF9KCKGArsA7wS+WjmAd77+sw6vy+2A+yPi2W6GeTgihhb+iifIk4CxeTrvB74saRKApNcA84DzgWHAbGBeLkfSvsA0YE+gHXgD8I1+XLaq1sVtma+kW+4OT73WxW3Syvq8viNirf+A+4G9Cv2nApfm7gCOAe4B7stlnwKWAE8A84FtCuMGcCxwL/BYntYGue6NwFXA47nuAmDzijimA3cBTwI/B4bkut2Bjmoxk0565+fuB3MMz+S/9+U431YYd0vgeaCtyroYBHw3x3dvXvYANsz11wBH5e43Ab8H/p6HvziXX5vHeTbH8LGu+IHjgUeA82osU63lPwz4Q0WskWOYCrwMvJTn999V1tFg4DTg4fx3GjC4uG6BLwLLgWXA4d3sL9vk7f5E3g8+lcuPBF4AVuU4vlFl3NWWuUr9Q8A+hf6TgTm5e59cr0L9g8Ck3H0h8K1C3Z7AI93MK4CjSfv2k8CPu6ZN+nD4VeCBvE7OBV6X69rzuEfm+V+bt88fge8DT5H2nXfn8qV5GlMK894fuBV4OtefVKjrmv6GNeLeGbgFWAFcDMwBTqlxnByf19kK4O68TiblfeXlvJ1uL+zbM/JyPE/at67h1f29axl/SNrn/wLs2c155CRqH5fvyuVHAIvz+v8tsF1h/L3zPP4O/Ih0rB1VY52cBPyC9OHmaeAoYCJwfd4ey/I0XlPn9u/pPFD1GCjE8v9yLCuAO4A3k47t5Xl771NtOQrr8UvAn/OyX0wd54HcfQ5wBnB5Xs9/BLYmHe9P5vW5cz3nnFz/QeC2vA6vA3asGPf4HOeLwIZU2d+6zT3dVdb7x+onutHAIuDkwspZAAwHNgb2yBt1F9JJ8YfAtRUr8+o8/LbAX1n9hL93Hq+NdOCfVhHHnTmG4Xnl1zowizGfxKsHSjsVB3/eoN8p9B9HPslXWRdH543cFcPV1E5gFwEnkE52Q4D3VtupCvGvBL6Tl3/jGstUa/kPo+cd95Rutus3gRtIybuNtDOeXBHbN4GNgP2A54BhNdbR7/M6HQLsBHSSd9RqcVaMuzvp5PkocB/phL9JrhuWl2mrwvAfAe7I3Z8HLq+Y3qXAF3P37cDHCnVb5Om9vkYskcffnLSvdvJqMjyCdGJ6AzAU+BVwXsU+di6wSd6Wh+V1eDjp5HcK6aT947y99yEd1EML6+FtpH1nx7w+Dqq1Dxdifg0pqX4+b6uPkBLRGscJsD3pZLlNYbpvrDxmCtO+Jsc8nnQy2og1E9jKwrw/RjrBDq/c3+o8Lg/K6/iteX5fBa4rbLun8/JtlOe5ku4T2Mt5mhvkbfIOYLc87XZSovxcndu/p/NAd8fASaQPcvvmeZ9L2tdPyMvyKfLFQDfn45tISXJ4jvvoXpwHHsvLPoR0wXAfcCiv7pdX13nO2YWUcHfN407Jww8ujHtbHndjutnfai5rd5X1/uVAniFl2Qfyhtm4sHL2KAz7M+A/C/1D847TXhh+UqH+M8CVNeZ7EHBrRRxHF/r3A/5WeWBWOTmfRPcHyq55xXZdCS4EPlojpqsqYtiH2gnsXGAW6XlPtZNjZQJ7idU/3VRbplrLfxhrl8D+BuxXqNuXdKuvK47nK9bZcmC3Kss1mnSFtWmh7NvAObXirBh/a2Ac6SQzhvQh5r8K046KdbR3Ic6vka/GCvUXkK9e8jIW972N8vTaa8QSrP6hYy4wLXdfCXymULc9aT/vOhkG8IZC/WHAPYX+t7FmMn4c2KlGLKcB36+1DxeG+yfSFXTxKvQ6qiewN+XtuBewUcV0TqJ6AvtmlbJiAquc903AJyv3tzqPy8uBIwv9G5A+OG1HOuHeUKgT6S5Bdwns2mp1hWE+B1xS5/aveR6g52PgJGBBoe5DpPProNy/aZ7W5jXivB84pND/n8BPenEe+Gmh7t+BxRX75VMV86p1zjmT/CG3UH838L7CuEcU6mrub7X++vMe9UERsXlEbBcRn4mI5wt1Swvd25CSHAAR8QzpwBxZY/gH8jhI2lLSHEkPSXqadIm9RUUcVcddGxFxI+l23vskvYW0oufXGHybKjHU8mXSgXVTbvF3RA+hdEbECz0M0+/Ln6223apM+/GIWFnof4704aTadJ6IiBUV0xpZZdg1RMQjEXFXRLwSEfeR1uFHcvUz+f9mhVE2I125dNUX63qq7+peQW2PFLqLy1xtfW0IbFUoK24rSFdRXZ4HiIjKsqEAknaVdLWkTkl/J33irzwWqtkGeCjyGaMQ2xoiYgnppH0SsDwfez3tT5XLVKnavPu6j24H/EDSU5KeIt2OE2lfWu04zPPsKbbV6iW9WdKluVHP08C3WHMdd7f9a50H6jkGKrf7YxGxqtAP1Y+vnuKqR+W8q+6DBbXOOdsBX+zaPnkbjWb17V3cRr3e3wbqIWtxh32YtGAASNoEeD3pvmeX0YXubfM4kD6lBOk+6mbAIaQdljrG7UusRbPz/D4J/KKbRLKsSgzVZ5ROxp+KiG2AfwPO6KHlYa3Yimot/7PAa7sqJG3dy2mvtt3o27rtms5wSZtWTOuhGsP3JMj7QEQ8SVr/by/Uv510S5v8f0dJxX1mx4r6ynEfjYjH+xBXtfW1ktVPBvVsz1ouJH2IGh0RrwN+wprHQjXLgJEV66C7ffTCiHgvaVmCdAsbasfe0zJVm3fVfZR0td3ddJcC/5Y/OHf9bRwR11FxHOZ5jq4yje5iP5N0G3BsPt98hfrWMZXzZ/V13N/HQG/0dB7oi1rnnKXAjIrt89qIuKgw/GrrvJv9rapmtBK6EDg8N2ceTPpUc2NE3F8Y5j8kDZM0mvS86eJcvin5VqWkkcB/VJn+MZJGSRpO2uEurjJMdzqBV0jPLorOA/6ZlMTO7Wb8ucCxOYZhpFZtVUk6WNKo3PskaYN1fcp6tEoM9ai1/LcD4/N6H0L6lFPU0/wuAr4qqU3SFsDXSVfAvRIRS0m3rL4taYikHUmNGS6oZ/zcjH7b3MptNDCT1LKwy7k5zmH5avlTpNsikG5nrSJtn8GSPpvLryqMe6SkcXnbfbUwbm9dBHxe0pj8lZJvkRrprOxhvHptSvoU/4KkicAn6hzvelIiPVbShpI+TGqssAZJ20vaIx+nL5A+fRf3z/Y+tDTcMs97I0kHk55f/TrX3QZMznUTePXKGqoflz8Bpksan+N9XZ4mwGWk/f3DuYXbsayeEOuxKek52jN5X/p0L8ateR5Y22NgLfV0HuiLWuecnwJH57sFkrSJpP0rEvc/9LC/VTXgCSwiriQ9i/gl6VPKG4HJFYPNA24m7dCXkZ6bQWrSvAvpwe9lpAfjlS4EriC1/LmX9NCxN/E9R25JlS97d8vlHaSWWwH8TzeT+CmpNdTtefhqMXZ5J3CjpGdIn6aPy7fFIO1Ys3MMH+3FIlRd/oj4K6mRxe9IraYqv1D6M2Bcnt//rzLdU0jP/v5MahV1C71ctwUfJz3TeBi4BDgxIhbUOe4upJPws6STwJ2kk1OXE0nPsh4gPSg/NSJ+AxARL5Gemx5Kel57BOnW90u5/jek5wVX5/EfyNPri7NJH3quJT0Ef4H0PKG/fAb4pqQVpA8Tc+sZKS/rh0nPQp4kNaSotY8OJn1AeIx0S2pL0gkKUis5gMcl3dKLuG8kfc3hMdJx9pHCFe7XSOeDJ0nH+oWFuNc4LiPiEtIn9Dn5Ft+dwAfy8I8BB+f4H8/z/GMv4oTUku8TpFvIP6V3H4Z7Og+szTHQZ3WcB/qi1jlnIekD5I9I23QJab+rpbv9raquJp9WB0lnk76DtMZ33MzMbGD5y3p1ktRO+uS6c3MjMTMzaMF3IbYiSSeTbk+cWrjFZ2ZmTeRbiGZmVkq+AjMzs1JaZ5+BbbHFFtHe3t7sMMzMSuXmm29+LCLamh1HPdbZBNbe3s7ChQubHYaZWalI6u7tQS3FtxDNzKyUnMDMzKyUnMDMzKyUnMDMzKyUnMDMzKyUnMDMzKyUnMDMzKyUnMDMzKyUnMDMzKyU1tk3cZi1qvZplzVt3vfP3L9p8zbrbw27ApN0tqTlku6sUvclSZF/mr6rbLqkJZLulrRvofwdku7IdadLUqNiNjOz8mjkLcRzgEmVhZJGA3sDDxbKxgGTgfF5nDMkDcrVZwJTST8JPrbaNM3MbP3TsAQWEdcCT1Sp+j7wZaD4Q2QHAnMi4sX8g5FLgImSRgCbRcT1kX647FzgoEbFbGZm5TGgjTgkHQA8FBG3V1SNBJYW+jty2cjcXVlea/pTJS2UtLCzs7OfojYzs1Y0YAlM0muBE4CvV6uuUhbdlFcVEbMiYkJETGhrK8XP2ZiZWR8NZCvENwJjgNtzO4xRwC2SJpKurEYXhh0FPJzLR1UpNzOz9dyAXYFFxB0RsWVEtEdEOyk57RIRjwDzgcmSBksaQ2qscVNELANWSNottz48FJg3UDGbmVnramQz+ouA64HtJXVIOrLWsBGxCJgL3AX8BjgmIlbl6k8DZ5EadvwNuLxRMZuZWXk07BZiRHy8h/r2iv4ZwIwqwy0EdujX4MzMrPT8KikzMyslJzAzMyslJzAzMyslv8zX1lvNfKmuma09X4GZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpNSyBSTpb0nJJdxbKTpX0F0l/lnSJpM0LddMlLZF0t6R9C+XvkHRHrjtdkhoVs5mZlUcjr8DOASZVlC0AdoiIHYG/AtMBJI0DJgPj8zhnSBqUxzkTmAqMzX+V0zQzs/VQwxJYRFwLPFFRdkVErMy9NwCjcveBwJyIeDEi7gOWABMljQA2i4jrIyKAc4GDGhWzmZmVRzOfgR0BXJ67RwJLC3UduWxk7q4sr0rSVEkLJS3s7Ozs53DNzKyVNCWBSToBWAlc0FVUZbDopryqiJgVERMiYkJbW9vaB2pmZi1rw4GeoaQpwAeBPfNtQUhXVqMLg40CHs7lo6qUm5nZem5Ar8AkTQKOBw6IiOcKVfOByZIGSxpDaqxxU0QsA1ZI2i23PjwUmDeQMZuZWWtq2BWYpIuA3YEtJHUAJ5JaHQ4GFuTW8DdExNERsUjSXOAu0q3FYyJiVZ7Up0ktGjcmPTO7HDMzW+81LIFFxMerFP+sm+FnADOqlC8EdujH0MzMbB3gN3GYmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpNSyBSTpb0nJJdxbKhktaIOme/H9YoW66pCWS7pa0b6H8HZLuyHWnS1KjYjYzs/Jo5BXYOcCkirJpwJURMRa4MvcjaRwwGRifxzlD0qA8zpnAVGBs/qucppmZrYcalsAi4lrgiYriA4HZuXs2cFChfE5EvBgR9wFLgImSRgCbRcT1ERHAuYVxzMxsPTbQz8C2iohlAPn/lrl8JLC0MFxHLhuZuyvLq5I0VdJCSQs7Ozv7NXAzM2strdKIo9pzreimvKqImBUREyJiQltbW78FZ2ZmrWegE9ij+bYg+f/yXN4BjC4MNwp4OJePqlJuZmbruYFOYPOBKbl7CjCvUD5Z0mBJY0iNNW7KtxlXSNottz48tDCOmZmtxzZs1IQlXQTsDmwhqQM4EZgJzJV0JPAgcDBARCySNBe4C1gJHBMRq/KkPk1q0bgxcHn+MzOz9VzDElhEfLxG1Z41hp8BzKhSvhDYoR9DMzOzdUCrNOIwMzPrFScwMzMrJScwMzMrJScwMzMrJScwMzMrpYa1QjSz1tM+7bKmzPf+mfs3Zb62bqvrCkzSLyXtL8lXbGZm1hLqTUhnAp8A7pE0U9JbGhiTmZlZj+pKYBHxu4j4V2AX4H5ggaTrJB0uaaNGBmhmZlZN3bcEJb0eOAw4CrgV+AEpoS1oSGRmZmbdqKsRh6RfAW8BzgM+1PWbXsDFkhY2KjgzM7Na6m2FeFZE/LpYIGlw/gXlCQ2Iy8zMrFv13kI8pUrZ9f0ZiJmZWW90ewUmaWtgJLCxpJ159ReSNwNe2+DYzMzMaurpFuK+pIYbo4DvFcpXAF9pUExmZmY96jaBRcRsYLakf4mIXw5QTGZmZj3q6RbiIRFxPtAu6QuV9RHxvSqjmZmZNVxPtxA3yf+HNjoQMzOz3ujpFuJ/5f/fGJhwzMzM6tPTLcTTu6uPiGP7NxwzM7P69HQL8eZGzFTS50mvpArgDuBwUrP8i4F20vsWPxoRT+bhpwNHAquAYyPit42Iy8zMyqOeVoj9StJI4FhgXEQ8L2kuMBkYB1wZETMlTQOmAcdLGpfrxwPbAL+T9OaIWNXfsZmZWXn0dAvxtIj4nKT/Jl0trSYiDliL+W4s6WXSldfDwHRg91w/G7gGOB44EJgTES8C90laAkzEbwIxM1uv9XQL8bz8/7v9NcOIeEjSd4EHgeeBKyLiCklbdb0kOCKWSdoyjzISuKEwiY5ctgZJU4GpANtuu21/hWxmZi2o23chRsTN+f/vSVc8TwJPANfnsl6TNIx0VTWGdEtwE0mHdDdKtdBqxDsrIiZExIS2tra+hGdmZiVR18t8Je0P/A04HfgRsETSB/o4z72A+yKiMyJeBn4FvBt4VNKIPL8RwPI8fAcwujD+KNItRzMzW4/V+zb6/wu8PyJ2j4j3Ae8Hvt/HeT4I7CbptZIE7AksBuYDU/IwU4B5uXs+MFnSYEljgLHATX2ct5mZrSPq/T2w5RGxpNB/L69eIfVKRNwo6RfALcBK0q87zyK97WOupCNJSe7gPPyi3FLxrjz8MW6BaGZmPbVC/HDuXCTp18Bc0vOng4E/9XWmEXEicGJF8Yukq7Fqw88AZvR1fmZmtu7p6QrsQ4XuR4H35e5OYFhDIjIzM6tDT19kPnygAjEzM+uNup6BSRpCepXTeGBIV3lEHNGguMzMzLpVbyvE84CtSb/Q/HtSU/YVjQrKzMysJ/UmsDdFxNeAZ/P7EfcH3ta4sMzMzLpXbwJ7Of9/StIOwOtIb403MzNrinq/BzYrvwLqa6QvFg/N3WZmZk1RVwKLiLNy5++BNzQuHDMzs/rU+y7E10v6oaRbJN0s6TRJr290cGZmZrXU+wxsDunVUf8CfAR4jPTryWZmZk1R7zOw4RFxcqH/FEkHNSIgMzOzetR7BXa1pMmSNsh/HwUua2RgZmZm3enpZb4rSC/vFfAF4PxctQHwDGu+kNfMzGxA9PQuxE0HKhAzM7PeqPcZGJIOAP4p914TEZc2JiQzM7Oe1fsy35nAO4ELctFxkt4bEdMaFpmtF9qn+VGqmfVNvVdg+wE7RcQrAJJmk35J2QnMzMyaot5WiACbF7pf19+BmJmZ9Ua9V2DfAm6VdDWpReI/AdMbFpWZmVkPekxgkjYAXgF2Iz0HE3B8RDzS4NjMzMxq6vEWYn7u9dmIWBYR8yNi3tomL0mbS/qFpL9IWizpXZKGS1og6Z78f1hh+OmSlki6W9K+azNvMzNbN9T7DGyBpC9JGp0TzXBJw9divj8AfhMRbwHeDiwmNQi5MiLGAlfmfiSNAyYD44FJwBmSBq3FvM3MbB1Q7zOwI0hv5PhMRXmvf1pF0makZ2iHAUTES8BLkg4Eds+DzQauAY4HDgTmRMSLwH2SlgATget7O28zM1t31HsFNg74MXA7cBvwQ9IVUV+8AegEfi7pVklnSdoE2CoilgHk/1vm4UcCSwvjd+SyNUiaKmmhpIWdnZ19DM/MzMqg3gQ2G3grcDopeb01l/XFhsAuwJkRsTPwLN1/n0xVyqLagBExKyImRMSEtra2PoZnZmZlUO8txO0j4u2F/qsl3d7HeXYAHRFxY+7/BSmBPSppREQskzSC9PtjXcOPLow/Cni4j/M2M7N1RL1XYLdK2q2rR9KuwB/7MsPcgnGppO1z0Z7AXcB8YEoumwLMy93zgcmSBksaA4wFburLvM3MbN1R7xXYrsChkh7M/dsCiyXdAURE7NjL+f47cIGk1wD3AoeTkulcSUcCDwIHkya+SNJcUpJbCRwTEat6OT8zM1vH1JvAJvXnTCPiNmBClao9aww/A5jRnzGYmVm51ZXAIuKBRgdiZmbWG715ma+ZmVnLcAIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NScgIzM7NSaloCkzRI0q2SLs39wyUtkHRP/j+sMOx0SUsk3S1p32bFbGZmraOZV2DHAYsL/dOAKyNiLHBl7kfSOGAyMB6YBJwhadAAx2pmZi2mKQlM0ihgf+CsQvGBwOzcPRs4qFA+JyJejIj7gCXAxIGK1czMWlOzrsBOA74MvFIo2yoilgHk/1vm8pHA0sJwHblsDZKmSlooaWFnZ2f/R21mZi1jwBOYpA8CyyPi5npHqVIW1QaMiFkRMSEiJrS1tfU5RjMza30bNmGe7wEOkLQfMATYTNL5wKOSRkTEMkkjgOV5+A5gdGH8UcDDAxqxmZm1nAG/AouI6RExKiLaSY0zroqIQ4D5wJQ82BRgXu6eD0yWNFjSGGAscNMAh21mZi2mGVdgtcwE5ko6EngQOBggIhZJmgvcBawEjomIVc0L08zMWkFTE1hEXANck7sfB/asMdwMYMaABWZmZi3Pb+IwM7NScgIzM7NScgIzM7NScgIzM7NSaqVWiGa2jmqfdllT5nv/zP2bMl8bGL4CMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUnICMzOzUhrwBCZptKSrJS2WtEjScbl8uKQFku7J/4cVxpkuaYmkuyXtO9Axm5lZ62nGD1quBL4YEbdI2hS4WdIC4DDgyoiYKWkaMA04XtI4YDIwHtgG+J2kN0fEqibEvs5q1g8Ompn11YBfgUXEsoi4JXevABYDI4EDgdl5sNnAQbn7QGBORLwYEfcBS4CJAxu1mZm1mqY+A5PUDuwM3AhsFRHLICU5YMs82EhgaWG0jlxWbXpTJS2UtLCzs7NRYZuZWQtoWgKTNBT4JfC5iHi6u0GrlEW1ASNiVkRMiIgJbW1t/RGmmZm1qKYkMEkbkZLXBRHxq1z8qKQRuX4EsDyXdwCjC6OPAh4eqFjNzKw1NaMVooCfAYsj4nuFqvnAlNw9BZhXKJ8sabCkMcBY4KaBitfMzFpTM1ohvgf4JHCHpNty2VeAmcBcSUcCDwIHA0TEIklzgbtILRiPcQtEMzMb8AQWEX+g+nMtgD1rjDMDmNGwoMzMrHT8Jg4zMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyslJzAzMyulZvycipnZgGifdlnT5n3/zP2bNu/1ha/AzMyslJzAzMyslJzAzMyslJzAzMyslNyIo4U084GzmVnZ+ArMzMxKqTQJTNIkSXdLWiJpWrPjMTOz5irFLURJg4AfA3sDHcCfJM2PiLuaG5mZWXXNeiSwPn3/rBQJDJgILImIewEkzQEOBBqSwPwsysys9ZUlgY0Elhb6O4BdKweSNBWYmnufkXR3L+axBfBYnyNsvFaPD1o/Rse3dhzf2mt4jPrOWo2+BbBd/0TSeGVJYKpSFmsURMwCZvVpBtLCiJjQl3EHQqvHB60fo+NbO45v7bV6jDm+9mbHUa+yNOLoAEYX+kcBDzcpFjMzawFlSWB/AsZKGiPpNcBkYH6TYzIzsyYqxS3EiFgp6bPAb4FBwNkRsaifZ9OnW48DqNXjg9aP0fGtHce39lo9xlaPbzWKWONRkpmZWcsryy1EMzOz1TiBmZlZKTmBVSHpS5JC0hbNjqVI0smS/izpNklXSNqm2TEVSTpV0l9yjJdI2rzZMVWSdLCkRZJekdQyzZlb+VVpks6WtFzSnc2OpRpJoyVdLWlx3rbHNTumIklDJN0k6fYc3zeaHVM1kgZJulXSpc2OpV5OYBUkjSa9surBZsdSxakRsWNE7ARcCny92QFVWADsEBE7An8Fpjc5nmruBD4MXNvsQLoUXpX2AWAc8HFJ45ob1WrOASY1O4hurAS+GBFvBXYDjmmx9fcisEdEvB3YCZgkabcmx1TNcZkHAy0AAAMtSURBVMDiZgfRG05ga/o+8GWqfFG62SLi6ULvJrRYjBFxRUSszL03kL6v11IiYnFE9OYNLQPhH69Ki4iXgK5XpbWEiLgWeKLZcdQSEcsi4pbcvYJ0Eh7Z3KheFckzuXej/NdSx66kUcD+wFnNjqU3nMAKJB0APBQRtzc7llokzZC0FPhXWu8KrOgI4PJmB1ES1V6V1jIn4DKR1A7sDNzY3EhWl2/P3QYsBxZEREvFB5xG+uD+SrMD6Y1SfA+sP0n6HbB1laoTgK8A+wxsRKvrLr6ImBcRJwAnSJoOfBY4sZXiy8OcQLqtc8FAxtalnhhbTF2vSrPuSRoK/BL4XMXdiqaLiFXATvm58CWSdoiIlnimKOmDwPKIuFnS7s2OpzfWuwQWEXtVK5f0NmAMcLskSLe/bpE0MSIeaXZ8VVwIXMYAJ7Ce4pM0BfggsGc06UuGvViHrcKvSltLkjYiJa8LIuJXzY6nloh4StI1pGeKLZHAgPcAB0jaDxgCbCbp/Ig4pMlx9ci3ELOIuCMitoyI9vwyyw5gl4FMXj2RNLbQewDwl2bFUo2kScDxwAER8Vyz4ykRvyptLSh94vwZsDgivtfseCpJautqkStpY2AvWujYjYjpETEqn/cmA1eVIXmBE1jZzJR0p6Q/k251tlRzYeBHwKbAgtzU/yfNDqiSpH+W1AG8C7hM0m+bHVNu+NL1qrTFwNwGvCqtzyRdBFwPbC+pQ9KRzY6pwnuATwJ75P3utnw10SpGAFfn4/ZPpGdgpWmq3sr8KikzMyslX4GZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZmVkpOYGZDQBJ78y/kzZE0ib5d6F2aHZcZmXmLzKbDRBJp5DeNbcx0BER325ySGal5gRmNkDyew7/BLwAvDu/odzM+si3EM0GznBgKOl9kUOaHItZ6fkKzGyASJpP+rXlMcCIiPhsk0MyK7X17vfAzJpB0qHAyoi4UNIg4DpJe0TEVc2OzaysfAVmZmal5GdgZmZWSk5gZmZWSk5gZmZWSk5gZmZWSk5gZmZWSk5gZmZWSk5gZmZWSv8L37dpIOKXjNMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbQAAAEWCAYAAAAO4GKjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de7hUZd3/8fdHVCCVhERDQDGjg5pRkfk8drCspCy1ejTsoKZFmV5ZWYmd1JTEnx3MetQ8JZ5SykoeDymeszyBkopokaIgCDuPeEgFv78/7nt0MczsPXuzZ8/s5ed1XXPNmnudvmvNWus76173WqOIwMzMrL9bq9UBmJmZ9QYnNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzK4W2SGiSQtLrezjuAkkfrNPvPZLurTWspO9KOq1nEXcZ05i8TGvnz5dJ2qeXpl13mXpp+nMl7dhb02twnpL0G0mPSbqlL+f9SiHpCEnndGP4l/ZJSSdL+kEvxbGZpKckDcifr5X0xd6Ydg9iWWU/bcH8u/Wd9AeSdpS0qFXz73FCywfSZ/PGuTQfkNbvzeDWVET8JSLeWKffjyPii9D8DTsiPhIR07oarpHE3tkydZekMyUdXTX9rSPi2t6Yfje8G/gQMCoitqvuKWmEpBmSFud1NKaq/0BJZ0h6UtLDkr5Z1X+cpNmSnsnv46r6fyOP90SezsBCv2GS/ijpaUkPSPpMby54fxARX4mIo7oarpEfVxHxYESsHxEr1zSuMiYEWzNreob28YhYH3g78E7g+9UDtOrXTxmVeF1uDiyIiKfr9H8R+DPwqTr9jwDG5um8H/iOpAkAktYFLgLOAYYC04CLcjmSdgYmAzsBY4DXAUcWpv2/wPPAJsBngZMkbd2TheyOMn7X/XmZ+nPs/VWP1nlE9OgFLAA+WPh8HHBx7g7gQOCfwP257EvAfOBRYAawaWHcAL4G3Af8O09rrdxvS+Bq4JHc71xgw6o4DgPuBh4DfgMMyv12BBbVipl0EDwndz+YY3gqv96X43xLYdyNgWeB4TXWxQDgJzm++/KyB7B27n8t8MXc/XrgOuCJPPwFufz6PM7TOYZPV+IHDgUeBs6us0z1ln9f4IaqWCPHMAl4gXSwfgr4vxrraCBwPLA4v44HBhbXLXAIsAxYAnyhk+1l0/y9P5q3gy/l8v2B/wArcxxHdjKNtXP8Y6rKHwI+XPh8FHB+7v5w7q9C/weBCbn7PODHhX47AQ/n7vXy+nlDof/ZwNQ68e0L3JC3hceA+4GPdLUOCtvj70mJ90ngi3m7ORr4W+U7Al5D2geeBG4trgvgF8DC3G828J6q6Z/Tybr9dv4OFwP7VbaT3O9M4OjcvRFwMfB4Xo6/kH4Yn0364fFsjvU7pB8Ikb/jB0nbeKWsuG8cA9xC2icuAobV2n+L2ycwIX83L+T5/T33fzVwel6Wh/L6G9DIflrnGHcocAfwHGn7mwz8C1hO2uc+0Y3vfwvSvr8cmAn8qvidALsCc/O6vRZ4c1Us386xPJ2XcRPgsjy9K4GhdZZjRzrZVykcn2odN/I6+irpeL6ctH9tCdxI2tamA+tWzeu7eT0vAD5bmNbAvH4eBJYCJwODq8YtHu9qbm91t+N6Pbp6seqBb3T+Io4qrICZwDBgMPCBvHBvzwv0S+D6qhV2TR5+M+AfrJoAPpTHG07aKY6viuOuHMMw4K+8vPPtSGMJbQxVGzZwInBs4fPB5IN+jXXxFeCeQgzXUD+h/Rb4HukgMAh4d9V6eH3VhrgCODYv/+A6y1Rv+felTkKrPlDVWUc/Am4iJfPhpAPrUVWx/QhYB/go8Az1d6rr8jodBIwDOoCd6sVZZxqrJTTSWVcAmxTK/ge4M3d/A7isajoXA4fk7r8Dny702yhP7zXA24Bnq8b9Vifbwb6kA+yXSAfPA0gJQg2sgyPyuLvnbWNw3m7mkw4eryYdQP9BOqCvDZwF/KYw/8/luNcmHbwe5uUfN0dQJ6GRksNSYBtSEj+v3nZCSj4n5+98HeA9heV7adup2q/OytMdTO2E9lBh3hfy8n65I3USWr1lAv4E/DpPa2NSovxyI/tpnWPcnDx85aC7B+mHyVqkH51PAyMa/P5vBH5G2pffS0oOlWV9Q57Wh/J6/U7+7tctxHITKYmNJCWm20jb6EDSj/7D6yzHjnSyr9JYQpsBDAG2JiX3q0i1GZXtcp+qeVWW8315ud6Y+x+fpzUM2ID0I+2YTo53dbe3Wq81rXL8k6THSb9KrgN+XOh3TEQ8GhHPkqpqzoiI2yLiOdIZxX9VXQs5Ng//YF7ovQAiYn5EzIyI5yKiI6+o91XF8auIWBgRjwJTKuOuoWnAZyRV1tHnSb8YatmTlGQrMRzTyXRfIFWNbRoR/4mIG7qI40XShvpcXpe1NGP5IX1vP4qIZXndH0laDxUv5P4vRMSlpF/Kq13fkzSadJ3s0LzMc4DTqqbVU5Xrtk8Uyp4g7SyV/k+wqs76V7o3aGDcWh6IiFMjXSOaBowANmlwHdwYEX+KiBcL3/VvIuJfEfEE6df4vyLiyohYAfyOdEADICLOiYhHImJFRPyUdFBo5Hrrnnk+d0Wq9j2ik2FfyMu0ef7e/xL5aNSJIyLi6U6237ML8/4BsGel0Uh3SNoE+Ajw9Ty/ZcDPgYl5kO7spxUn5OGfBYiI30XE4vwdXUA6ayle9633/W9Guizzg7wvX086mFd8GrgkH+teIJ3FDAb+uzDMLyNiaUQ8RDpTuTkibs/H1D9S2BZqaGhf7cSxEfFkRMwl/YC+IiLuK2yX1fOuLOd1wCWk71SkZP+NfKxfTsoZEwvjVR/vurW9rWlC2z0iNoyIzSPiq1Ub7MJC96bAA5UPEfEUqQpxZJ3hH8jjIGljSedLekjSk6QqmY2q4qg57pqIiJtJvyzeJ+lNpDPFGXUG37RGDPV8BxBwS25RuF8XoXRExH+6GKbXlz9b5XurMe1H8oG14hleTjDV06lswMVpjawxbHc9ld+HFMqGkH79VvoPYVWd9a90L29g3FoernRExDO5c30aWwfF77FiaaH72RqfX1rfkg6RNC83bnmc9Ou5el+ppTvb73GkM4crJN0naXID06+1XPX6P0D6Jd5I3NU2z+MukfR4Xge/Jp2pQfeWs1ZsSNpb0pzC9LepirWz7/+xWPU6cXH+1cfIF/O8i9tHw9tCDY3uq/V0Z961lnNTUi3Pq4DZhfX351xeUX2869b21sxm+8Usupi0sQEgaT1S1chDhWFGF7o3y+NA+hUVwLYRMYRUraKqedUbtyexFk3L8/s88PtOEsuSGjHUnlHEwxHxpYjYFPgycGIXLRu7+vVLjXlXlv9p0gYEgKTXdnPaq3xv9GzdVqYzTFLxzGYzVv3+eyQiHiOt/7cWit9KqgInv2+bfx1WbFvVv3rcpRHxCKl6b21JY+tMuzsaWQeNfNc1SXoP6drDnqSqpA1JZ5PV+0ot3dl+l0fEIRHxOuDjwDcl7VTpXW+0LuZfPe8XSJcoqrffAax68Kue7kJSddhG+Yf2hhExJCIqjXgaXs5a85C0OXAqcBDwmryO76LxdTw0H/tqzb/6GKkc6xrvIw1YZT0D1ceJ7qq1nItJ3+mzwNaF7+fVkRoWVqzynXaxva2mr+5DOw/4Qm4+PZB0mnlzRCwoDPNtSUNz1czBwAW5fAPSL+XHJY0kXRitdqCkUZKGkS5GXlBjmM50kE51X1dVfjbwCVJSO6uT8acDX8sxDCVdOK5J0h6SRuWPj5G+wEoT5qU1YmhEveX/O7B1Xu+DWL0qqav5/Rb4vqThkjYCfkg6Q+6WiFhIuv52jKRBkrYlNRQ4t9Fp5PgrzekH5s8VZ+U4h+az6S+RrvtAuj6wkvT9DJR0UC6/ujDu/pK2yt/d9yvj5l+ZfwB+JGk9STsAu1G/6rmu3lgHXdiAdP2hg5SEf8jqZ5f1TAf2zevgVcDh9QaU9DFJr88H3CdJ63ZNt9/PFeb9I9KPx5WkHxSDJO0iaR3SdzOwMN5SYEzlskBELAGuAH4qaYiktSRtKalyiaLh/bSO9Uj7aweApC+QztC6FBEPALOAIyWtK+ndpAN0xXRgF0k75WU9hJSc/9bNGHtiDvBJSa/KP67374VpVpbzPcDHgN/ls85TgZ9L2hhA0sjc0rimLra31fRJQouIq0h14xeSfqlsyar1ppBaN80mrdxLSK14IF23eTvp1+YlpANMtfNIG/J9+XV0jWE6i+8Z0rWnv+ZT4e1z+SLShdcg1VnXcypwOSmB3FYnxop3AjdLeopUhXlwRNyf+x0BTMsx7NmNRai5/BHxD9IB4kpSXX/19brTga3y/P5UY7pHk3bCO4A787J1a90W7EVqELCYVN9/eETM7Mb4ldZzkC7sF6u3Dye1PHuAdC33uIj4M0BEPE9qaLE3qaXUfqSq8udz/z8D/4/UQOCB/Coe0L9KupaxjJTgD8jXEXpiTddBZy4nXcv4B2kZ/kPXVX0ARMRlpOvWV5Oqd67uZPCxpO3pKVIjhxPj5fsWjyH9sHhc0re6EfvZpB8RD5MazHwtx/UEaf2fRjpTeZrUCq7id/n9EUm35e69gXV5udXv70nXYKB7++lqIuJu4Kek5V4KvIXUCKtRnwHeRWqtdziFH8kRcS/ph/MvSWcyHyfdFvV8d2LsoZ+TWowuJdVKremPrIdJ635xntZXIuKe3O9Q0jZ2U76EdCWdX8vrbHtbTaX1jdUh6QxgcUSsdo+dmZm1D98s2AmlVpifpPPWQ2Zm1gba4lmO7UjSUaQLvscVqgTNzKxNucrRzMxKwWdoZmZWCk27hpabVV9Pama7Nqkp7uG5afkFpNZeC4A9871ESDqM1GR0JfC1iLg8l7+D1ApqMHApqWVgp6eWG220UYwZM6bXl8vMrMxmz57974gY3vWQ7adpVY75voH1IuKpfF/FDaT7yz5JemLC1HzX99CIOFTSVqRm0duR7iq/kvRQ2JVK/5F1MOlZZpeSHkdzWWfzHz9+fMyaNaspy2ZmVlaSZkfE+FbH0RNNq3KMpHLfUOXBkkG6MbXy32DTSPcIkcvPz8/wup90r8J2kkYAQyLixnxWdlZhHDMzM6DJ19AkDZA0h3RT6sz8fMRN8h39lTv7K89ZG8mqN4IuymUjWfVmykq5mZnZS5qa0CJiZUSMA0aRzrY6e0xMreehRSflq09AmiRplqRZHR0d3Q/YzMz6rb569FXlD+smAEtzNSL5fVkebBGrPjh0FOnRKYtyd3V5rfmcEhHjI2L88OH98pqmmZn1UNMSWn6g7Ya5ezDpTwnvIT2/cJ882D6kZziSyyfmB8huQXqG1y25WnK5pO1zQ5O9C+OYmZkBzX301QjSg3YHkBLn9Ii4WNKNwHRJlb9l3wMgIuZKmk56qOgK4MD8xG1I//x6JqnZ/mX5ZWZm9pLSPinEzfbNzLrPzfbNzMxazAnNzMxKwX8fY69YYyZf0pL5Lpi6S0vma1Z2PkMzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NScEIzM7NSaFpCkzRa0jWS5kmaK+ngXH6EpIckzcmvjxbGOUzSfEn3Stq5UP4OSXfmfidIUrPiNjOz/mntJk57BXBIRNwmaQNgtqSZud/PI+InxYElbQVMBLYGNgWulPSGiFgJnARMAm4CLgUmAJc1MXYzM+tnmnaGFhFLIuK23L0cmAeM7GSU3YDzI+K5iLgfmA9sJ2kEMCQiboyIAM4Cdm9W3GZm1j/1yTU0SWOAtwE356KDJN0h6QxJQ3PZSGBhYbRFuWxk7q4urzWfSZJmSZrV0dHRi0tgZmbtrukJTdL6wIXA1yPiSVL14ZbAOGAJ8NPKoDVGj07KVy+MOCUixkfE+OHDh69x7GZm1n80NaFJWoeUzM6NiD8ARMTSiFgZES8CpwLb5cEXAaMLo48CFufyUTXKzczMXtLMVo4CTgfmRcTPCuUjCoN9Argrd88AJkoaKGkLYCxwS0QsAZZL2j5Pc2/gombFbWZm/VMzWznuAHweuFPSnFz2XWAvSeNI1YYLgC8DRMRcSdOBu0ktJA/MLRwBDgDOBAaTWje6haOZma2iaQktIm6g9vWvSzsZZwowpUb5LGCb3ovOzMzKxk8KMTOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUmjmo6/MrIYxky9p2bwXTN2lZfM2azafoZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSn4PjRrqVbek2Vm5eIzNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzKwUnNDMzK4WmJTRJoyVdI2mepLmSDs7lwyTNlPTP/D60MM5hkuZLulfSzoXyd0i6M/c7QZKaFbeZmfVPzTxDWwEcEhFvBrYHDpS0FTAZuCoixgJX5c/kfhOBrYEJwImSBuRpnQRMAsbm14Qmxm1mZv1Q0xJaRCyJiNty93JgHjAS2A2YlgebBuyeu3cDzo+I5yLifmA+sJ2kEcCQiLgxIgI4qzCOmZkZ0EfX0CSNAd4G3AxsEhFLICU9YOM82EhgYWG0RblsZO6uLq81n0mSZkma1dHR0ZuLYGZmba7pCU3S+sCFwNcj4snOBq1RFp2Ur14YcUpEjI+I8cOHD+9+sGZm1m81NaFJWoeUzM6NiD/k4qW5GpH8viyXLwJGF0YfBSzO5aNqlJuZmb2kma0cBZwOzIuInxV6zQD2yd37ABcVyidKGihpC1Ljj1tyteRySdvnae5dGMfMzAxo7h987gB8HrhT0pxc9l1gKjBd0v7Ag8AeABExV9J04G5SC8kDI2JlHu8A4ExgMHBZfpmZmb2kaQktIm6g9vUvgJ3qjDMFmFKjfBawTe9FZ2ZmZeMnhZiZWSk4oZmZWSk4oZmZWSk4oZmZWSk0lNAkXShpF0lOgGZm1pYaTVAnAZ8B/ilpqqQ3NTEmMzOzbmsooUXElRHxWeDtwAJgpqS/SfpCfhqImZlZSzVchSjpNcC+wBeB24FfkBLczKZEZmZm1g0N3Vgt6Q/Am4CzgY9XnpYPXCBpVrOCMzMza1SjTwo5LSIuLRZIGpj/u2x8E+IyMzPrlkarHI+uUXZjbwZiZma2Jjo9Q5P0WtKfaQ6W9DZefjbjEOBVTY7NzMysYV1VOe5MaggyCij+Bcxy0pPzzczM2kKnCS0ipgHTJH0qIi7so5jMzMy6rasqx89FxDnAGEnfrO5f9cedZmZmLdNVleN6+X39ZgdiZma2Jrqqcvx1fj+yb8IxMzPrma6qHE/orH9EfK13wzEzM+uZrqocZ/dJFGZmZmuokVaOZmZmba+rKsfjI+Lrkv4PiOr+EbFr0yIzMzPrhq6qHM/O7z9pdiBmZmZroqsqx9n5/TpJ65KeuB/AvRHxfB/EZ2Zm1pBG/z5mF+Bk4F+k5zluIenLEXFZM4MzMzNrVKN/H/NT4P0RMR9A0pbAJYATmpmZtYVG/z5mWSWZZfcBy5oQj5mZWY901crxk7lzrqRLgemka2h7ALc2OTYzM7OGdXWG9vH8GgQsBd4H7Ah0AEM7G1HSGZKWSbqrUHaEpIckzcmvjxb6HSZpvqR7Je1cKH+HpDtzvxMkqXpeZmZmXbVy/MIaTPtM4FfAWVXlP4+IVW4DkLQVMBHYGtgUuFLSGyJiJXASMAm4CbgUmICv3ZmZWZVGWzkOAvYnJZxBlfKI2K/eOBFxvaQxDcaxG3B+RDwH3C9pPrCdpAXAkIi4McdxFrA7TmhmZlal0UYhZwOvJf2D9XWkf7Be3sN5HiTpjlwlWam2HAksLAyzKJeNzN3V5TVJmiRplqRZHR0dPQzPzMz6o0YT2usj4gfA0/n5jrsAb+nB/E4CtgTGAUtItwNAuretWnRSXlNEnBIR4yNi/PDhw3sQnpmZ9VeNJrQX8vvjkrYBXg2M6e7MImJpRKyMiBeBU4Htcq9FwOjCoKOAxbl8VI1yMzOzVTSa0E7J1YM/AGYAdwPHdndmkkYUPn4CqLSAnAFMlDRQ0hbAWOCWiFgCLJe0fW7duDdwUXfna2Zm5ddQo5CIOC13Xge8rpFxJP2W1MR/I0mLgMOBHSWNI1UbLgC+nKc/V9J0UqJcARyYWzgCHEBqMTmY1BjEDULMzGw1jbZyfA1wBLADKRn9BTgqIh6pN05E7FWj+PROhp8CTKlRPgvYppE4zczslavRKsfzSY+6+hTwP8C/gQuaFZSZmVl3Nfpw4mERcVTh89GSdm9GQGZmZj3R6BnaNZImSlorv/YkPW3fzMysLXT1cOLlvHw/2DeBc3KvtYCnSA09zMzMWq6rZzlu0FeBmJmZrYlGr6EhaVfgvfnjtRFxcXNCMjMz676GrqFJmgocTLpP7G7g4FxmZmbWFho9Q/soMC4/sgpJ04DbgcnNCszMzKw7Gm3lCLBhofvVvR2ImZnZmmj0DO3HwO2SriG1eHwvcFjTojIzM+umLhOapLWAF4HtgXeSEtqhEfFwk2MzMzNrWJcJLSJelHRQREwnPRXfzMys7TR6DW2mpG9JGi1pWOXV1MjMzMy6odFraPuRnhjy1aryhv5KxszMrNkaTWhbkZLZu3n572NOblZQZmZm3dVoQpsGPAmckD/vlcv2bEZQZmZm3dVoQntjRLy18PkaSX9vRkBmZmY90WijkNslbV/5IOldwF+bE5KZmVn3NXqG9i5gb0kP5s+bAfMk3QlERGzblOjMzMwa1GhCm9DUKMzMzNZQQwktIh5odiBmZmZrojsPJzYzM2tbTmhmZlYKTmhmZlYKTmhmZlYKjbZyNLMSGDP5kpbMd8HUXVoyX3tladoZmqQzJC2TdFehbJikmZL+md+HFvodJmm+pHsl7Vwof4ekO3O/EySpWTGbmVn/1cwqxzNZ/f61ycBVETEWuCp/RtJWwERg6zzOiZIG5HFOAiYBY/PL98SZmdlqmpbQIuJ64NGq4t1IDzUmv+9eKD8/Ip6LiPuB+cB2kkYAQyLixogI4KzCOGZmZi/p60Yhm0TEEoD8vnEuHwksLAy3KJeNzN3V5TVJmiRplqRZHR0dvRq4mZm1t3Zp5Vjrulh0Ul5TRJwSEeMjYvzw4cN7LTgzM2t/fZ3QluZqRPL7sly+CBhdGG4UsDiXj6pRbmZmtoq+TmgzgH1y9z7ARYXyiZIGStqC1PjjllwtuVzS9rl1496FcczMzF7StPvQJP0W2BHYSNIi4HBgKjBd0v7Ag8AeABExV9J04G5gBXBgRKzMkzqA1GJyMHBZflkva9X9SWZmvaVpCS0i9qrTa6c6w08BptQonwVs04uhmZlZCbVLoxAzM7M14oRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal4IRmZmal0JKEJmmBpDslzZE0K5cNkzRT0j/z+9DC8IdJmi/pXkk7tyJmMzNrb608Q3t/RIyLiPH582TgqogYC1yVPyNpK2AisDUwAThR0oBWBGxmZu2rnaocdwOm5e5pwO6F8vMj4rmIuB+YD2zXgvjMzKyNtSqhBXCFpNmSJuWyTSJiCUB+3ziXjwQWFsZdlMtWI2mSpFmSZnV0dDQpdDMza0drt2i+O0TEYkkbAzMl3dPJsKpRFrUGjIhTgFMAxo8fX3MYMzMrp5acoUXE4vy+DPgjqQpxqaQRAPl9WR58ETC6MPooYHHfRWtmZv1Bnyc0SetJ2qDSDXwYuAuYAeyTB9sHuCh3zwAmShooaQtgLHBL30ZtZmbtrhVVjpsAf5RUmf95EfFnSbcC0yXtDzwI7AEQEXMlTQfuBlYAB0bEyhbEbWZmbazPE1pE3Ae8tUb5I8BOdcaZAkxpcmhmZtaPtVOzfTMzsx5zQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1JwQjMzs1Jo1f+hWQ1jJl/S6hDMmqJV2/aCqbu0ZL7WGj5DMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUnBCMzOzUug3/4cmaQLwC2AAcFpETG3WvPy/ZGbl0Mp92f/F1vf6xRmapAHA/wIfAbYC9pK0VWujMjOzdtIvEhqwHTA/Iu6LiOeB84HdWhyTmZm1kf5S5TgSWFj4vAh4V/VAkiYBk/LHpyTd2wexVdsI+HcL5tsdjrF3OMbeUcoYdWyTIqmvt9bj5r0wjZboLwlNNcpitYKIU4BTmh9OfZJmRcT4VsbQFcfYOxxj73CMvaM/xNhs/aXKcREwuvB5FLC4RbGYmVkb6i8J7VZgrKQtJK0LTARmtDgmMzNrI/2iyjEiVkg6CLic1Gz/jIiY2+Kw6mlplWeDHGPvcIy9wzH2jv4QY1MpYrVLUWZmZv1Of6lyNDMz65QTmpmZlYITWi+TdJSkOyTNkXSFpE1bHVM1ScdJuifH+UdJG7Y6pmqS9pA0V9KLktqqKbKkCZLulTRf0uRWx1OLpDMkLZN0V6tjqUXSaEnXSJqXv+eDWx1TNUmDJN0i6e85xiNbHVM9kgZIul3Sxa2OpZWc0HrfcRGxbUSMAy4GftjqgGqYCWwTEdsC/wAOa3E8tdwFfBK4vtWBFPWjx7CdCUxodRCdWAEcEhFvBrYHDmzD9fgc8IGIeCswDpggafsWx1TPwcC8VgfRak5ovSwinix8XI8aNwht/qQAAALLSURBVIC3WkRcEREr8sebSPf1tZWImBcRrXjSS1f6xWPYIuJ64NFWx1FPRCyJiNty93LSwXhka6NaVSRP5Y/r5Ffb7c+SRgG7AKe1OpZWc0JrAklTJC0EPkt7nqEV7Qdc1uog+pFaj2FrqwNxfyNpDPA24ObWRrK6XJU3B1gGzIyItosROB74DvBiqwNpNSe0HpB0paS7arx2A4iI70XEaOBc4KB2jDEP8z1S1c+57RpjG2roMWzWGEnrAxcCX6+q3WgLEbEyXz4YBWwnaZtWx1Qk6WPAsoiY3epY2kG/uLG63UTEBxsc9DzgEuDwJoZTU1cxStoH+BiwU7ToZsRurMd24sew9RJJ65CS2bkR8YdWx9OZiHhc0rWk65Lt1NBmB2BXSR8FBgFDJJ0TEZ9rcVwt4TO0XiZpbOHjrsA9rYqlnvxnqYcCu0bEM62Op5/xY9h6gSQBpwPzIuJnrY6nFknDKy2AJQ0GPkib7c8RcVhEjIqIMaRt8epXajIDJ7RmmJqrze4APkxqfdRufgVsAMzMtxec3OqAqkn6hKRFwH8Bl0i6vNUxQXoMG6ka+XJSQ4bp7fgYNkm/BW4E3ihpkaT9Wx1TlR2AzwMfyNvgnHyW0U5GANfkfflW0jW0V3Sz+HbnR1+ZmVkp+AzNzMxKwQnNzMxKwQnNzMxKwQnNzMxKwQnNzMxKwQnNzMxKwQnNzMxKwQnNrA9Iemf+/7lBktbL/6/VVs8FNOvvfGO1WR+RdDTpeXuDgUURcUyLQzIrFSc0sz6Sn/14K/Af4L8jYmWLQzIrFVc5mvWdYcD6pOdoDmpxLGal4zM0sz4iaQbpH663AEZEREv+K8+srPx/aGZ9QNLewIqIOE/SAOBvkj4QEVe3OjazsvAZmpmZlYKvoZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSk4oZmZWSn8f2zyyvEZs+NkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def normal_random_plots(num_random_numbers):\n", + " x = random.normal(loc=0, scale=1, size=num_random_numbers)\n", + "\n", + " data = [x]\n", + " \n", + " fig1, ax1 = plt.subplots()\n", + " ax1.set_title('Probability distribution of ' + str(num_random_numbers) + ' normal distributed random numbers')\n", + " ax1.set_xlabel(\"x\");\n", + " ax1.set_ylabel(\"probability\");\n", + " ax1.hist(data)\n", + " plt.show()\n", + "\n", + "for i in [1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]:\n", + " normal_random_plots(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVpUlEQVR4nO3de7SldX3f8fdHBsQIAQ2jMNzGKHUF7fLSI43LmKBBK9MY1OUFaqOYxIlGNEnTqqmN0kYT02WaNGrEsaKgEaUqShZjULwESVUcKCgXjSNCGQdluIPXjH77x/M7rs1xn9vsPefA/N6vtc6a59m/3/N8f89lf+bZz97n7FQVkqQ9331WewCSpJVh4EtSJwx8SeqEgS9JnTDwJakTBr4kdcLAX0FJ3p3k9StU65lJrk9yV5LHrETN1bCcfZpkfZJKsqbNfyzJC6c0jicm+erI/LVJjpvGundhLMcm2bYatVv9FTvPV0qSk5NctNrjmFQ3gd+egN9rAXhrkvOSHL4b6nwmyfdbnZuSfDjJIbuwnkrysAmG8ibglKrar6r+75j1/0mSLyfZmeTUCerca1XV8VV1xmL9lnIsquqzVfXwaYxrTwxM3TN0E/jN06tqP+AQ4NvAm3dTnVNanX8BHAj85W6qs5AjgSsXaN8KvBI4b2WGM0iy10rWWwmzrxjuje7NY7+3Ws193lvgA1BV3wc+CBw9+1iSA5KcmWRHkuuS/Jck90nywCTbkjy99dsvydYkL1hCnVuADwGPHNee5MVtXbckOTfJuvb4ha3L5e2VwvPGLHufNsbrktzYxn5AkvsmuQvYqy3/9XnGdkZVfQy4c7HtSHJqkrNbjTuTXJlkZqT9F9orm9ta26+PtL07yduSbE7yHeBJ7dXWf0rypSTfSfLOJA9ut1juTHJBkgeMrON/J/lWktuTXJjkEYuNuS23V5I3tVda1wD/dk77Z5L8dpt+WJJ/aDVuSvKB9vhPHYvZWyZJXpXkW8C75rmN8rgkV7VXlO9Ksm9b50/dHph9FZFkI/B84JWt3t+19nVJPtTOz28kecXIsvdr+/nWJFcBj1tkv1SSlyX5GvC19tj/zHAL8I4klyR54kj/xY7/Y5Jc2to+AOw7p97Y83xkLL+b5Gtt+T9J8tAkn2tjOTvJPvNsx8lJLmrH+Na2X44fab/bbbW2He9t07O3917UtvvWJC9J8rh2Xt6W5C0/XTJvbufIV5L86kjDAe08viHJN5O8Pu3ipo3zH5P8ZZJbgFPnO992u6rq4ge4FjiuTf8McAZw5kj7mcBHgf2B9cA/Ab/V2p4KfAt4EPAO4IML1PkM8Ntt+iDgU8B72vy7gde36ScDNwGPBe7L8GrjwpH1FPCwBer8JsNV+s8D+wEfnq2zlOVH+r0XOHWRPqcC3wc2MPxH8mfA51vb3m0c/xnYp23XncDDR7b5duAJDBcY+7Zj8XngwcChwI3ApcBj2r74FPC6Odu6f2v7K+Cykbaf7NMx434J8BXgcOCBwKfbflkz5lidBbxmZIy/NN++BI4FdgJ/3sZ0v/bYtjnn2xUjtf9x5NifDFw0Z6w/qTF3m9qYLgFe2/bxzwPXAP+mtb8R+Gyrc3iru23cPhmp9YnW/37tsX8P/BywBvhDhvN93yUc/32A64A/aOfCs4F/Znnn+bnAzwKPAH4AfLJt4wHAVcAL59mOk1utF7dxvRTYDmTuc35kO97bpte32qe14/3Uto0fYXiez56XvzJSa+fIdj6P4bx+YGv/CPB24P5t+YuB35mz7Mvb/r0fC5xvuzUHV6LIPeGnHfy7gNvazt8O/MvWtlc70Y4e6f87wGdG5t8MfLkt93ML1PkM8N1W55vA3wJr5z6RgXcC/31kuf3aybt+5ImwUOB/EvjdkfmHt+XXLGX5keWWGvgXjMwfDXyvTT+RIRzuM9J+1uw62zafOWd91wLPH5n/EPC2kfmXAx+ZZywHtm07YO4+HdP3U8BLRuafyvyBfyawCThszHrGBf4PaYE48tjcwB+tvQH4eps+meUF/r8G/t+c/n8EvKtNXwM8baRtI4sH/pMXOea3Ao9awvH/ZUZCtj32f1jeef6EkfZLgFeNzP8F8FfzjPFkYOvI/M+09R08cgwWC/xDR9pvBp4357z8/ZFac7fzYuA3GC5cfkD7z7O1nQR8emTZucdv3vNtd/70dkvnGVV1IMOVxinAPyQ5mOFKfPZKZdZ1DP/Lz9rEcGvmXVV18yJ1XlFVB1bVoVX1/KraMabPutF6VXUXwwl36Ji+49xt+Ta9huHk2x2+NTL9XWDfDPci1wHXV9WP54xldDuuH7O+b49Mf2/M/H7wk9syb0zy9SR3MDyJYThmi1k3p/Z183VkeD8jwMXtlsVvLrLuHTXcGlzI3Nrr5uu4iCOBde02w21JbmN4RTV7rJeznePGRpI/THJ1u8VwG8PV9eg+Xuj4f7Naio2pv5TzfEnnwjx+Mq6q+m6bXKj/XMupPW471zEcn72BG0aOz9sZrvRnzX0OLPd8m4reAh+AqvpRVX0Y+BHwSwwvOf+Z4cDNOoLhCn32jca3M/yv/NJM9umZWdtH6yW5P8NL6m/uyvJtvDu5+wm7ErYDhycZPZd+su+aYtf9O+AE4DiGEFrfHs8Slr2B4RbH6LjGqqpvVdWLq2odw6u7v1nkOC9lm+bW3t6mv8NwNQpAu+hYaN3XA99oFxGzP/tX1YbWvuTtHFej3a9/FfBc4AHtouh2lr6PD00y2ne0/qTn+STutp+Buft5ucZt53aG4/MD4KCR4/OzVTX6XtPdjukunG9T0WXgZ3AC8ADg6qr6EXA28IYk+yc5EvgPDLc7YLiaguFe8puAMzP5p03eB7woyaOT3Bf4U+ALVXVta/82w33M+ZwF/EGShyTZry3/garauZTiSfbO8CbifYA1SfbdxW36AsMT65VtnccCTwfevwvrGmd/hifTzQxP3j9dxrJnA69IcliGN4FfPV/HJM9JclibvZXhCfqjNr/YsZjPy1rtBzKcQ7NvzF0OPKId+30ZbjWMmlvvYuCODG8S36+96nlkktk3Z88G/ijJA9o2vHyZ49yf4WJhB8O58FqGe+pL8bm27CuSrEnyLOCYkfbFzvPd6TLgxHZezjC8vzCJBzFs595JngP8ArC5qm4APg78RZKfzfCBiocm+ZX5VrTI+bbb9Bb4f5fhEyx3AG9geDNo9qOLL2cIrmuAixhO1NOT/CuG8H9B+4/hzxkOzrzhsRRV9UngjxnuE94APBQ4caTLqcAZ7SXic8es4nTgPcCFwDcY3nBazhP9HQwvWU9iePPoewz3I5elqn4I/DpwPMMrpb9h2FdfWe665nEmw0vnbzK8gff5ZSz7DuB8hoC9lOGN7fk8DvhCOz/OBX6vqr7R2k5l4WMxn/cxBME17ef1AFX1T8B/Ay5g+JTM3F/oeSdwdKv3kXbePR14NMOxvgn4XwyveAD+K8M++kar955ljBGGffQxhg8qXMdwLo27DfdT2vF/FsN96lsZ3sz88Ej7Yuf57vTHrd6tDPvofROu7wvAUQz7/w3As0du776A4bbwVa3eBxk+/j2fhc633Wb23WxJ0h6utyt8SeqWgS9JnTDwJakTBr4kdeIe/YeTDjrooFq/fv1qD0OS7jUuueSSm6pq7bi2e3Tgr1+/ni1btqz2MCTpXiPJvL9p7S0dSeqEgS9JnTDwJakTBr4kdcLAl6ROTCXwk5ye4Wv2rpin/dj2d7Yvaz+vnUZdSdLSTetjme8G3sLwlw3n89mq+rUp1ZMkLdNUrvCr6kLglmmsS5K0e6zkL149PsnlDN8Q8x9H/g793STZyPCdnBxxxFK+uEfSPcqpByzeZyp1bl+ZOnuQlQr8S4Ejq+quJBsYvuH9qHEdq2oTw/fHMjMz4x/rl+5tDOJ7rBX5lE5V3dG+vJiq2gzsnWQpX0ItSZqSFQn8JAfPfvlvkmNa3ZsXXkqSNE1TuaWT5CzgWOCgJNuA1wF7A1TVaQxfHvzSJDsZvjv1xPK7FSVpRU0l8KvqpEXa38LwsU1J0irxN20lqRMGviR1wsCXpE4Y+JLUCQNfkjph4EtSJwx8SeqEgS9JnTDwJakTBr4kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHXCwJekThj4ktQJA1+SOmHgS1InphL4SU5PcmOSK+ZpT5K/TrI1yZeSPHYadSVJSzetK/x3A09boP144Kj2sxF425TqSpKWaCqBX1UXArcs0OUE4MwafB44MMkh06gtSVqalbqHfyhw/cj8tvbYT0myMcmWJFt27NixIoOTpB6sVOBnzGM1rmNVbaqqmaqaWbt27W4eliT1Y6UCfxtw+Mj8YcD2FaotSWLlAv9c4AXt0zq/CNxeVTesUG1JErBmGitJchZwLHBQkm3A64C9AarqNGAzsAHYCnwXeNE06kqSlm4qgV9VJy3SXsDLplFLkrRr/E1bSeqEgS9JnTDwJakTBr4kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHXCwJekThj4ktQJA1+SOmHgS1InDHxJ6oSBL0mdMPAlqRMGviR1wsCXpE4Y+JLUiakEfpKnJflqkq1JXj2m/dgktye5rP28dhp1JUlLt2bSFSTZC3gr8BRgG/DFJOdW1VVzun62qn5t0nqSpF0zjSv8Y4CtVXVNVf0QeD9wwhTWK0maomkE/qHA9SPz29pjcz0+yeVJPpbkEVOoK0laholv6QAZ81jNmb8UOLKq7kqyAfgIcNTYlSUbgY0ARxxxxBSGJ0mC6VzhbwMOH5k/DNg+2qGq7qiqu9r0ZmDvJAeNW1lVbaqqmaqaWbt27RSGJ0mC6QT+F4GjkjwkyT7AicC5ox2SHJwkbfqYVvfmKdSWJC3RxLd0qmpnklOA84G9gNOr6sokL2ntpwHPBl6aZCfwPeDEqpp720eStBvlnpy7MzMztWXLltUehiTdayS5pKpmxrX5m7aS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHXCwJekThj4ktQJA1+SOmHgS1InDHxJ6oSBL0mdMPAlqRMGviR1wsCXpE4Y+JLUCQNfkjph4EtSJwx8SeqEgS9JnTDwJakTBr4kdWIqgZ/kaUm+mmRrklePaU+Sv27tX0ry2GnUlSQt3cSBn2Qv4K3A8cDRwElJjp7T7XjgqPazEXjbpHUlScszjSv8Y4CtVXVNVf0QeD9wwpw+JwBn1uDzwIFJDplCbUnSEk0j8A8Frh+Z39YeW24fAJJsTLIlyZYdO3ZMYXiSJJhO4GfMY7ULfYYHqzZV1UxVzaxdu3biwUmSBtMI/G3A4SPzhwHbd6GPJGk3mkbgfxE4KslDkuwDnAicO6fPucAL2qd1fhG4vapumEJtSdISrZl0BVW1M8kpwPnAXsDpVXVlkpe09tOAzcAGYCvwXeBFk9aVJC3PxIEPUFWbGUJ99LHTRqYLeNk0akmSdo2/aStJnTDwJakTBr4kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHXCwJekThj4ktQJA1+SOmHgS1InDHxJ6oSBL0mdMPAlqRMGviR1wsCXpE4Y+JLUCQNfkjqxZpKFkzwQ+ACwHrgWeG5V3Tqm37XAncCPgJ1VNTNJXUnS8k16hf9q4JNVdRTwyTY/nydV1aMNe0laHZMG/gnAGW36DOAZE65PkrSbTBr4D66qGwDavw+ap18BH09ySZKNC60wycYkW5Js2bFjx4TDkyTNWvQefpILgIPHNL1mGXWeUFXbkzwI+ESSr1TVheM6VtUmYBPAzMxMLaOGJGkBiwZ+VR03X1uSbyc5pKpuSHIIcOM869je/r0xyTnAMcDYwJck7R6T3tI5F3hhm34h8NG5HZLcP8n+s9PAU4ErJqwrSVqmSQP/jcBTknwNeEqbJ8m6JJtbnwcDFyW5HLgYOK+q/n7CupKkZZroc/hVdTPwq2Me3w5saNPXAI+apI4kaXL+pq0kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHXCwJekThj4ktQJA1+SOmHgS1InDHxJ6oSBL0mdMPAlqRMGviR1wsCXpE4Y+JLUCQNfkjph4EtSJwx8SerERIGf5DlJrkzy4yQzC/R7WpKvJtma5NWT1JQk7ZpJr/CvAJ4FXDhfhyR7AW8FjgeOBk5KcvSEdSVJy7RmkoWr6mqAJAt1OwbYWlXXtL7vB04ArpqktiRpeVbiHv6hwPUj89vaY2Ml2ZhkS5ItO3bs2O2Dk6ReLHqFn+QC4OAxTa+pqo8uoca4y/+ar3NVbQI2AczMzMzbT5K0PIsGflUdN2GNbcDhI/OHAdsnXKckaZlW4pbOF4GjkjwkyT7AicC5K1BXkjRi0o9lPjPJNuDxwHlJzm+Pr0uyGaCqdgKnAOcDVwNnV9WVkw1bkrRck35K5xzgnDGPbwc2jMxvBjZPUkuSNBl/01aSOmHgS1InDHxJ6oSBL0mdMPAlqRMGviR1wsCXpE4Y+JLUCQNfkjph4EtSJwx8SeqEgS9JnTDwJakTBr4kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHViosBP8pwkVyb5cZKZBfpdm+TLSS5LsmWSmpKkXbNmwuWvAJ4FvH0JfZ9UVTdNWE+StIsmCvyquhogyXRGI0nabVbqHn4BH09ySZKNC3VMsjHJliRbduzYsULDk6Q936JX+EkuAA4e0/SaqvroEus8oaq2J3kQ8IkkX6mqC8d1rKpNwCaAmZmZWuL6JUmLWDTwq+q4SYtU1fb2741JzgGOAcYGviRp99jtt3SS3D/J/rPTwFMZ3uyVJK2gST+W+cwk24DHA+clOb89vi7J5tbtwcBFSS4HLgbOq6q/n6SuJGn5Jv2UzjnAOWMe3w5saNPXAI+apI4kaXL+pq0kdcLAl6ROGPiS1AkDX5I6YeBLUicm/eNpWi2nHrBCdW5fmTqSdjsD/97KIJa0TN7SkaROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ0w8CWpEwa+JHUiVffcr41NsgO4brXHsYc4CLhptQchzcPzc3qOrKq14xru0YGv6UmypapmVnsc0jienyvDWzqS1AkDX5I6YeD3Y9NqD0BagOfnCvAeviR1wit8SeqEgS9JnTDw93BJTk9yY5IrVnss0qgkhyf5dJKrk1yZ5PdWe0x7Ou/h7+GS/DJwF3BmVT1ytccjzUpyCHBIVV2aZH/gEuAZVXXVKg9tj+UV/h6uqi4EblntcUhzVdUNVXVpm74TuBo4dHVHtWcz8CWtuiTrgccAX1jdkezZDHxJqyrJfsCHgN+vqjtWezx7MgNf0qpJsjdD2P9tVX14tcezpzPwJa2KJAHeCVxdVf9jtcfTAwN/D5fkLOBzwMOTbEvyW6s9Jql5AvAbwJOTXNZ+Nqz2oPZkfixTkjrhFb4kdcLAl6ROGPiS1AkDX5I6YeBLUicMfEnqhIEvSZ34/zBZZRw1tgfrAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWtklEQVR4nO3de5RlZX3m8e9j04gKAh1ahYbQRhkXyCwvUxKz0ASMOsLE4GQZhXFElEg0ippxxRsTxYydmKzcRk1AMo3aXlodZQhZwfGKwXYE7WbQCK2xRRiabqWA5iagwPzmj72LORSnuqq6TlV11/v9rHVW7X3ed+/33Zfz1D7v2acqVYUkael72GJ3QJK0MAx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPgLKMmHk7xngdr690muT3JnkqctRJuLYTb7NMnqJJVkr37+c0leMaJ+PDvJ9wfmr03y3FGsexf6clySrYvRdt/+gp3nCyXJaUk2LHY/5qqZwO9fgHf3AbgjyT8mOWwe2vlqknv6dm5KckGSg3dhPZXkiXPoyp8Dr6+qfavqfw9Z/+D+uDPJF+bQ1h6pqk6oqo9MV28mx6KqvlZVTxpFv5ZiYGr30Ezg915YVfsCBwM/Ad4/T+28vm/nXwEHAH81T+3szOHAVdPUeWH/C2Hfqnr+QnQqybKFaGchTbxj2BPtyX3fUy3mPm8t8AGoqnuAzwBHTTyXZP8k65KMJ7kuyX9O8rAkK5JsTfLCvt6+SbYkOXUG7dwCfBY4elh5klf367olyUVJDumfv7Sv8u3+6vulQ5Z9WN/H65Lc2Pd9/yQPT3InsKxf/oez3D3D+nl2kk/3bdyR5KokYwPlR/bvbG7ty35zoOzDSc5JcnGSnwLH9+8u/iDJd5L8NMnaJI/th1juSPKlJAcOrOO/J/lxktuSXJrkyTPs97Ikf96/07oG+HeTyr+a5Hf66Scm+ae+jZuSfKp//iHHYmLIJMlbk/wY+NAUwyjPSHJ1/47yQ0n26df5kOGBiXcRSc4AXga8pW/vH/ryQ5J8tj8/f5TkDQPLPqLfzzuSXA08Y5r9Uklel+QHwA/65/5ruiHA25NsSvLsgfrTHf+nJbmiL/sUsM+k9oae5wN9+b0kP+iX/y9JnpDkG31fPp1k7ym247QkG/pjvKPfLycMlD9oWK3fjo/10xPDe6/st3tHktckeUZ/Xt6a5AMPbTLv78+R7yX59YGC/fvzeHuSG5K8J/3FTd/Pryf5qyS3AGdPdb7Nu6pq4gFcCzy3n34k8BFg3UD5OuDvgf2A1cC/AKf3Zc8Hfgw8Bvg74DM7aeerwO/00wcBXwE+2s9/GHhPP/0c4Cbg6cDD6d5tXDqwngKeuJN2XgVsAX4J2Be4YKKdGS5/Ld27nHHgC8BTdlL3bOAe4ES6XyR/AlzWly3v+/EOYO9+u+4AnjSwzbcBx9JdYOzTt30Z8FhgFXAjcAXwtH5ffAV416Rt3a8v+2vgyoGyB/bpkH6/BvgecBiwArik3y97DTlW64GzBvr4rKn2JXAccB/wp32fHtE/t3XS/v3uQNtfHzj2pwEbJvX1gTYmb1Pfp03AO/t9/EvANcC/7cvfC3ytb+ewvt2tw/bJQFtf7Os/on/uPwK/AOwFvJnufN9nBsd/b+A64Pf7c+HFwL3M7jy/CHg08GTgZ8CX+23cH7gaeMUU23Fa39ar+369FtgGZPJrfmA7PtZPr+7bPrc/3s/vt/FCutf5xHn5awNt3TewnS+lO69X9OUXAh8EHtUv/03gdycte2a/fx/BTs63ec3BhWhkd3j0B/9O4NZ+528D/nVftqw/0Y4aqP+7wFcH5t8P/HO/3C/spJ2vAnf17dwAfBxYOfmFDKwF/mxguX37k3f1wAthZ4H9ZeD3Buaf1C+/1wyXP7Y/8R4JvJ3uBX7AFHXPBr40MH8UcHc//ex+2YcNlK8Hzh7Y5nWT1nct8LKB+c8C5wzMnwlcOEVfDui3bf/J+3RI3a8ArxmYfz5TB/464Dzg0CHrGRb4P6cPxIHnJgf+YNsnAj/sp09jdoH/y8D/mVT/7cCH+ulrgBcMlJ3B9IH/nGleLzvoLwKmOf6/ykDI9s/9L2Z3nh87UL4JeOvA/F8Afz1FH08DtgzMP7Jf3+MGjsF0gb9qoPxm4KWTzss3DbQ1eTu/Cbyc7sLlZ/S/PPuyU4BLBpadfPymPN/m89HakM6LquoAuiuN1wP/lORxdFfiE1cqE66j+y0/4Ty6oZkPVdXN07Tzhqo6oKpWVdXLqmp8SJ1DBturqjvpTrhVQ+oO86Dl++m96E6+aVXV16vq7qq6q6r+hO4X1LN3ssiPB6bvAvZJNxZ5CHB9Vf3fSX0Z3I7rh6zvJwPTdw+Z3xceGJZ5b5IfJrmd7kUM3TGbziGT2r5uqorAW4AA3+yHLF41zbrHqxsa3JnJbR8yVcVpHA4c0g8z3JrkVrp3VBPHejbbOaxvJHlzks39EMOtdFfXg/t4Z8f/hupTbEj7MznPZ3QuTOGBflXVXf3kzupPNpu2h23nIXTHZzmwfeD4fJDuSn/C5NfAbM+3kWgt8AGoqvur6gLgfuBZdG8576U7cBN+ke4KfeKDxg/S/VZ+beZ298yEbYPtJXkU3VvqG3Zl+b6/9/HgE3Y2iu4EnK1twGFJBs+lB/bdwLp31X8ATgKeSxdCq/vnZ9LX7XRDHIP9GqqqflxVr66qQ+je3f3tNMd5Jts0ue1t/fRP6a5GAegvOna27uuBH/UXEROP/arqxL58xts5rI1+vP6twEuAA/uLotuY+T5elWSw7mD7cz3P5+JB+xmYvJ9na9h2bqM7Pj8DDho4Po+uqsHPmh50THfhfBuJJgM/nZOAA4HNVXU/8GlgTZL9khwO/CfgY/0i7+h/vorudsd1mfvdJp8AXpnkqUkeDvwxcHlVXduX/4RuHHMq64HfT/L4JPv2y3+qqu6bruEkv5jk2CR7J9knyR/QXc19fRe243K6F9ZbkixPchzwQuCTu7CuYfajezHdTPfi/eNZLPtp4A1JDk33IfDbpqqY5LeTHNrP7qB7gd7fz093LKbyur7tFXTn0MQHc98Gntwf+33ohhoGTW7vm8Dt6T4kfkT/rufoJBMfzn4aeHuSA/ttOHOW/dyP7mJhHNgryTvpxtRn4hv9sm9IsleS3wKOGSif7jyfT1cCJ/fn5Rjd5wtz8Ri67Vye5LeBI4GLq2o73edgf5Hk0eluqHhCkl+bakXTnG/zprXA/4d0d7DcDqyh+zBo4tbFM+mC6xpgA92Jen6Sf0MX/qf2vxj+lO7gTBkeM1FVXwb+kG6ccDvwBODkgSpnAx/p3yK+ZMgqzgc+ClwK/IjuA6eZvtD3A86hO9FuAF4AnDCDoaph2/Fz4DeBE+jeKf0t3b763mzXNYV1dG+db6D7AO+yWSz7d8Dn6QL2CroPtqfyDODy/vy4CHhjVf2oLzubnR+LqXyCLgiu6R/vAaiqfwH+CPgS3V0yk7/QsxY4qm/vwv68eyHwVLpjfRPw3+je8QC8m24f/ahv76Oz6CN0++hzdDcqXEd3Lg0bhnuI/vj/Ft049Q66DzMvGCif7jyfT3/Yt7eDbh99Yo7ruxw4gm7/rwFePPCaOZVuWPjqvr3P0N3+PZWdnW/zZuLTbEnSEtfaFb4kNcvAl6RGGPiS1AgDX5IasVv/4aSDDjqoVq9evdjdkKQ9xqZNm26qqpXDynbrwF+9ejUbN25c7G5I0h4jyZTftHZIR5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktSI3fqLV5q9B/9Dnpnzz2RLS5+Bv8RMFdxJDHWpcQ7pSFIjDHxJaoSBL0mNmHPgJzksySVJNie5Kskbh9RJkvcl2ZLkO0mePtd2JUmzM4oPbe8D3lxVVyTZD9iU5ItVdfVAnRPo/tv7EcAvA+f0PyVJC2TOV/hVtb2qruin7wA2A6smVTsJWFedy4ADkhw817YlSTM30jH8JKuBpwGXTypaBVw/ML+Vh/5SmFjHGUk2Jtk4Pj4+yu5JUtNGFvhJ9gU+C7ypqm6fXDxkkaE3hVfVeVU1VlVjK1cO/S9dkqRdMJLAT7KcLuw/XlUXDKmyFThsYP5QYNso2pYkzcwo7tIJsBbYXFV/OUW1i4BT+7t1ngncVlXb59q2JGnmRnGXzrHAy4F/TnJl/9w7gF8EqKpzgYuBE4EtwF3AK0fQriRpFuYc+FW1geFj9IN1CnjdXNuSJO06v2krSY0w8PdQK1asIMmMH8Cs6idhxYoVi7yVWurWr1/P0UcfzbJlyzj66KNZv379YndpSfPPI++hduzYMe9/7nhX/7a+NBPr16/nrLPOYu3atTzrWc9iw4YNnH766QCccsopi9y7pckrfEmLYs2aNaxdu5bjjz+e5cuXc/zxx7N27VrWrFmz2F1bsrI7/1OMsbGx2rhx42J3Y7e0EP/QxH+aovm0bNky7rnnHpYvX/7Ac/feey/77LMP999//yL2bM+WZFNVjQ0r8wpf0qI48sgj2bBhw4Oe27BhA0ceeeQi9WjpM/AlLYqzzjqL008/nUsuuYR7772XSy65hNNPP52zzjprsbu2ZPmhraRFMfHB7JlnnsnmzZs58sgjWbNmjR/YziPH8PdQjuFLGsYxfEmSgS9JrTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJasRIAj/J+UluTPLdKcqPS3Jbkiv7xztH0a4kaeZG9T9tPwx8AFi3kzpfq6rfGFF7kqRZGskVflVdCtwyinVJkubHQo7h/0qSbyf5XJInT1UpyRlJNibZOD4+voDdk6SlbaEC/wrg8Kp6CvB+4MKpKlbVeVU1VlVjK1euXKDuSdLStyCBX1W3V9Wd/fTFwPIkBy1E25KkzoIEfpLHJUk/fUzf7s0L0bYkqTOSu3SSrAeOAw5KshV4F7AcoKrOBV4MvDbJfcDdwMlVVaNoW5I0MyMJ/Ko6ZZryD9DdtilJWiR+01aSGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjRhL4Sc5PcmOS705RniTvS7IlyXeSPH0U7UqSZm5UV/gfBl6wk/ITgCP6xxnAOSNqV5I0QyMJ/Kq6FLhlJ1VOAtZV5zLggCQHj6JtSdLMLNQY/irg+oH5rf1zD5HkjCQbk2wcHx9fkM5JUgsWKvAz5LkaVrGqzquqsaoaW7ly5Tx3S5LasVCBvxU4bGD+UGDbArUtSWLhAv8i4NT+bp1nArdV1fYFaluSBOw1ipUkWQ8cBxyUZCvwLmA5QFWdC1wMnAhsAe4CXjmKdiVJMzeSwK+qU6YpL+B1o2hLkrRr/KatJDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRowk8JO8IMn3k2xJ8rYh5ccluS3Jlf3jnaNoV5I0c3vNdQVJlgF/AzwP2Ap8K8lFVXX1pKpfq6rfmGt7kqRdM4or/GOALVV1TVX9HPgkcNII1itJGqFRBP4q4PqB+a39c5P9SpJvJ/lckidPtbIkZyTZmGTj+Pj4CLonSYLRBH6GPFeT5q8ADq+qpwDvBy6camVVdV5VjVXV2MqVK0fQPUkSjCbwtwKHDcwfCmwbrFBVt1fVnf30xcDyJAeNoG1J0gyNIvC/BRyR5PFJ9gZOBi4arJDkcUnSTx/Tt3vzCNqWJM3QnO/Sqar7krwe+DywDDi/qq5K8pq+/FzgxcBrk9wH3A2cXFWTh30kSfMou3Pujo2N1caNGxe7G7ulJMz3sVuINiSNVpJNVTU2rMxv2kpSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGzPk+fC2Oetej4ez9578NSUuGgb+HyrtvX5j78M+e1yYkLSCHdCSpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNWIkgZ/kBUm+n2RLkrcNKU+S9/Xl30ny9FG0K0mauTkHfpJlwN8AJwBHAackOWpStROAI/rHGcA5c21XkjQ7o7jCPwbYUlXXVNXPgU8CJ02qcxKwrjqXAQckOXgEbUuSZmgUgb8KuH5gfmv/3GzrSJLm0SgCP0Oeq12o01VMzkiyMcnG8fHxOXdOktQZReBvBQ4bmD8U2LYLdQCoqvOqaqyqxlauXDmC7kmSYDSB/y3giCSPT7I3cDJw0aQ6FwGn9nfrPBO4raq2j6BtSdIM7TXXFVTVfUleD3weWAacX1VXJXlNX34ucDFwIrAFuAt45VzblSTNzpwDH6CqLqYL9cHnzh2YLuB1o2hL/18y7KOR0TnwwAPndf2SFtZIAl8Lr/sdOnNJZr2MpKXFP60gSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGuFtmUvMzu7N31mZt2xKS5+Bv8QY3JKm4pCOJDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9ppFasWEGSeX2sWLFisTdzj+Tfw5c0Ujt27Jj3/8uws3/mo6l5hS9JjTDwJakRcxrSSbIC+BSwGrgWeElV7RhS71rgDuB+4L6qGptLu5Kk2ZvrFf7bgC9X1RHAl/v5qRxfVU817CVpccw18E8CPtJPfwR40RzXJ0maJ3MN/MdW1XaA/udjpqhXwBeSbEpyxs5WmOSMJBuTbBwfH59j9yRJE6Ydw0/yJeBxQ4rOmkU7x1bVtiSPAb6Y5HtVdemwilV1HnAewNjY2Pze2yVJDZk28KvquVOVJflJkoOranuSg4Ebp1jHtv7njUn+B3AMMDTwJe3Z6l2PhrP3n/82NGtz/eLVRcArgPf2P/9+coUkjwIeVlV39NPPB/5oju1K2k3l3bcvyBev6ux5bWJJmusY/nuB5yX5AfC8fp4khyS5uK/zWGBDkm8D3wT+sar+5xzblSTN0pyu8KvqZuDXhzy/DTixn74GeMpc2pG0Z5nvP31w4IEHzuv6lyr/lo6kkdqV4Zwk8z4MJP+0giQ1w8CXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjfA+fEkLYrovY01V7v35o2PgS1oQBvfic0hHkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1Ijszl+GSDIOXLfY/VgiDgJuWuxOSFPw/Bydw6tq5bCC3TrwNTpJNlbV2GL3QxrG83NhOKQjSY0w8CWpEQZ+O85b7A5IO+H5uQAcw5ekRniFL0mNMPAlqREG/hKX5PwkNyb57mL3RRqU5LAklyTZnOSqJG9c7D4tdY7hL3FJfhW4E1hXVUcvdn+kCUkOBg6uqiuS7AdsAl5UVVcvcteWLK/wl7iquhS4ZbH7IU1WVdur6op++g5gM7BqcXu1tBn4khZdktXA04DLF7cnS5uBL2lRJdkX+Czwpqq6fbH7s5QZ+JIWTZLldGH/8aq6YLH7s9QZ+JIWRZIAa4HNVfWXi92fFhj4S1yS9cA3gCcl2Zrk9MXuk9Q7Fng58JwkV/aPExe7U0uZt2VKUiO8wpekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqRH/D1y+3NBxWBF8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEICAYAAABcVE8dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAV+klEQVR4nO3de5RlZX3m8e8DDV4AhQ7NHWkv6AyaeKuFOiYOOkCUkQGZmOAlgjFhUNExk5gwXiLeZpysrJgV44jthAEEFRMhkIGIiEMYjIkWBiIIagdB2uZS3AUxBvObP/YuORSnbn1OVTX1fj9r1eqz9373ft99e84+79mnd6oKSdLqt81KN0CStDwMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4SyjJqUk+sEx1vSLJjUnuTfLs5ahza5SkkjxlgWVPSnJG//oJ/bbbdkztODnJu/vXByXZNI7lbmFblu04nKX+Be+TR4oklyT59ZVux2Kt2sBPcn2S+/uT+M4k5yfZdwnquSTJj/p6bktydpI9t2A5o54UfwCcUFU7VtXfD1n++5N8I8kDSU4aMv3VSW5Icl+Sv0iydoS2POJU1ff6bfeTucolOTbJZQtY3vFV9f5xtG01BqZWxqoN/N7hVbUjsCdwC/CRJarnhL6epwI7Ax9eonrmsh9w9RzTNwK/A5w/c0KSpwMfB34V2B34IfA/l6CNM+tds9R1rIRxfUpYCat1n2yt0lm2HF7tgQ9AVf0I+HPggOlxSR6f5PQkU/2V7buSbJNkbZJNSQ7vy+2YZGOS1y2gnjuAzwHPGDY9yW/0y7ojyXlJ9urHX9oXubL/pPArQ+bdpm/jDUlu7dv++CSPSnIvsG0//z/O0rbTquqvgB8Mmfwa4C+r6tKquhd4N3BUkp1mWY/rk/x2kn9IcneSs5I8er717KdVkjcn+Q7wnenujiS/06/XTUmOTHJYkm/3y3jHwPwHJvlKkrv6sn+SZPth7RzS7icm+eskP0hyEbDrwLT1fdvW9MPHJrmuL/vdJK9J8q+Bk4EX9Pvprr7sqUk+luSCJPcBLx7WjZLkHf2nwOuTvGZg/EO6BwY/Rcx2bCR5eZIr+u3wN0l+bmD+Zyf5et/2s4Cf7psh2+TYJF9O8uEkdwAnJXlyki8lub1v75lJdh6YZ779//Z+32xO8msz6ht63g1py1399v83/fgb++PjmDnW5ZJ0n2S/3K/7F5Ls2k97WLdavx4H969PSvJnSc7o5/1Gkqcm+a99vTcmOXRGlU9O8tV+G5ybgU/FSZ7f75e7klyZ5KAZ7fxgki/TXVw9adjxNtt6jqSqVuUfcD1wcP/6scBpwOkD008HzgV2AtYD3wbe0E87FLgZ2A34BPDnc9RzCfDr/etdgS8Bn+yHTwU+0L9+CXAb8BzgUXSfNi4dWE4BT5mjnl+ju0p/ErAjcPZ0PQuZf6DcGcBJM8adC/zujHH3As+dY9t+FdgLWAtcAxy/iPW8qJ/vMcBBwAPA7wHbAb8BTAGf6vfN04EfAU/q538u8HxgTb/frgHetpDtAHwF+MO+XS+ie/M7o5+2vp93DbADcA/wtH7ansDT+9fHApfNWO6pwN3AC+kuoh49Y99Pr+N03f8WuG9g+T89hobVMXOd+m17K/A8ujf6Y/p98ihge+AG4Df77flLwD9Pt2XINjm2b9tb+nV/DPAU4JB+eeuAS4E/WuD+fyndp+ln9NvxU4PtZ+7zbrotr+/X6wPA94CP9m05tN9nO85xLv4j3Sftx/TDHxrYB5vmyIiT6I6zX+y3w+nAd4F38uBx+d0ZdX1/YD0/x4PH0t7A7cBhdMfDIf3wuoF5v0d3bK8BHs8sx9vYc3EpFro1/PU7817grv4g2gz8bD9tW+CfgAMGyv8n4JKB4Y8A3+jn+5k56rmE7l36rv4AOHNgx57Kgyf9nwK/PzDfjnQn4vphJ/WQei4G3jQw/LR+/jULmX9gvmGBfzH9CTsw7vvAQXNs29cODP8+cPIi1vMlA9MPAu4Htu2Hd+rLPG+gzOXAkbO05W3AOQPDQ7cD8IT+ONhhYNynmD3w7wL+I/CYGcs5luGBf/qQcTMDf7DuzwLvHjiGFhP4HwPeP6O+b9G9kbyI7pjNwLS/Ye7A/948x8yRwN8vcP+fQh+y/fBTp9vPPOdd35bvDEz72X7e3QfG3Q48a45z8V0Dw28CPj+wD+YL/IsGph1Olx8zj8udB+oaXM8DgB/36/i7DFyM9dMvBI4ZmPd9A9NmPd7G/bfau3SOrKqd6a4OTgD+OskedFfi01dC026ge2eetoHu3ft/V9Xt89Tz1qrauar2rqrXVNXUkDJ7DdZXXdfJ7TPqnMtD5u9fr6Hrcx/VvcDjZox7HMO7f6bdPPD6h3TBDgtbzxtnLOv2evDL0vv7f28ZmH7/9PL7j9n/J8nNSe4B/hsDXTNz2Au4s6ruGxh3w7CCfZlfAY4Hbkr3hf+/mmf5M9dppmF17zVb4XnsB/xW311wV9+1tG+/vL2A71efJAN1zeUhbU+yW5LPJPl+v43P4OHbeK79P7i8wboXct7N3O9U1dBjYRaztWshZtZz25DjcnB5M9dzO7p13A945Yz98/N0V+4Pm3cLj7ctstoDH4Cq+klVnQ38hG7D30Z31bnfQLEn0F3VTn/p9nG6j3VvzHjukNg8WF+SHYCfma5zsfPz4BXrLcOLL8rVwDMH2vYkujfJb2/BshaynjVzpkX4GHAtsH9VPQ54B5AFzHcTsEvfnmlPmK1wVV1YVYfQnaTX0nXtwextn2+dhtW9uX99H12347Q95lnWjcAH+4uM6b/HVtWn6dZz7ySD22TW9Zyl7f+9H/dz/TZ+LQvbxvT1D94NN1j3nOfdEnvINu7P8XUjLnPmev4z3TreSHeFP7h/dqiqDw2Uf8g2n+N4G6smAj+dI4BdgGv6d+3PAh9MslOS/YD/QnclA12IQNdv/gfA6Rn9zotPAa9P8qwkj6K7Mv27qrq+n34LXf/8bD4N/Ga6Lx537Oc/q6oeWEjlSbbrv1jbBliT5NED63QmcHiSX+hD6X3A2VU11xX+bOZbz1HtRNffeW9/FfTGhcxUVTcAk8B7k2yf5OfpPrY/TJLdk/yHflv8E90noOkrvVuAfbLAL4pnmK77F4CXA3/Wj7+C7kvyx/YXF2+YMd/MY+MTwPFJntcf2zsk+ffpvmT/Ct2FwFuTrElyFHDgItu5E313aJK9gbcvYt7PAscmOSDJY4H3TE9YwHm3lL4NPLrfTtsB76K7qBnFawfW83103/X9hG59Dk/yi0m27c+1g5LsM2wh8xxvY7XaA/8v093Bcg/wQbo+tOlbF99C965/HXAZXVCdkuS5dAfh6/qd9z/o3o1PHKUhVXUx3d0vn6O7CnoycPRAkZOA0/qPgL88ZBGnAJ+k+wLtu3RfML1lEU34BN3H0lfRfRF1P91tmPTb5Hi64L+V7oR/0yKW/VMLWM9R/Tbwarrupk8AZy1i3lfTfdF5B10QnT5LuW2A36K7Ar+Drm98ent8ie4T0c1JbltE3TcDd/bLPJPuO5Nr+2kfpuv/vYXu5oIzZ8x7EgPHRlVN0n2J+Cf9MjfS9X9TVT8GjuqH76TrKjh7Ee0EeC/dF8N3093Gu+D5q7sT7I/ottPG/t9BQ8+7RbZv0arqbrp9+L/oPlHcB4z6Y7hP0n1XczPdF/Vv7eu6ETiC7sJxiu6K/+3MnrdzHW9jlYd29UmSVqvVfoUvSeoZ+JLUCANfkhph4EtSI7bq/yhp1113rfXr1690MyTpEePyyy+/raqG/sZgqw789evXMzk5udLNkKRHjCSz/rLaLh1JaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSI8YS+ElO6Z/sftUs05Pkj5NsTPek++eMo149XJIt+pO0+o3rCv9UuqfVz+ZlwP7933F0j6nTEpjjQdTzPdxc0io3lsCvqkvpntQymyOA06vzt8DOSfaco7wkacyWqw9/bx76hPdNPPRJ9T+V5Lgkk0kmp6amlqVxktSC5Qr8YZ3EQ/sRqmpDVU1U1cS6daM+VF6SNG25An8TsO/A8D50D+yVJC2T5Qr884DX9XfrPB+4u6puWqa6JUmM6f/DT/Jp4CBg1ySbgPcA2wFU1cnABcBhwEbgh8Drx1GvJGnhxhL4VfWqeaYX8OZx1CVJ2jL+0laSGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktSINSvdAEltSLJF81XVmFvSLgNf0rKYK7iTGOzLwC4dSWqEgS9JjRhL4Cd5aZJvJdmY5MQh0w9KcneSK/q/3xtHvZKkhRu5Dz/JtsBHgUOATcDXkpxXVd+cUfT/VdXLR61PkrRlxnGFfyCwsaquq6ofA58BjhjDciVJYzSOwN8buHFgeFM/bqYXJLkyyV8lefpsC0tyXJLJJJNTU1NjaJ4kCcYT+MNurp15f9XXgf2q6pnAR4C/mG1hVbWhqiaqamLdunVjaJ4kCcYT+JuAfQeG9wE2Dxaoqnuq6t7+9QXAdkl2HUPdkqQFGkfgfw3YP8kTk2wPHA2cN1ggyR7pf2aX5MC+3tvHULckaYFGvkunqh5IcgJwIbAtcEpVXZ3k+H76ycAvAW9M8gBwP3B0+bM6SVpW2Zpzd2JioiYnJ1e6GauCP13X1szjc3ySXF5VE8Om+UtbSWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+pLFau3YtSRb1Byyq/Nq1a1d4LR+ZRv7fMiVp0J133rnk/xHa9JuEFscrfElqhIH/CLXYj82wuI/MfmyWVh+7dB6h/NgsabG8wpekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSI8YS+ElemuRbSTYmOXHI9CT54376PyR5zjjqlSQt3MiBn2Rb4KPAy4ADgFclOWBGsZcB+/d/xwEfG7VeSdLijOMK/0BgY1VdV1U/Bj4DHDGjzBHA6dX5W2DnJHuOoW5J0gKNI/D3Bm4cGN7Uj1tsGUnSEhpH4A97SsbMJ3MspExXMDkuyWSSyampqZEbJ0nqjCPwNwH7DgzvA2zegjIAVNWGqpqoqol169aNoXmSJBhP4H8N2D/JE5NsDxwNnDejzHnA6/q7dZ4P3F1VN42hbknSAo38TNuqeiDJCcCFwLbAKVV1dZLj++knAxcAhwEbgR8Crx+1XknS4ozlIeZVdQFdqA+OO3ngdQFvHkddkqQt4y9tJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSI9asdAO0Zeo9j4OTHr/0dUhaNQz8R6i89x6qamnrSKiTlrQKScvILh1JaoSBL0mNMPAlqREGviQ1wsCXpEaMdJdOkrXAWcB64Hrgl6vqziHlrgd+APwEeKCqJkapV5K0eKNe4Z8IXFxV+wMX98OzeXFVPcuwl6SVMWrgHwGc1r8+DThyxOVJkpbIqIG/e1XdBND/u9ss5Qr4QpLLkxw31wKTHJdkMsnk1NTUiM2TJE2btw8/yReBPYZMeuci6nlhVW1OshtwUZJrq+rSYQWragOwAWBiYmJpf0oqSQ2ZN/Cr6uDZpiW5JcmeVXVTkj2BW2dZxub+31uTnAMcCAwNfEnS0hi1S+c84Jj+9THAuTMLJNkhyU7Tr4FDgatGrFeStEijBv6HgEOSfAc4pB8myV5JLujL7A5cluRK4KvA+VX1+RHrlSQt0kj34VfV7cC/GzJ+M3BY//o64Jmj1CNJGp2/tJWkRvj/4UsaKx/Os/Uy8CWNlQ/n2XrZpSNJjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEb4EHNJY5dkSZe/yy67LOnyVysDX9JYVdWi50myRfNpcezSkaRGGPiS1AgDX5IaMVLgJ3llkquT/EuSiTnKvTTJt5JsTHLiKHVKkrbMqFf4VwFHAZfOViDJtsBHgZcBBwCvSnLAiPVKkhZppLt0quoamPcWrAOBjVV1XV/2M8ARwDdHqVuStDjL0Ye/N3DjwPCmftxQSY5LMplkcmpqaskbJ0mtmPcKP8kXgT2GTHpnVZ27gDqGXf7PesNtVW0ANgBMTEx4Y64kjcm8gV9VB49YxyZg34HhfYDNIy5TkrRIy9Gl8zVg/yRPTLI9cDRw3jLUK0kaMOptma9Isgl4AXB+kgv78XsluQCgqh4ATgAuBK4BPltVV4/WbEnSYo16l845wDlDxm8GDhsYvgC4YJS6JEmj8Ze2ktQIA1+SGmHgS1IjDHxJaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSIwx8SWqEgS9JjTDwJakRBr4kNcLAl6RGGPiS1AgDX5IaYeBLUiMMfElqxEgPMZekhUqyRdOraima0yQD/xFsvhNoVLvsssuSLl9tMbhXnoH/CLXYkyeJJ5zUOPvwJakRBr4kNcLAl6RGGPiS1AgDX5IaMVLgJ3llkquT/EuSiTnKXZ/kG0muSDI5Sp2SpC0z6m2ZVwFHAR9fQNkXV9VtI9YnSdpCIwV+VV0DS/8DIEnS6JarD7+ALyS5PMlxcxVMclySySSTU1NTy9Q8SVr95r3CT/JFYI8hk95ZVecusJ4XVtXmJLsBFyW5tqouHVawqjYAGwAmJib8aagkjcm8gV9VB49aSVVt7v+9Nck5wIHA0MCXJC2NJe/SSbJDkp2mXwOH0n3ZK0laRqPelvmKJJuAFwDnJ7mwH79Xkgv6YrsDlyW5EvgqcH5VfX6UeiVJizfqXTrnAOcMGb8ZOKx/fR3wzFHqkSSNzl/aSlIjDHxJaoSBL0mN8IlXq8xcv3qea5pPw5JWPwN/lTG4Jc3GLh1JaoSBL0mNMPAlqREGviQ1wsCXpEYY+JLUCANfkhph4EtSI7I1/1AnyRRww0q3Y5XYFfAh8tpaeXyOz35VtW7YhK068DU+SSaramKl2yEN4/G5POzSkaRGGPiS1AgDvx0bVroB0hw8PpeBffiS1Aiv8CWpEQa+JDXCwF/lkpyS5NYkV610W6RBSfZN8n+TXJPk6iT/eaXbtNrZh7/KJXkRcC9welU9Y6XbI01LsiewZ1V9PclOwOXAkVX1zRVu2qrlFf4qV1WXAnesdDukmarqpqr6ev/6B8A1wN4r26rVzcCXtOKSrAeeDfzdyrZkdTPwJa2oJDsCnwPeVlX3rHR7VjMDX9KKSbIdXdifWVVnr3R7VjsDX9KKSBLgT4FrquoPV7o9LTDwV7kknwa+AjwtyaYkb1jpNkm9FwK/CrwkyRX932Er3ajVzNsyJakRXuFLUiMMfElqhIEvSY0w8CWpEQa+JDXCwJekRhj4ktSI/w/cK5a1UMCcqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVqklEQVR4nO3dfZQcVZ3G8edhEgmQAImM8k5ElB0cWVjmgC/RBRaRZWVFdl1FVNBRRJcorrq+jK4BjbquBz0HXTFuWETCCAqIii6iDnJGER0QNTGIyPv7QBIgSDTE3/5Rd6DS6Z7pma6Zzp18P+fMSXdX1b23Xvrp27eqK44IAQDytVW7GwAAaA1BDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYJ8Amyfa/vjU1TXq2zfaXut7QOnos7Nke2wvU+T8y6yfX56vGfadh0VteNs2x9Jjw+1fVcV5U6wLVN2HDaov+l9kgvbV9l+S7vbMV7ZBbnt22w/nt6cq21fbnuPSajnKtvrUj0P2r7E9i4TKKfVg/0zkk6NiNkR8cuasp9hu9/2PbYftv0T24fUzPM627fbfsz2N23Pa6Et2YmIO9K22zDafLZPsj3YRHmnRMTHqmjbdAxCtEd2QZ4cExGzJe0i6X5JZ01SPaemep4raUdJn52kekazl6QVDabNlvQLSQdJmifpK5Iutz1bkmw/T9KXJL1B0jMl/VHSf092g23PmOw62qGqXn07TNd9srlyYcryNdcglyRFxDpJ35C038hrtnewfZ7t4dQT/bDtrWzPs32X7WPSfLNt32z7jU3Us0rSxZK66023/dZU1irb37K9a3r96jTLr1LP/jV1lt0qtfF22w+ktu9ge2vbayV1pOX/UKddt0TEmRFxb0RsiIglkp4mad80ywmSvh0RV0fEWkkfkXSc7TkN1uM22++1/evUw7/Q9qyx1jNNC9v/avv3kn4/Muxg+9/Tet1r+1jbR9u+KZXxodLyB9u+xvaaNO/nbT+t8V7ZqN3Psv1j24/avlLSTqVp81PbZqTnJ9m+Jc17q+0TbHdJOlvSC9N+WpPmPdf2F21/1/Zjkg5zneEM2x9K39pus31C6fWNvqaXe/2Njg3br7B9Q9oOP7W9f2n5A21fn9p+oaQn902dbXKSi29on7W9StIi28+2/SPbD6X2LrO9Y2mZsfb/+9K+ucf2m2vqq/u+q9OWNWn7vyi9fmc6Pk4cZV2usv2xVMajtr9ve6c0bZPhrbQeR6THi2x/3fb5adnf2H6u7Q+meu+0fWRNlc+2/fO0DS5z6Vus7Rek/bLG9q9sH1rTzsW2f6Ki07R3veOt0Xq2JCKy+pN0m6Qj0uNtVfRCzytNP0/SZZLmSJov6SZJvWnakZLuk/QMSV+W9I1R6rlK0lvS450k/UjSV9PzcyV9PD0+XNKDkv5G0tYqvh1cXSonJO0zSj1vlnSzpL1V9LAvGamnmeVryjpA0jpJO6Tnl0l6f808ayUdNMq2/bmkXVX08FdKOmUc63llWm4bSYdKekLSf0iaKemtkoYlXZD2zfNSW/dOyx8k6QWSZqT9tlLSac1sB0nXSDozteulkh6VdH6aNj8tO0PSdpIekbRvmraLpOelxydJGqwp91xJD0t6sYpOz6yafT+yjiN1/62kx0rlP3kM1aujdp3Stn1A0iEqPsBPTPtkaxUf0LdLenfanv8saf1IW+psk5NS2xamdd9G0j6SXpbK65R0taTPNbn/j1Lx7bc7bccLyu3X6O+7kba8Ka3XxyXdIekLqS1Hpn02e5T34h9UfDPeJj3/VGkf3DVKRixScZy9PG2H8yTdKqlPTx2Xt9bUdXdpPS/WU8fSbpIeknS0iuPhZel5Z2nZO1Qc2zMk7aAGx1vluTgZhU7mX9pJayWtSQfHPZKen6Z1SPqTpP1K879N0lWl52dJ+k1a7umj1HOVik/VNWnHLivtsHP11Jt5qaRPl5abreINNn+sAErTfyjpHaXn+6blZzSzfGm57dN6fbCm7FNq5rtb0qGjbNvXl55/WtLZ41jPw0vTD5X0uKSO9HxOmueQ0jzXSTq2QVtOk3Rp6Xnd7SBpz3QcbFd67QI1DvI1kv5J0jY15Zyk+kF+Xp3XaoO8XPdFkj5SOobGE+RflPSxmvp+p+ID4qUqjlmXpv1Uowf5HWMcM8dK+mWT+/8cpfBMz5870n6N8b5Lbfl9adrz07LPLL32kKQDRnkvfrj0/B2S/q+0D8YK8itL045RkR+1x+WOpbrK67mfpD+ndXy/Sp2sNP0KSSeWlj2jNK3h8Vb1X65DK8dGxI4qPs1PlfRj2zur6DmP9FxG3K7ik3TEEhWftv8bEQ+NUc87I2LHiNgtIk6IiOE68+xari+KIYyHauoczUbLp8czVIxpN8X2NpK+LelnEfHJ0qS1KgK+bHsVvZ9G7is9/qOKwN6knQ3W886ash6Kp04yPp7+vb80/fGR8tPX3e/Yvs/2I5I+odIQySh2lbQ6Ih4rvXZ7vRnTPK+RdIqke12cKP+rMcqvXada9eretdHMY9hL0nvS1/Y1aYhnj1TerpLujpQQpbpGs1HbXZwc/5rtu9M2Pl+bbuPR9n+5vHLdzbzvave7IqLusdBAo3Y1o7aeB+scl+Xyatdzpop13EvSq2v2zwIVPe1Nlp3g8TYhuQa5JCmKceFLJG1QsUEfVNFL3Ks0254qeqEjJ6u+pOLr1dtdzRUD95Trs72dpKeP1Dne5fVUD/P++rNvzPbWkr6Z6ntbzeQVkv66NO/eKj78bmqybQ3b2WA9o3ahcfiipBslPScitpf0IUluYrl7Jc1N7RmxZ6OZI+KKiHiZijffjSqG2KTGbR9rnerVfU96/JiK4b8RO49R1p2SFqfOw8jfthHRr2I9d7Nd3iYN17NB2z+ZXts/bePXq7ltrFR/+eqwct2jvu8m2UbbOL3HO1sss3Y916tYxztV9MjL+2e7iPhUaf6Ntvkox1ulsg5yF14paa6klelT9iJJi23Psb2XpH9T0fOQinCQinHpz0g6z61fiXCBpDfZPiCF6ickXRsRt6Xp96sY/26kX9K7XZywm52WvzAinhirYtszVZzsfVzSGyPiLzWzLJN0jO2XpLA5Q9IlETFaj7yRsdazVXNUjCeuTb2WtzezUETcLmlI0um2n2Z7gYqvz5uw/Uzb/5i2xZ9UfGMZ6ZndL2l3N3mCtcZI3S+R9ApJX0+v36Di5PK2qdPQW7Nc7bHxZUmn2D4kHdvb2f4HFyenr1HxAf9O2zNsHyfp4HG2c47SsKTt3SS9bxzLXiTpJNv72d5W0kdHJjTxvptMN0malbbTTEkfVtFZacXrS+t5hopzaRtUrM8xtl9uu8P2rHSydfd6hYxxvFUq1yD/tosrOh6RtFjFGNXIJXoLVXxK3yJpUEUAnWP7IBUH1xvTTvlPFZ+eH2ilIRHxQxVXg1ysotfybEmvLc2ySNJX0lexf6lTxDmSvqrixNOtKk7MLGyy+hepCI4jVbw516a/l6S2rVDxtW6ZipNoc1SML45bE+vZqvdKep2KYZ8vS7pwHMu+TsUJwlUqAua8BvNtJek9KnrMq1SMPY9sjx+p+AZzn+0Hx1H3fZJWpzKXqTgncWOa9lkV46v3qzgpv6xm2UUqHRsRMaTi5NvnU5k3qxhfVkT8WdJx6flqFV/ZLxlHOyXpdBUnVB+WdPl4lo+I70n6nIrtdHP6t6zu+26c7Ru3iHhYxT78HxXfAB6T1OqPtL6q4lzIfSpOcL8z1XWnpFeq6BAOq+ihv0+Nc3S0461S3njIDQCQm1x75ACAhCAHgMwR5ACQOYIcADLXlhvp7LTTTjF//vx2VA0A2bruuusejIhNrpNvS5DPnz9fQ0ND7agaALJlu+6veRlaAYDMEeQAkDmCHAAyR5ADQOYIcgDIHEGesf7+fnV3d6ujo0Pd3d3q7+9vd5MAtAH/IWum+vv71dfXp6VLl2rBggUaHBxUb29xl9Tjjz++za0DMJXacvfDnp6e4Dry1nR3d+uss87SYYcd9uRrAwMDWrhwoZYvX97GlgGYLLavi4ieTV4nyPPU0dGhdevWaebMmU++tn79es2aNUsbNkzKvesBtFmjIGeMPFNdXV0aHBzc6LXBwUF1dXW1qUUA2oUgz1RfX596e3s1MDCg9evXa2BgQL29verr62t30wBMMU52ZmrkhObChQu1cuVKdXV1afHixZzoBLZAjJEDQCYYIweAaYogB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSu5SC3Pcv2z23/yvYK26dX0TAAQHOquNfKnyQdHhFrbc+UNGj7exHxswrKBgCMoeUgj+JmLWvT05npb+pv4AIAW6hKxshtd9i+QdIDkq6MiGvrzHOy7SHbQ8PDw1VUCwBQRUEeERsi4gBJu0s62HZ3nXmWRERPRPR0dnZWUS0AQBVftRIRayRdJemoKssFADRWxVUrnbZ3TI+3kXSEpBtbLRcA0JwqrlrZRdJXbHeo+GC4KCK+U0G5AIAmtNwjj4hfR8SBEbF/RHRHxBlVNAxj6+/vV3d3tzo6OtTd3a3+/v52NwlAG/B/dmaqv79ffX19Wrp0qRYsWKDBwUH19vZKEv9vJ7CF4f/szFR3d7fOOussHXbYYU++NjAwoIULF2r58uVtbBmAydLo/+wkyDPV0dGhdevWaebMmU++tn79es2aNUsbNmxoY8sATBb+8+VppqurS4ODgxu9Njg4qK6urja1CEC7EOSZ6uvrU29vrwYGBrR+/XoNDAyot7dXfX197W4agCnGyc5MjZzQXLhwoVauXKmuri4tXryYE53AFogxcgDIBGPkADBNEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMy1HOS297A9YHul7RW231VFwwAAzani/+x8QtJ7IuJ623MkXWf7yoj4bQVlAwDG0HKPPCLujYjr0+NHJa2UtFur5QIAmlPpGLnt+ZIOlHRtleUCABqrLMhtz5Z0saTTIuKROtNPtj1ke2h4eLiqagFgi1dJkNueqSLEl0XEJfXmiYglEdETET2dnZ1VVAsAUDVXrVjSUkkrI+LM1psEABiPKnrkL5b0BkmH274h/R1dQbkAgCa0fPlhRAxKcgVtAQBMAL/sBIDMVfGDIABbuOJU2fhExCS0ZMtEkANoWaNQtk1gTwGGVgAgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5riNbSYmcr9niXs+A1sCgjwTowUy93wGtmwMrQBA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMVRLkts+x/YDt5VWUBwBoXlU98nMlHVVRWQCAcagkyCPiakmrqigLADA+UzZGbvtk20O2h4aHh6eqWgCY9qYsyCNiSUT0RERPZ2fnVFULANMeV60AQOYIcgDIXFWXH/ZLukbSvrbvst1bRbkANh/z5s2T7XH9SRr3MvPmzWvzmuanktvYRsTxVZQDYPO1evXqKbld8kTvvb8lY2gFADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMVXIdOaozb948rV69etzLjefa27lz52rVKm5WifGJj24vLdphaurBuBDkm5mp+NEFP7jARPj0R6bsB0GxaNKrmVYYWgGAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmeM2tgCaNhW3QJ47d+6k1zHdEOQAmjKRe5HbnpJ7mG/pKhlasX2U7d/Zvtn2B6ooEwDQnJaD3HaHpC9I+ntJ+0k63vZ+rZYLAGhOFT3ygyXdHBG3RMSfJX1N0isrKBcA0IQqgnw3SXeWnt+VXtuI7ZNtD9keGh4erqBaAIBUTZDXO429ydmNiFgSET0R0dPZ2VlBtQAAqZogv0vSHqXnu0u6p4JyAQBNqCLIfyHpObafZftpkl4r6VsVlAsAaELL15FHxBO2T5V0haQOSedExIqWWwYAaEolPwiKiO9K+m4VZQEAxod7rQBA5ghyAMgcQQ4AmeOmWZuZ+Oj20qIdJr8OANMGQb6Z8emPTPrd4mwrFk1qFQCmEEMrAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOX7ZuRmy6/3vedWZO3fupJYPYGoR5JuZifw83/ak/6wfwOaLoRUAyBxBDgCZI8gBIHMEOQBkjiAHgMxx1QqAlo12yWyjaVxpVR2CHEDLCOX2YmgFADJHkANA5loKctuvtr3C9l9s91TVKABA81rtkS+XdJykqytoCwBgAlo62RkRK6XJv8kTAKCxKRsjt32y7SHbQ8PDw1NVLQBMe2P2yG3/QNLOdSb1RcRlzVYUEUskLZGknp4erlUCgIqMGeQRccRUNAQAMDFcfggAmWv18sNX2b5L0gslXW77imqaBQBoVqtXrVwq6dKK2gIAmACGVgAgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJlrKcht/5ftG23/2valtnesqmEAgOa02iO/UlJ3ROwv6SZJH2y9SQCA8WgpyCPi+xHxRHr6M0m7t94kAMB4VDlG/mZJ32s00fbJtodsDw0PD1dYLQBs2WaMNYPtH0jauc6kvoi4LM3TJ+kJScsalRMRSyQtkaSenp6YUGsBAJsYM8gj4ojRpts+UdIrJP1dRBDQADDFxgzy0dg+StL7Jf1tRPyxmiYBAMaj1THyz0uaI+lK2zfYPruCNgEAxqGlHnlE7FNVQwAAE8MvOwEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyFxL15Fj6tie0HTumgBMfwR5JghkAI0wtAIAmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDInNvxQxPbw5Jun/KKp6+dJD3Y7kYAdXBsVmuviOisfbEtQY5q2R6KiJ52twOoxbE5NRhaAYDMEeQAkDmCfHpY0u4GAA1wbE4BxsgBIHP0yAEgcwQ5AGSOIM+Y7XNsP2B7ebvbApTZ3sP2gO2VtlfYfle72zSdMUaeMdsvlbRW0nkR0d3u9gAjbO8iaZeIuN72HEnXSTo2In7b5qZNS/TIMxYRV0ta1e52ALUi4t6IuD49flTSSkm7tbdV0xdBDmBS2Z4v6UBJ17a3JdMXQQ5g0tieLeliSadFxCPtbs90RZADmBS2Z6oI8WURcUm72zOdEeQAKmfbkpZKWhkRZ7a7PdMdQZ4x2/2SrpG0r+27bPe2u01A8mJJb5B0uO0b0t/R7W7UdMXlhwCQOXrkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBk7v8BeJo+kwf4LbUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAT10lEQVR4nO3de7ScVX3G8ech4Z5AiDkKBEJElBbxQj3LS/GCFBGpVKS1XlCJomm0CFilXtAaBKq1LnEtsWKsFCMBQQnFawEvkQUi9gRRiUFEISRcT0gCBPAC/fWPvce8mcyZM3PmPWfYJ9/PWmdlZt733Xu/t2f27PediSNCAIBybdPvBgAAekOQA0DhCHIAKBxBDgCFI8gBoHAEOQAUjiAfA9vn2T5jgup6te3VtjfaPmgi6nw8sh229+tw3oW2z8+P5+RtN6Wmdpxj+8P58SG219RR7hjbMmHH4Qj1d7xPSmF7me239bsd3SouyG3fZvuRfHKut/0t23uPQz3LbP8u17PW9lLbe4yhnF4P9k9KOiEipkXET1uUX90eG21f0TT9DbZX2X7I9n/bntlDW4oTEbfnbfdYu/lsz7N9dQflLYiI0+to22QMQvRHcUGeHRUR0yTtIekeSZ8Zp3pOyPU8TdIMSWeNUz3t7CNpxSjzHJXDalpEHN540fbTJX1e0pskPUnSw5L+Y9xauqneqeNdRz/U1avvh8m6Tx6vnExYvpYa5JKkiPidpK9JOqDxmu1dbS+2PZx7oh+yvY3tmbbX2D4qzzfN9i2239xBPeskXSLpwFbTbb89l7XO9tdt75lfvyrP8rPcW35ti2W3yW1cZfve3PZdbW9ve6OkKXn533S5eSTpWEnfiIirImKjpA9LOsb29BHW4zbb77X9c9v3277I9g6jrWeeFrb/0favJf26Mexg+5/zet1l+2jbR9q+OZfxwcryz7V9re0Ned6zbW/XyUrafrLtH9p+0PaVkmZVps3NbZuan8+z/ds87622j7X955LOkfSCvJ825HnPs/0529+2/ZCkl7YazrD9wfyp7Tbbx1Ze3+xjerXXP9KxYfuVtm/I2+FHtp9ZWf4g29fntl8k6U/7psU2mWf7Gttn2V4naaHtp9j+vu37cnuX2J5RWWa0/X9K3jd32n5rU30tz7sWbdmQt/9f5tdX5+PjuDbrssz26bmMB21fYXtWnrbF8FZej8Py44W2v2r7/LzsL2w/zfYHcr2rbR/eVOVTbP8kb4PLXPkUa/v5eb9ssP0z24c0tfNM29codZr2bXW8jbSePYmIov4k3SbpsPx4J0lfkrS4Mn2xpMskTZc0V9LNko7P0w6XdLekJ0r6gqSvtalnmaS35cezJH1f0pfz8/MknZEfHyppraS/kLS90qeDqyrlhKT92tTzVkm3SNpX0jRJSxv1dLj8bUqfSoYlXSHpWZVpl0l6X9P8GyU9p01ZP5G0p6SZklZKWtDFel6Zl9tR0iGSHpX0L5K2lfT23MYL8r55uqTfSdo3L/8cSc+XNDXvt5WSTu5kO0i6VtKncrteLOlBSefnaXPzslMl7SzpAUn752l7SHp6fjxP0tVN5Z4n6X5JByt1enZo2veNdWzU/RJJD1XKX6Z8DLWqo3md8ra9V9LzlN7Aj8v7ZHtJ20laJendeXv+naQ/NtrSYpvMy217V173HSXtJ+llubwBSVdJ+nSH+/8IpePswLwdL6i2X+3Pu0Zb3pLX6wxJt0v6bG7L4XmfTWtzLv5G6ZPxjvn5xyv7YE2bjFiodJy9PG+HxZJulXSqNh2XtzbVdUdlPS/RpmNptqT7JB2pdDy8LD8fqCx7u9KxPVXSrhrheKs9F8ej0PH8yztpo6QN+eC4U9Iz8rQpkn4v6YDK/P8gaVnl+Wck/SIv94Q29SxTelfdkHfsksoOO0+bTuYvSvpEZblpSifY3NECKE//nqR3Vp7vn5ef2uHyB+eDeydJH1B6o5pRKXtB0/x3SDqkzbZ9Y+X5JySd08V6HlqZfoikRyRNyc+n53meV5lnuaSjR2jLyZIurTxvuR0kzcnHwc6V1y7QyEG+QdLfStqxqZx5ah3ki1u81hzk1bovlvThyjHUTZB/TtLpTfX9SukN4sVKx6wr036k9kF++yjn0tGSftrh/j9XOTzz86c12q9Rzrvcll9Xpj0jL/ukymv3SXp2m3PxQ5Xn75T0P5V9MFqQX1mZdpRSfjQflzMqdVXX8wBJf8jr+D5VOll5+uWSjqss+9HKtBGPt7r/Sh1aOToiZii9m58g6Ye2d1fqOTd6Lg2rlN5JGxYpvdv+V0TcN0o9J0bEjIiYHRHHRsRwi3n2rNYXaQjjvqY629ls+fx4qtKY9qgi4pqIeCQiHo6IjykdOC/KkzdK2qVpkV2Uej8jubvy+GGlwN6inSOs5+qmsu6LTRcZH8n/3lOZ/kij/Pxx95u277b9gKR/VWWIpI09Ja2PiIcqr61qNWOe57WSFki6y+lC+Z+NUn7zOjVrVfeeI808in0kvSd/bN+Qh3j2zuXtKemOyAlRqaudzdpu+4m2v2L7jryNz9eW27jd/q+WV627k/Oueb8rIloeCyMYqV2daK5nbYvjslpe83puq7SO+0h6TdP+eaFST3uLZcd4vI1JqUEuSYqIxyJiqaTHlDboWqVe4j6V2eYo9UIbF6s+r/Tx6h2u546BO6v12d5Z0hMadXa7vDb1MO9pPfuoQpLz4xWSnlVp275Kb343j6HcTtYzmhfqwuck3STpqRGxi6QPatN6tHOXpN1yexrmjDRzRFweES9TOvluUhpik0Zu+2jr1KruO/Pjh5Q+KTXsPkpZqyWdmTsPjb+dIuJCpfWcbbu6TUZczxHa/rH82jPzNn6jOtvGyvVX7w6r1t32vBtnm23jfI4P9Fhm83r+UWkdVyv1yKv7Z+eI+Hhl/s22eZvjrVZFB7mTV0naTdLK/C57saQzbU+3vY+kf1LqeUgpHKQ0Lv1JSYvd+50IF0h6i+1n295eqSd5XUTclqffozT+PZILJb3b6YLdtLz8RRHx6GgVO90jfbDt7WzvYPsUpZ7DNXmWJZKOsv2iHDYflbQ0Itr1yMe6nr2arjSeuDH3Wt7RyUIRsUrSkKTT8nZ4odLH5y3YfpLtv8nb4vdKn1gaPbN7JO3lDi+wNmnU/SJJr5T01fz6DUoXl3fKnYbjm5ZrPja+IGmB7eflY3tn23/tdHH6WqU3+BNtT7V9jKTndtnO6crDkrZnSzqli2UvljTP9gG2d5L0kcaEDs678XSzpB3ydtpW0oeUOiu9eGNlPT+qdC3tMaX1Ocr2y21PyefcIbb3alXIKMdbrUoN8m843dHxgKQzlcaoGrfovUvpXfq3kq5WCqBzbT9H6eB6c94p/6b07vn+XhoSEd9TuhvkEqVey1Mkva4yy0JJX8ofxf6+RRHnSvqy0oWnW5UuzLyrw+qnK/Vk1yv1fo6Q9IrGkFHeJguUAv3ePP87u1i9P+lgPXv1XklvUBr2+YKki7pY9g1KFwjXKQXM4hHm20bSe5R6zOuUxp4b2+P7Sp9g7ra9tou671ba/ncqbecFEXFTnnaW0vjqPUoX5Zc0LbtQlWMjIoaULr6dncu8RWl8WRHxB0nH5OfrlT6yL+2inZJ0mtIF1fslfaub5SPiO5I+rbSdbsn/VrU877psX9ci4n6lffifSufAQ5J6/ZLWl5WuhdytdIH7xFzXakmvUuoQDiv10E/RyDna7nirlTcfcgMAlKbUHjkAIOs5yPM40U/yzfErbJ9WR8MAAJ3peWglX0XfOSI25osNV0s6KSJ+XEcDAQDt9fz7C/m+1o356bb5j4F3AJggtfyQTr6Fb7nSt7w+GxHXtZt/1qxZMXfu3DqqBoCtxvLly9dGxBb3ydcS5Pl2vmc7/QDPpbYPjIgbq/PYni9pviTNmTNHQ0NDdVQNAFsN2y2/zVvrXSsRsUHp9waOaDFtUUQMRsTgwECvX7wCADTUcdfKQO6Jy/aOkg5T+ioqAGAC1DG0sofSt9OmKL0xXBwR36yhXABAB+q4a+Xnkrba/0sSAPqNb3YCQOEIcgAoHEEOAIUjyAGgcLV8IQjjb/P/GKZz/EwxMPkR5IVoF8i2CWxgK8bQCgAUjiAHgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDiCHAAKR5ADQOEIcgAoHEEOAIUjyAGgcAQ5ABSOIAeAwhHkAFA4ghwACkeQA0DhCHIAKNzUfjcAQPlsd71MRIxDS7ZOBDmAno0UyrYJ7AnQ89CK7b1t/8D2StsrbJ9UR8MAAJ2po0f+qKT3RMT1tqdLWm77yoj4ZQ1lAwBG0XOPPCLuiojr8+MHJa2UNLvXcgEAnan1rhXbcyUdJOm6FtPm2x6yPTQ8PFxntQCwVastyG1Pk3SJpJMj4oHm6RGxKCIGI2JwYGCgrmoBYKtXS5Db3lYpxJdExNI6ygQAdKaOu1Ys6YuSVkbEp3pvEgCgG3X0yA+W9CZJh9q+If8dWUO5AIAO9Hz7YURcLan7r3UBAGrBb60AQOEIcgAoHEEOAIUjyAGgcAQ5ABSOIAeAwhHkAFA4ghwACkeQA0DhCHIAKBxBDgCFI8gBoHAEOQAUjiAHgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDiCHAAKR5ADQOEIcgAoHEEOAIUjyAGgcAQ5ABSuliC3fa7te23fWEd5AIDO1dUjP0/SETWVBQDoQi1BHhFXSVpXR1kAgO5M2Bi57fm2h2wPDQ8PT1S1ADDpTViQR8SiiBiMiMGBgYGJqhYAJj3uWgGAwhHkAFC4um4/vFDStZL2t73G9vF1lLs1mjlzpmx39Sepq/lnzpzZ57UEUKepdRQSEa+voxxI69evV0SMax2N8AcwOTC0AgCFI8gBoHAEOQAUjiAHgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDiCHEBHJuInlvmZ5bGp5WdsAUx+E/ETyxI/szwW9MgBoHAEOQAUjiAHgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDiCHAAKR5ADQOFqCXLbR9j+le1bbL+/jjIBAJ3pOchtT5H0WUmvkHSApNfbPqDXcgEAnamjR/5cSbdExG8j4g+SviLpVTWUCwDoQB1BPlvS6srzNfm1zdieb3vI9tDw8HAN1QIApHqCvNX/y7TF/wcVEYsiYjAiBgcGBmqoFgAg1RPkayTtXXm+l6Q7aygXANCBOoL8fyU91faTbW8n6XWSvl5DuQCADkzttYCIeNT2CZIulzRF0rkRsaLnlgEAOtJzkEtSRHxb0rfrKAsA0B2+2QkAhSPIAaBwtQytoD7xkV2khbuOfx0AJg2C/HHGpz2giC1uw6+3DluxcFyrADCBGFoBgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4vBAHoyER86/hP9aArBDmAjkzEt44lvnk8FgytAEDhCHIAKBxBDgCFI8gBoHAEOQAUjiAHgMIR5ABQOIIcAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI5fPwTQMdvjXsduu+027nVMNgQ5gI6M5SdsbU/IT99u7XoaWrH9GtsrbP+f7cG6GrW1sz2uf/R4gMml1x75jZKOkfT5GtoC0esB0L2egjwiVkoTM24GAGiNu1YAoHCj9shtf1fS7i0mnRoRl3Vake35kuZL0pw5czpuIACgvVGDPCIOq6OiiFgkaZEkDQ4OMqALADVhaAUACtfr7Yevtr1G0gskfcv25fU0CwDQqV7vWrlU0qU1tQUAMAYMrQBA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDiCHAAKR5ADQOEIcgAoHEEOAIUjyAGgcAQ5ABSOIAeAwhHkAFA4ghwACkeQA0DhCHIAKBxBDgCFI8gBoHAEOQAUjiAHgMIR5ABQOIIcAApHkANA4QhyACjc1H43AJ2xPabpETEezQHwOEKQF4JABjAShlYAoHAEOQAUrqcgt/3vtm+y/XPbl9qeUVfDAACd6bVHfqWkAyPimZJulvSB3psEAOhGT0EeEVdExKP56Y8l7dV7kwAA3ahzjPytkr4z0kTb820P2R4aHh6usVoA2LqNevuh7e9K2r3FpFMj4rI8z6mSHpW0ZKRyImKRpEWSNDg4yL10AFCTUYM8Ig5rN932cZJeKemvgpudAWDC9fSFINtHSHqfpJdExMP1NAkA0I1ex8jPljRd0pW2b7B9Tg1tAgB0oaceeUTsV1dDAABjwzc7AaBwBDkAFI4gB4DCEeQAUDiCHAAKR5ADQOEIcgAoHEEOAIUjyAGgcAQ5ABSup6/oA4Ak2e56Gj+WWh+CHEDPCOX+YmgFAApHkANA4QhyACgcQQ4AhSPIAaBwBDkAFI4gB4DCEeQAUDj340Z+28OSVk14xZPXLElr+90IoAWOzXrtExEDzS/2JchRL9tDETHY73YAzTg2JwZDKwBQOIIcAApHkE8Oi/rdAGAEHJsTgDFyACgcPXIAKBxBDgCFI8gLZvtc2/favrHfbQGqbO9t+we2V9peYfukfrdpMmOMvGC2Xyxpo6TFEXFgv9sDNNjeQ9IeEXG97emSlks6OiJ+2eemTUr0yAsWEVdJWtfvdgDNIuKuiLg+P35Q0kpJs/vbqsmLIAcwrmzPlXSQpOv625LJiyAHMG5sT5N0iaSTI+KBfrdnsiLIAYwL29sqhfiSiFja7/ZMZgQ5gNrZtqQvSloZEZ/qd3smO4K8YLYvlHStpP1tr7F9fL/bBGQHS3qTpENt35D/jux3oyYrbj8EgMLRIweAwhHkAFA4ghwACkeQA0DhCHIAKBxBDgCFI8gBoHD/D8jbX6hQRc1CAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWwUlEQVR4nO3de3SlVX3G8ecxExllEBgY5SojXjMEK5rVVkVrlLZAtV6q1ZGCSBStMmp1eanHy3iJbZV66VirQ4M6AlGXoHgB5RZgxXugqECsIoLcyXBxGHRqZvz1j3cH3jmck5zkvMmZnfl+1srKOe9l7/1eznP2u9+THEeEAAD5elCnGwAAaA9BDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYK8BbY/Z/uDC1TXC23fYHuz7cMWos7c2D7e9ugslr/O9hHp8Ttt/3eFbdls++D0eMHOkyZtCduP6VDdszomObC9Mu3TJZ1uy0x2+CBPL8LfpxfMXba/ZfvAeajnYttbUj0bbZ9le985lNPui+lkSSdFxLKI+J8G5X/A9s9sb7W9tsH8l9u+3va9tr9me3lp3i62T7W9yfattt/cRjuzFBEfiohXzbRcOh9mXC4dp2vbbddiDEIsnB0+yJPnRcQySftKuk3Sunmq56RUz+Mk7SHpY/NUz3QOknTVNPOvkfQ2Sd+qn2H7EEmfkXSspEdI+p2kT5UWWSvpsamOfklvs31kJa2eRg49mtnKeZtcyOW1vyjM9/mS1cGMiC2SviJp1dQ027vb3mB7IvVE32X7QbaX277R9vPScstsX2P7uBbquVPSmZJ6G823/epU1p22v257vzT90rTIT1LP/qUN1n1QauP1tm9Pbd899ZY3S+pK6/+qSds+HxHnSrqnwexjJH0jIi6NiM2S3i3pRbZ3S/OPk/SBiLgrIsYlnSLp+Cbb+Ky0/96S2nmL7VeW5jfc72ne8ba/a/tjtu+UtDYNO3zK9rlp33zX9j62P56utH5eHkqy/Q7bv7J9j+2rbb+wUTubtP3Y1KY7bNfq5q21fVp6vNT2aWm5u23/2PYjbA9KeoakT6a2fjItH7Zfb/uXkn5Zmla+Atvb9vmp3ZfYPigt94DL9Klev+0eSZ+W9NRU391p/i62T7b9G9u32f607YeU1n9rOi432z5hhn1yse1B299V8QZ/sO1X2h5Pbb3W9mtKy890/PdK5/4m2z+S9Oi6+p6W9udv0++n1bXlg7a/l7b3G6m801N5P7a9ssl2TO3HV6T9srF8jF03vDW1HaXn16X99lMXV61D6Zifm/bDBbb3rKv2hLSPb7H9llJZDyqdp3fY/rLTFXCpnQO2fyPpombn23THrWURsUP/SLpO0hHp8UMlfV7ShtL8DZLOlrSbpJWSfiFpIM37K0m3Snq4itD6yjT1XCzpVenx3pIukvSF9Pxzkj6YHj9b0kZJT5a0i4qrg0tL5YSkx0xTzwkqetUHS1om6aypelpZv7TcaZLW1k07W9Lb66ZtlvQUSXumsh9RmvdiST9rUv6zJG2V9H5J3ZKOVhEAe7aw349P666RtETSQ9I+3JjasjTt31+reHPpkvRBSSOl+l8iaT8VnY2XSrpX0r6l8kebtHtV2uZnpuPz0dSWqXNoraTT0uPXSPpGOq+6UtseVn8+1B2b8yUtl/SQ+uOVtvGeUt2fmGpn2kchaUmTc+4B2yTp45K+nurbLbX1X9K8I1VcnfZK2lXSGdOdO6mu30g6JB2Tbkl/oyKALekv0vF9covH/4uSvpzq7pV0U2lbl0u6S8WV4RJJq9PzvUptuSbVvbukq1WcP0ek5TdI+myT7Zjaj6eoOK/+RNL/Seqpf62WtuPGujz5gYor1v0l3S7pckmHpWN2kaT31tU1nLbzUEkTuv9celMq64C07mckDdetuyGt+xBNc761nZNVFDKfP2nHb5Z0dzqxbpZ0aJrXlQ7iqtLyr5F0cen5Okk/S+vtNU09F6cT9e50Up4uaUX9ySFpSNKHS+stkzQpaWX9C7tJPRdKel3p+ePT+ktaWb+0XqMgv1DSa+um3ZRO5gNT2UtL8/5S0nVNyn+WpN9r++C5XdKfz7TfVYTSb+rK+5ykU0rP10gaLz0/VNLd02zvFZKeXyq/WZC/R9IXS893lfQHNQ7yEyR9T9ITm5wPjYL82Q2mlYO8XPcySdvSvl+pWQS5inC9V9KjS9OeKunX6fGpkv61NO9x0507qa73z3BOfU3SG1s8/pOSnlCa9yHdH+THSvpRXdnfl3R8qS210rx/l3Ru6fnzJF3RpI1T+/GA0rQfSXpZ/Wu1tB31QX5M6fmZkv6r7rz8Wl1d5e38sKSh9Hhc0nNK8/ZN+2VJad2DS/Obnm/t/uQytPKCiNhDxbveSZIusb2Pip7zgyVdX1r2ehXvtFPWq+gxfDYi7pihnjdExB4RsX9EHBMREw2W2a9cXxRDGHfU1Tmd7dZPj5eo6CG0a7Okh9VNe5iKXuLm0vP6ec3cERFbS89/pyKcWtnvNzQo77bS4983eL5s6ont42xfkS5B71ZxDPeepq1T9ivXHRH3qjg+jXxB0nckfTFdOn/YdvcM5Tfarobz07lxZ2rTbK1Q0XO7rLQPvp2mS3Xbqe2PxYxtkyTbR9n+gYshwrtV9LrL+7jZ8V+h4pxtVn/9OT41v3x+tHwuNHFrg3a1arZ112/n1PE8SNJXS8dnXMUb9yOarDuX860luQS5JCkitkXEWSp21uEqLtUnVezQKY9U0QuV7S4VlzsbJP2jq/lo1s3l+mzvKmmvqTpnu35q71ZtfzLN1VUqLjWn2nawije/X0TEXZJuKc9Pj6e7sdrMtPs9iTmUK0lK48qnqHjT3iu9iV+popc6k1tU9ICnynqoiuPzABExGRHvi4hVkp4m6bkqhnqma/9M21Wue5mKYYabVfSupSKcp+wzTbkbVYTKIalzsUdE7B7FzXipbjtV7P+Z3FeH7V1U9EZPVjHctoekc9TaPp5Qcc42q7/+HJ+a3+prpB33qvk+nqv67bw5Pb5B0lGl47NHRCyNiIavgxnOt7ZkFeQuPF/FeO94RGxTMU43aHu3FABvVjHsIEnvTL9PUHHCbkjh3o4zJL3S9pPSi+FDkn4YEdel+bepGP9uZljSP9l+VHqhf0jSl+p6Pk3Z7ra9VMWxW5JuoExt0+mSnmf7GekN5v2SzoqIqV73Bknvsr2n7SdIerWKS9FZaWG/t2tXFS+ACUlKN9ka3nhu4CuSnmv7cNsPVrEPGp7ntvttH5r23yYVb07b0uyZjmMzR5fq/oCKc+OGdHV3k6R/sN3l4uZk+QbhbZIOSOspIv6o4s3sY7Yfntq7v+2/Tst/WdLxtlelN6v3zrKdD1bxJj8haavto1TcU5pROv5nqbiJ/VDbqyS9orTIOZIe5+KjsEtc3PRfJembs2zjXFyh4hgsT1ftb6qgzHen7TxE0islfSlN/7SK18BBkmR7RcqnhmY439qSS5B/w8UnOjZJGpT0ioiY6kmuUfEufK2kURVBe6rtp6gIl+PSifdvKsLhHe00JCIuVPFpkDNV9IoeLellpUXWSvp8utz6+wZFnKriEutSFTf7tqRtaNUpKnpqqyXV0uNjU9uukvRaFYF+u4obZK8rrfteSb9ScXl4iaSPRMS3Z1F3WcP9PseythMRV6sYN/2+ioA7VNJ3W1z3KkmvT+25RcVNthubLL6PiuDfpOKy+BLd/2b0CUkvdvGJmv+YRfPPULGf71RxM+uY0rxXS3qriqGeQ1SMl065SMXV0a22N6Zpb1dxU/AHtjdJukDFPRVF8cmlj6f1rkm/W5be3N+g4g3hLkkvV3FjtVUnqRiCuFVFZ+CzpbLvUNHbfIuKbX2bpOdGxMYHFlO5L0j6iYqx8PN0f+i24xIV+/hCSSdHxHlp+idU7LPzbN+j4sbnn01TznTnW1ucBuEBAJnKpUcOAGiCIAeAzBHkAJA5ghwAMteRf/yz9957x8qVKztRNQBk67LLLtsYESvqp3ckyFeuXKmxsbFOVA0A2bLd8C94GVoBgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZK4jfxAEYHGxW/lioe3xL7SrQ5ADaFuzULZNYC8AhlYyNjw8rN7eXnV1dam3t1fDw8OdbhKADqBHnqnh4WHVajUNDQ3p8MMP1+joqAYGBiRJq1ev7nDrACwkeuSZGhwc1NDQkPr7+9Xd3a3+/n4NDQ1pcHCw000DsMA68p2dfX19wX8/bE9XV5e2bNmi7u7u+6ZNTk5q6dKl2ratki/mBtrGGHm1bF8WEX310+mRZ6qnp0ejo6PbTRsdHVVPT0+HWgSgUwjyTNVqNQ0MDGhkZESTk5MaGRnRwMCAarVap5sGYIFxszNTUzc016xZo/HxcfX09GhwcJAbncBOiDFyAPOGMfJqMUYOAIsUQQ4AmSPIASBzBDkAZK7tILd9oO0R2+O2r7L9xioaBgBoTRUfP9wq6S0Rcbnt3SRdZvv8iLi6grIBADNou0ceEbdExOXp8T2SxiXt3265AIDWVDpGbnulpMMk/bDBvBNtj9kem5iYqLJaANipVRbktpdJOlPSmyJiU/38iFgfEX0R0bdixYqqqgWAnV4lQW67W0WInx4RZ1VRJgCgNVV8asWShiSNR8RH228SAGA2quiRP13SsZKebfuK9HN0BeUCAFrQ9scPI2JU0uy/QhsAUAn+shMAMsf/I89EcSti9vgXosDiR5BnYrpA5n8+Azs3hlYAIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZqyTIbZ9q+3bbV1ZRHgCgdVX1yD8n6ciKygIAzEIlQR4Rl0q6s4qyAACzwxg5AGRuwYLc9om2x2yPTUxMLFS1ALDoLViQR8T6iOiLiL4VK1YsVLUAsOgxtAIAmavq44fDkr4v6fG2b7Q9UEW5AICZLamikIhYXUU5AIDZY2gFADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOoCXLly+X7Vn9SJr1OsuXL+/wluankn+aBWDxu+uuuxQR817P1BsAWkePfAezEL0eejzA4kKPfAezEL0eejzA4kKPHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZqyTIbR9p+39tX2P7HVWUCQBoTdtBbrtL0n9KOkrSKkmrba9qt1wAQGuq6JH/qaRrIuLaiPiDpC9Ken4F5QIAWlBFkO8v6YbS8xvTNADAAqgiyBt9S8EDvhnB9om2x2yPTUxMVFAtAECq5huCbpR0YOn5AZJurl8oItZLWi9JfX198//FfwAqFe99mLR294WpB7NSRZD/WNJjbT9K0k2SXibp5RWUu1NaiBcLLxTMhd+3acG+fDnWzns1i0rbQR4RW22fJOk7kroknRoRV7Xdsp3UQrxYeKEAi0slX74cEedIOqeKsgAAs8NfdgJA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyFwlX/WGatme1/L33HPPeS0fwMIiyHcwc/niZdsL8u3mAHZMDK0AQOYIcgDIHEEOAJkjyAEgcwQ5AGSOT60AaNl8fzRW4uOxc0GQA2gJH43dcTG0AgCZayvIbb/E9lW2/2i7r6pGAQBa126P/EpJL5J0aQVtAQDMQVtj5BExLi3MDRAAQGMLNkZu+0TbY7bHJiYmFqpaAFj0ZuyR275A0j4NZtUi4uxWK4qI9ZLWS1JfXx+3sQGgIjMGeUQcsRANAQDMDR8/BIDMtfvxwxfavlHSUyV9y/Z3qmkWAKBV7X5q5auSvlpRWwAAc8DQCgBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZW9LpBqA1tuc0PyLmozkAdiAEeSYIZADNMLQCAJkjyAEgc20Fue2P2P657Z/a/qrtPapqGIB82G74M9M8VKPdHvn5knoj4omSfiHpn9tvEoDcRMSsf1CdtoI8Is6LiK3p6Q8kHdB+kwAAs1HlGPkJks5tNtP2ibbHbI9NTExUWC0A7Nxm/Pih7Qsk7dNgVi0izk7L1CRtlXR6s3IiYr2k9ZLU19fHdRUAVGTGII+II6abb/sVkp4r6TnBwBcALLi2/iDI9pGS3i7pLyLid9U0CQAwG+2OkX9S0m6Szrd9he1PV9AmAMAstNUjj4jHVNUQAMDc8JedAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gzNjw8rN7eXnV1dam3t1fDw8OdbhKADuAbgjI1PDysWq2moaEhHX744RodHdXAwIAkafXq1R1uHYCF5E78VX1fX1+MjY0teL2LSW9vr9atW6f+/v77po2MjGjNmjW68sorO9gyAPPF9mUR0feA6QR5nrq6urRlyxZ1d3ffN21yclJLly7Vtm3bOtgyAPOlWZAzRp6pnp4ejY6ObjdtdHRUPT09HWoRgE4hyDNVq9U0MDCgkZERTU5OamRkRAMDA6rVap1uGoAFxs3OTE3d0FyzZo3Gx8fV09OjwcFBbnQCOyHGyAEgE4yRA8AiRZADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkrq0gt/0B2z+1fYXt82zvV1XDAORreHhYvb296urqUm9vr4aHhzvdpEWt3R75RyLiiRHxJEnflPSeCtoEIGPDw8Oq1Wpat26dtmzZonXr1qlWqxHm86itII+ITaWnu0pa+G+pALBDGRwc1NDQkPr7+9Xd3a3+/n4NDQ1pcHCw001btNr+hiDbg5KOk/RbSf0RMdFkuRMlnShJj3zkI59y/fXXt1UvgB1TV1eXtmzZou7u7vumTU5OaunSpdq2bVsHW5a/OX9DkO0LbF/Z4Of5khQRtYg4UNLpkk5qVk5ErI+IvojoW7FiRTvbAmAH1tPTo9HR0e2mjY6Oqqenp0MtWvxmDPKIOCIiehv8nF236BmS/m5+mgkgF7VaTQMDAxoZGdHk5KRGRkY0MDCgWq3W6aYtWkvaWdn2YyPil+np30r6eftNApCz1atXS5LWrFmj8fFx9fT0aHBw8L7pqF5bY+S2z5T0eEl/lHS9pNdGxE0zrdfX1xdjY2NzrhcAdkbNxsjb6pFHBEMpANBh/GUnAGSOIAeAzBHkAJA5ghwAMtf2X3bOqVJ7QsWnXFCNvSVt7HQjgAY4N6t1UEQ84C8qOxLkqJbtsUYfSQI6jXNzYTC0AgCZI8gBIHME+eKwvtMNAJrg3FwAjJEDQObokQNA5ghyAMgcQZ4x26favt32lZ1uC1Bm+0DbI7bHbV9l+42dbtNixhh5xmw/U9JmSRsiorfT7QGm2N5X0r4Rcbnt3SRdJukFEXF1h5u2KNEjz1hEXCrpzk63A6gXEbdExOXp8T2SxiXt39lWLV4EOYB5ZXulpMMk/bCzLVm8CHIA88b2MklnSnpTRGzqdHsWK4IcwLyw3a0ixE+PiLM63Z7FjCAHUDnbljQkaTwiPtrp9ix2BHnGbA9L+r6kx9u+0fZAp9sEJE+XdKykZ9u+Iv0c3elGLVZ8/BAAMkePHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzP0/VVKSeLB3snIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAX50lEQVR4nO3df5hkVX3n8c/HnsFBhh8z0ALya8BfaabJSugnrtomDiEuuhhjNtk4MSDScXQTRt34JGo6WfBHm6xx/bHtZs2QQR1l2vgIikSJgt3A00aUHoKGoV2DBGTkx/QwMw6DThzwu3/c03CnqOqu7rpdNad5v56nn66qe+8559576lP3nrpV5YgQACBfT+t0AwAArSHIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5A3wfYnbb+vTXW9xva9tvfaPrMddebG9oW2x+cw/922z0m3/8z231XYlr22T0u329ZPGrQlbD+nQ3XPaZ/kwPaqtE2XdLotsznogzw9CX+anjC7bH/Z9kkLUM8NtvelenbYvsr28fMop9Un0wclXRwRyyPin2vKfqbtEdv32f6x7W/YfmHNPL9n+x7bj9j+ou2VpWlPt3257T22H7D9xy20M0sR8f6I+IPZ5kv9Ydb50n66q9V2LcYgRPsc9EGevCoilks6XtKDkoYXqJ6LUz3Pk3SUpA8vUD0zOUXS1gbTlku6RdJZklZK+pSkL9teLkm2V0v6W0nnSzpW0k8k/U1p+UslPTfVsUbSn9o+t/pVOFAORzRzlfM6uZDLc39RWOj+ktXOjIh9kj4v6fTpx2wfaXuT7al0JPrntp9me6XtbbZfleZbbvtO2xc0Uc9OSVdK6q033fYbU1k7bX/J9rPS4zelWb6Tjux/t86yT0ttvMf29tT2I9PR8l5JXWn5H9Rp110R8aGIuD8iHouIDZIOkfT8NMvrJF0TETdFxF5JfyHpt2wfnqZfIOm9EbErIiYlXSbpwgbr+LK0/d6e2nm/7TeUptfd7mnahels4cO2d0q6NA07/I3ta9O2+Ybt42x/JJ1pfa88lGT7nbZ/YPth23fYfk3dnVW/7eenNj1ke7Bm2qW2P5NuL7P9mTTfbtu32D7W9pCkl0r6WGrrx9L8YfuPbP+rpH8tPVY+AzvG9nWp3TfaPiXN96TT9Omjfts9kj4u6UWpvt1p+tNtf9D2D20/aPvjtg8tLf8nab/cZ/uiWbbJDbaHbH9DxQv8abbfYHsytfUu228qzT/b/j869f09tr8t6dk19b04bc8fp/8vrmnL+2z/U1rfa1J5V6TybrG9qsF6TG/H16ftsqO8j10zvDW9HqX7d6ft9l0XZ60b0z6/Nm2H622vqKn2orSN77f99lJZTyv104dsf87pDLjUzgHbP5Q02qi/zbTfmhYRB/WfpLslnZNuP0PFUeim0vRNkq6WdLikVZK+L2kgTXu5pAckPVNFaH1+hnpukPQH6fYxkkYlfTrd/6Sk96XbZ0vaIemXJD1dxdnBTaVyQtJzZqjnIkl3SjpNxRH2VdP1NLN8TVkvkLRP0pHp/tWS3lEzz14VR/ArUtnHlqb9tqR/aVD2yyQ9Kuk9kpZKeqWKAFjRxHa/MC27XtISSYembbgjtWVZ2r7/puLFpUvS+ySNler/HUnPUnGw8buSHpF0fKn88QbtPj2t86+k/fOh1JbpPnSppM+k22+SdE3qV12pbUfU9oeafXOdirOhQ2v3V1rHh0t1f3S6nWkbhaQlDfrck9ZJ0kckfSnVd3hq61+maeeqODvtlXSYpM2aoe+kun4oaXXaJ0sl/WcVAWxJv5r27y81uf8/K+lzqe5eST8qretKSbtUnBkukbQ23T+61JY7U91HSrpDRf85J82/SdInGqzH9Ha8TEW/+g+S/l1ST+1ztbQe22ry5GYVZ6wnSNou6VZJZ6Z9Nirpkpq6RtJ6niFpSk/0pbelsk5My/6tpJGaZTelZQ/VDP2t5ZysopCF/Esbfq+k3alj3SfpjDStK+3E00vzv0nSDaX7w5L+JS139Az13JA66u7UKa+Q1F3bOSRtlPSB0nLLJe2XtKr2id2gnq9L+sPS/een5Zc0s3xpuSPSer2rpuw318z3o9SZT0plLytN+3VJdzco/2WSfqoDg2e7pP8423ZXEUo/rCnvk5IuK91fL2mydP8MSbtnWN/bJL26VH6jIP8fkj5bun+YpJ+pfpBfJOmfJP1ig/5QL8jPrvNYOcjLdS+X9Fja9qs0hyBXEa6PSHp26bEXSfq3dPtySX9Vmva8mfpOqus9s/SpL0p6a5P7f7+kXyhNe7+eCPLzJX27puxvSrqw1JbB0rT/Jena0v1XSbqtQRunt+OJpce+Lem1tc/V0nrUBvnrSvevlPR/a/rlF2vqKq/nByRtTLcnJf1aadrxabssKS17Wml6w/7W6l8uQyu/GRFHqXjVu1jSjbaPU3HkfIike0rz3qPilXbaBhVHDJ+IiIdmqectEXFURJwQEa+LiKk68zyrXF8UQxgP1dQ5kwOWT7eXqDhCaEo6vb5G0s0R8ZelSXtVBHzZESqOEveW7tdOa+ShiHi0dP8nKsKpme1+b53yHizd/mmd+8un79i+wPZt6RR0t4p9eMwMbZ32rHLdEfGIiv1Tz6clfVXSZ9Op8wdsL52l/HrrVXd66hs7U5vmqlvFkduW0jb4x/S4VLOeOnBfzNo2SbL9Cts3uxgi3K3iqLu8jRvt/24VfbZR/bV9fHp6uX803RcaeKBOu5o117pr13N6f54i6Qul/TOp4oX72AbLzqe/NSWXIJckRTEufJWKjdWv4lR9v4oNOu1kFUehst2l4nRnk6T/5mouzbqvXJ/twyQdPV3nXJdP7X1UB3amhmw/XcWR049UHAWXbVVxqjk972kqXvy+HxG7JN1fnp5uN3pjdSYzbvck5lGuJCmNK1+m4kX76PQifruKo9TZ3K/iCHi6rGeo2D9PEhH7I+LdEXG6pBdLOk/FUM9M7Z9tvcp1L1cxzHCfiqNrqQjnacfNUO4OFaGyOh1cHBURR0bxZrxUs54qtv9sHq8j9aMrVVwldWzaxl9Rc9t4SkWfbVR/bR+fnt7sc6QVj6jxNp6v2vW8L92+V9IrSvvnqIhYFhF1nwez9LeWZBXkLrxaxXjvZEQ8pmKcbsj24SkA/ljSZ9Iif5b+X6Siw25K4d6KzZLeYPsF6cnwfknfioi70/QHVYx/NzIi6b/bPjU90d8v6e9rjnzqSq/en1fxBL8gIn5eM8sVkl5l+6XpBeY9kq6KiOmj7k2S/tz2Ctu/IOmNKk5F56SJ7d6qw1Q8AaYkKb3JVveN5zo+L+k82/22D1GxDer2c9trbJ+R+sQeFS9Oj6XJs+3HRl5Zqvu9KvrGvens7keSft92l4s3J8tvED4o6cS0nNK+vUzSh20/M7X3BNv/Kc3/OUkX2j49vVhdMsd2HqLiRX5K0qO2X6HiPaVZpf1/lYo3sZ9h+3RJry/N8hVJz3NxKewSF2/6ny7pH+bYxvm4TcU+WJnO2t9WQZl/kdZztaQ3SPr79PjHVTwHTpEk290pn+qapb+1JJcgv8bFFR17JA1Jen1ETB9JrlfxKnyXpHEVQXu57bNUhMsFqeP9TxXh8M5WGhIRX1dxNciVKo6Kni3ptaVZLpX0qXS69V/rFHG5ilOsm1S82bcvrUMzpl/FXy5pt4t3/Pfafmlq21ZJb1YR6NtVvEH2h6XlL5H0AxWnhzdK+uuI+Mcm665Vd7vPs6wDRMQdKsZNv6ki4M6Q9I0ml90q6Y9Se+5X8SbbtgazH6ci+PeoOC2+UU+8GH1U0m+7uKLmf8+h+ZtVbOedKt7Mel1p2hsl/YmKoZ7VKsZLp42qODt6wPaO9Ng7VLwpeLPtPZKuV7pCKSKuVfFm6GiaZ3QObVR6cX+LiheEXZJ+T8Ubq826WMUQxAMqDgY+USr7IRX99O0q1vVPJZ0XETueXEzlPi3pOyrGwr+mJ0K3FTeq2MZfl/TBiPhaevyjKrbZ12w/rOKNzxfWL0LSzP2tJU6D8ACATOVyRA4AaIAgB4DMEeQAkDmCHAAy15Ev/jnmmGNi1apVnagaALK1ZcuWHRHRXft4R4J81apVmpiY6ETVAJAt23U/wcvQCgBkjiAHgMwR5ACQOYIcADJXWZCnLwL6Z9vt+GIcAEBS5RH5W1V8EQyAp7iRkRH19vaqq6tLvb29GhkZ6XSTFrVKgtz2iSp+NurvqigPQL5GRkY0ODio4eFh7du3T8PDwxocHCTMF1BVR+QfUfFVlbXfj/042+tsT9iemJqq98M7ABaDoaEhbdy4UWvWrNHSpUu1Zs0abdy4UUNDQ51u2qLVcpDbPk/S9ojYMtN8EbEhIvoioq+7+0kfTAKwSExOTqq/v/+Ax/r7+zU5ycjrQqniiPwlkn7D9t0qfln7bNtV/VIMgMz09PRofHz8gMfGx8fV09PToRYtfi0HeUS8KyJOjIhVKn4pZzQifr/llgHI0uDgoAYGBjQ2Nqb9+/drbGxMAwMDGhwc7HTTFq2OfNcKgMVr7dq1kqT169drcnJSPT09GhoaevxxVK8jP/XW19cXfGkWAMyN7S0R0Vf7OJ/sBIDMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADLXcpDbXmb727a/Y3ur7XdX0TAAQHOWVFDGv0s6OyL22l4qadz2tRFxcwVlAwBm0XKQR0RI2pvuLk1/0Wq5AIDmVDJGbrvL9m2Stku6LiK+VWeedbYnbE9MTU1VUS0AQBUFeUQ8FhEvkHSipF+23Vtnng0R0RcRfd3d3VVUCwBQxVetRMRuSTdIOrfKcgEAjVVx1Uq37aPS7UMlnSPpe62WCwBoThVXrRwv6VO2u1S8MHwuIv6hgnIBAE2o4qqV70o6s4K2AADmgU92AkDmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMxVcR052sD2vJYrvtMMwGJGkGdipkC2TWADT2EMrQBA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMcfkhgJbN53MOXDJbHYIcQMsahTKfcWgPhlYAIHMEOQBkjiAHgMy1HOS2T7I9ZnvS9lbbb62iYQCA5lTxZuejkt4eEbfaPlzSFtvXRcQdFZQNAJhFy0fkEXF/RNyabj8saVLSCa2WCwBoTqVj5LZXSTpT0reqLBcA0FhlQW57uaQrJb0tIvbUmb7O9oTtiampqaqqBYCnvEqC3PZSFSF+RURcVW+eiNgQEX0R0dfd3V1FtQAAVXPViiVtlDQZER9qvUkAgLmo4oj8JZLOl3S27dvS3ysrKBcA0ISWLz+MiHFJ8/tlYABAy/hkJwBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMldJkNu+3PZ227dXUR4AoHlVHZF/UtK5FZUFAJiDSoI8Im6StLOKsgAAc9O2MXLb62xP2J6YmppqV7UAsOi1LcgjYkNE9EVEX3d3d7uqBYBFj6tWACBzBDkAZK6qyw9HJH1T0vNtb7M9UEW5AIDZLamikIhYW0U5AIC5Y2gFADJHkANA5gjyg8zKlStle05/kuY0/8qVKzu8lgCqVMkYOaqza9cuRcSC1jEd/sBcrFy5Urt27ZrzcnPtbytWrNDOnXxQfC4IcgBNacdBhsSBxnwwtAIAmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMlfVjy+fa/v/2b7T9jurKBMA0JyWv4/cdpek/yPp1yVtk3SL7S9FxB2tlv1UFJccIV165MLXAWDRqOKHJX5Z0p0RcZck2f6spFdLIsjnwe/e05ZfCIpLF7QKAG1URZCfIOne0v1tkl5YO5PtdZLWSdLJJ59cQbUA2qkdZ4uP14M5qSLI6/0u05MOKSNig6QNktTX17fwvxcFoFLtOFuUOGOcjyre7Nwm6aTS/RMl3VdBuQCAJlQR5LdIeq7tU20fIum1kr5UQbkAgCa0PLQSEY/avljSVyV1Sbo8Ira23DIAQFOqGCNXRHxF0leqKAsAMDd8shMAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMhcJd+1gmrZ9b7ivTorVqxY0PIBtBdBfpCZzxf3227LF/4DC32QIXGgMR8EOYCmcJBx8GKMHAAyR5ADQOYIcgDIHEEOAJkjyAEgcy0Fue3fsb3V9s9t91XVKABA81o9Ir9d0m9JuqmCtgAA5qGl68gjYlJqz4cEAAD1tW2M3PY62xO2J6amptpVLQAserMekdu+XtJxdSYNRsTVzVYUERskbZCkvr4+PuoFABWZNcgj4px2NAQAMD9cfggAmWv18sPX2N4m6UWSvmz7q9U0CwDQrFavWvmCpC9U1BYAwDwwtAIAmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkrtUfX/5r29+z/V3bX7B9VFUNAwA0p9Uj8usk9UbEL0r6vqR3td4kAMBctBTkEfG1iHg03b1Z0omtNwkAMBdVjpFfJOnaRhNtr7M9YXtiamqqwmoB4KltyWwz2L5e0nF1Jg1GxNVpnkFJj0q6olE5EbFB0gZJ6uvri3m1FgDwJLMGeUScM9N026+XdJ6kX4sIAhoA2mzWIJ+J7XMlvUPSr0bET6ppEgBgLlodI/+YpMMlXWf7Ntsfr6BNAIA5aOmIPCKeU1VDAADzwyc7ASBzBDkAZI4gB4DMtTRGjvaxPa/pXBGKdpipf9I3Fx5Bngk6PQ5m9M/OYmgFADJHkANA5ghyAMgcQQ4AmSPIASBzBHnGRkZG1Nvbq66uLvX29mpkZKTTTQLQAVx+mKmRkRENDg5q48aN6u/v1/j4uAYGBiRJa9eu7XDrALSTO3H9Z19fX0xMTLS93sWkt7dXw8PDWrNmzeOPjY2Naf369br99ts72DIAC8X2lojoq32coZVMTU5Oqr+//4DH+vv7NTk52aEWAU9g2K+9CPJM9fT0aHx8/IDHxsfH1dPT06EWAYXpYb/h4WHt27dPw8PDGhwcJMwXUkS0/e+ss84KtGbz5s1x6qmnxujoaPzsZz+L0dHROPXUU2Pz5s2dbhqe4lavXh2jo6MHPDY6OhqrV6/uUIsWD0kTUSdTGSPP2MjIiIaGhjQ5Oamenh4NDg7yRic6rqurS/v27dPSpUsff2z//v1atmyZHnvssQ62LH+Nxsi5aiVja9euJbhx0Jke9iu/Ec+w38JijBxApQYHBzUwMKCxsTHt379fY2NjGhgY0ODgYKebtmi1dERu+72SXi3p55K2S7owIu6romEA8jR9lrh+/frHh/2GhoY4e1xALY2R2z4iIvak22+RdHpEvHm25RgjB4C5W5DryKdDPDlMEt8u30ZcqwtAquDNTttDki6Q9GNJa2aZHRXhI/oAps06tGL7eknH1Zk0GBFXl+Z7l6RlEXFJg3LWSVonSSeffPJZ99xzz7wbDT6iDzwVNRpaqew6ctunSPpyRPTONi9j5K3jWl3gqWdBxshtP7d09zckfa+V8tA8PqIPYFqr15H/le3bbX9X0sslvbWCNqEJXKsLYFpLb3ZGxH+pqiGYG67VBTCN71oBgEzwfeQAsEgR5ACQOYIcADJHkANA5ghyAMhcR65asT0lic/oV+cYSTs63QigDvpmtU6JiO7aBzsS5KiW7Yl6lyQBnUbfbA+GVgAgcwQ5AGSOIF8cNnS6AUAD9M02YIwcADLHETkAZI4gB4DMEeQZs3257e22+W03HFRsn2R7zPak7a22+a2CBcQYecZs/4qkvZI2NfMTe0C72D5e0vERcavtwyVtkfSbEXFHh5u2KHFEnrGIuEnSzk63A6gVEfdHxK3p9sOSJiWd0NlWLV4EOYAFZXuVpDMlfauzLVm8CHIAC8b2cklXSnpbROzpdHsWK4IcwIKwvVRFiF8REVd1uj2LGUEOoHK2LWmjpMmI+FCn27PYEeQZsz0i6ZuSnm97m+2BTrcJSF4i6XxJZ9u+Lf29stONWqy4/BAAMscROQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4Amfv/lVl3ZJlIo18AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWi0lEQVR4nO3de5QcZZ3G8edhQhJNIhCIXBIg4pXMoIvOWVdB1ygrl4Vj9OgiZDEYNbpKDCtHvIyuqER3I+tlk1UMy4gRMuARjLqKghLgEK+BRSUZVxG5hGvCZUMCJIC//aPekUrTM9OTrpnmbb6fc+ZMd1fV+75V9fbTb73dPeOIEAAgX7u0ugEAgOYQ5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIG2D7PNtnjlFdb7R9m+0ttg8dizpzY/tk29eMYP2bbR+Rbn/U9n9V2JYttg9Kt8esnwzSlrD9vBbVPaJzkgPbM9MxHdfqtgznKR/k6Un4cHrC3G/7+7b3H4V6rrT9SKpnk+1LbO+7E+U0+2Q6S9IpETE5Iv6nTvnl47HF9mU1y0+0fYvtrbZX2Z5aWjbBdq/tzbbvsv2BJtqZpYj4TES8c7j1Un8Ydr10nm5qtl3tGIQYO0/5IE+Oi4jJkvaVdLekpaNUzympnhdI2l3SF0apnqEcKGndMOsclwJkckS8fuBB252SvirpJEl7S3pI0pdL250h6fmpjtmSTrd9VIVtryuHEc1I5bxPLuTy3G8Lo91fsjqZEfGIpG9JmjXwmO3dbK+wvTGNRD9mexfbU21vsH1cWm+y7Rttv62Beu6TdLGkrnrLbb8rlXWf7e/a3i89fnVa5ddptHx8nW13SW28xfY9qe27pdHyFkkdafs/jvDwSNJcSd+LiKsjYoukj0t6k+0pafnbJH06Iu6PiH5J50g6eZB9fE06fqeldt5p++2l5XWPe1p2su01tr9g+z5JZ6Rphy/bvjQdmzW297H9xXSl9bvyVJLtD9v+o+0Hba+3/cZGD4Ltk1Kb7rXdU7PsDNvnp9sTbZ+f1nvA9q9s7217saRXSVqW2rosrR+232f7D5L+UHqsfAW2l+3LU7uvsn1gWu9Jl+kDo37bB0s6W9IrUn0PpOUTbJ9l+1bbd9s+2/YzStt/MJ2XO2zPH+aYXGl7se01Kl7gD7L9dtv9qa032X53af3hzv+eqe9vtv1LSc+tqe+V6Xj+X/r9ypq2nGn7p2l/v5fKuyCV9yvbMwfZj4HjOC8dl03lc+ya6a2B/Sjdvzkdt9+4uGo9N53zS9Nx+LHtPWqqnZ+O8Z22TyuVtUupn95r+5tOV8Cldr7D9q2Srhisvw113hoWEU/pH0k3Szoi3X6mpK9LWlFavkLSdyRNkTRT0u8lvSMte72kuyQ9W0VofWuIeq6U9M50ey9JV0j6Rrp/nqQz0+3XStok6aWSJqi4Ori6VE5Iet4Q9cyXdKOkgyRNlnTJQD0Nbn+ziquSjZIuk/SS0rLvSPpQzfpbJL1M0h6p7L1Ly94s6beD1PMaSY9J+pSkXSUdoyIA9mjguJ+ctl0oaZykZ6RjuCm1ZWI6vn9S8eLSIelMSatL9b9F0n4qBhvHS9oqad9S+dcM0u5ZaZ9fnc7P51NbBvrQGZLOT7ffLel7KvpVR2rbs2r7Q825uVzSVEnPqD1faR8fLNX9pYF2pmMUksYN0ueetE+Svijpu6m+Kamtn03Ljkr9oEvSJEkrNUTfSXXdKqkznZNdJf29igC2pL9N5/elDZ7/CyV9M9XdJen20r5OlXS/iivDcZJOSPf3LLXlxlT3bpLWq+g/R6T1V0j62iD7MXAcz1HRr14iaZukg2ufq6X92FDz/Pm5iivW6ZLukXSdpEPTObtC0idq6upL+3mIiufdQF86NZU1I237VUl9NduuSNs+Q0P0t6ZzssrQHY2fdOC3SHogdaw7JB2SlnWkkzirtP67JV1Zur9U0m/TdnsOUc+VqaM+kDrlBZKm1XYOSedKWlLabrKkRyXNrH1iD1LPTyS9t3T/hWn7cQ1uf1jqFM+U9BEVL1S7l8p+T836t6fOvH8qe2Jp2d9JunmQel4j6WHtGDz3SPqb4Y67ilC6taa88ySdU7q/UFJ/6f4hkh4YYr+vl/SGUvmDBfm/SLqwdH+SpO2qH+TzJf1U0osH6Q/1gvy1dR4rB3m57smSHk/HfqZGEOQqwnWrpOeWHnuFpD+l272S/rW07AVD9Z1U16eGea6tkrSowfP/qKQXlZZ9Rk8E+UmSfllT9s8knVxqS09p2b9LurR0/zhJ1w/SxoHjOKP02C8lvbX2uVraj9ogn1u6f7Gkr9T0y1U1dZX3c4mkc9PtfkmvKy3bNx2XcaVtDyotH7S/NfuTy9TKnIjYXcWr3imSrrK9j4qR83hJt5TWvUXFK+2A5SpGDF+LiHuHqef9EbF7REyPiLkRsbHOOvuV64tiCuPemjqHssP26fY4FSOEYUXEmoh4OCIeiojPqnjheVVavEXSs2o2eZaKUeKW0v3aZYO5NyIeK91/SEU4NXLcb6tT3t2l2w/XuT954I7tt9m+Pl2CPqDiHO41RFsH7FeuOyK2qjg/9XxD0o8kXZgunZfY3nWY8uvtV93lqW/cl9o0UtNUvFhfWzoGP0yPSzX7qR3PxbBtkyTbR9v+uYspwgdUjLrLx3iw8z9NRZ8drP7aPj6wvNw/Gu4Lg7irTrsaNdK6a/dz4HweKOnbpfPTr+KFe+9Btt2Z/taQXIJckhQRj0fEJSoO1uEqLtUfVXFABxygYhQq2x0qLndWSPonV/PRrDvK9dmeJGnPgTpHun1q72PasTONRKgYvUnFm6QvKbXtIBUvfr+PiPsl3Vlenm4P98ZqPUMe91K7dkqaVz5HxYv2nulF/AY9sZ9DuVPFCHigrGeqOD9PEhGPRsQnI2KWpFdKOlbFVM9Q7R9uv8p1T1YxzXCHitG1VITzgH2GKHeTilDpTIOL3SNityjejJdq9lPF8R/OX+qwPUHFaPQsFdNtu0v6gRo7xhtV9NnB6q/t4wPLG32ONGOrBj/GO6t2P+9It2+TdHTp/OweERMjou7zYJj+1pSsgtyFN6iY7+2PiMdVzNMttj0lBcAHJJ2fNvlo+j1fRYddkcK9GSslvd32X6Unw2ck/SIibk7L71Yx/z2YPkn/bPs56Yn+GUkX1Yx86rJ9gO3DbI9Pb5x8UMUIak1a5QJJx9l+VXqB+ZSkSyJiYNS9QtLHbO9h+0WS3qXiUnREGjjuzZqk4gmwUZLSm2x133iu41uSjrV9uO3xKo5B3X5ue7btQ1Kf2KzixenxtHi48ziYY0p1f1pF37gtXd3dLukfbXe4eHOy/Abh3ZJmpO0UEX9W8WL2BdvPTu2dbvvItP43JZ1se1Z6sfrECNs5XsWL/EZJj9k+WsV7SsNK5/8SFW9iP9P2LEnzSqv8QNILXHwUdpyLN/1nSfrvEbZxZ1yv4hxMTVftp1ZQ5sfTfnZKeruki9LjZ6t4DhwoSbanpXyqa5j+1pRcgvx7Lj7RsVnSYknzImJgJLlQxavwTZKuURG0vbZfpiJc3pY63r+pCIcPN9OQiPiJik+DXKxiVPRcSW8trXKGpK+ny61/qFNEr4pLrKtVvNn3SNqHRkyR9BUVbxzdruINr6MHpozSMXmPikC/J63/3tL2n5D0RxWXh1dJ+lxE/LDBumvVPe47WdYOImK9innTn6kIuEP0xIvVcNuuk/S+1J47VRyrDYOsvo+K4N+s4rL4Kj3xYvQlSW928Yma/xhB81eqOM73qXgza25p2bskfVDFVE+nivnSAVeouDq6y/am9NiHVLwp+HPbmyX9WMV7KoqIS1W8GXpFWueKEbRR6cX9/SpeEO6XdKKKN1YbdYqKKYi7VAwGvlYq+14Vo83TVOzr6ZKOjYhNTy6mct+Q9GsVc+GX6YnQbcZVKo7xTySdFRED3934kopjdpntB1W88fnyIcoZqr81xWkSHgCQqVxG5ACAQRDkAJA5ghwAMkeQA0DmWvKHf/baa6+YOXNmK6oGgGxde+21myJiWu3jLQnymTNnau3ata2oGgCyZbvuN3iZWgGAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDqByfX196urqUkdHh7q6utTX19fqJrU1ghxApfr6+rRo0SJt3bpVEaGtW7dq0aJFhPkoIsgBVOr0009XR0eHent7tW3bNvX29qqjo0Onn356q5vWtghyAJXasGGDVqxYodmzZ2vXXXfV7NmztWLFCm3YMNifhUezCHIAyBxBDqBSM2bM0Lx587R69Wo9+uijWr16tebNm6cZM2a0umltiyAHUKklS5Zoy5YtOvLIIzV+/HgdeeSR2rJli5YsWdLqprUtghxA5SZOnKjp06fLtqZPn66JEye2ukltjSAHUKnFixdrwYIFmjRpkmxr0qRJWrBggRYvXtzqprWtlvwZWwDta/369dq6dat6e3t1+OGH65prrtH8+fN1yy11/wIrKsCIPBO2d+oHGGvjx4/XwoULd/j44cKFCzV+/PhWN61tEeSZiIhBf4ZaDoy17du3a9myZTt8amXZsmXavn17q5vWtphaAVCpWbNmac6cOVq4cKH6+/t18MEH68QTT9SqVata3bS2RZADaFrtNN66det2uD1wv7weV4zVYWoFQNNqp/RWrlypzs5OSVJnZ6dWrlzJtN8ocisOaHd3d/DPl6tjmycGnpLom9WyfW1EdNc+zogcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAy13SQ297f9mrb/bbX2V5URcMAAI2p4o9mPSbptIi4zvYUSdfavjwi1ldQNgBgGE2PyCPizoi4Lt1+UFK/pOnNlgsAaEylc+S2Z0o6VNIv6ixbYHut7bUbN26ssloAeFqrLMhtT5Z0saRTI2Jz7fKIWB4R3RHRPW3atKqqBYCnvUqC3PauKkL8goi4pIoyAQCNqeJTK5Z0rqT+iPh8800CAIxEFSPywySdJOm1tq9PP8dUUC4AoAFNf/wwIq6R5GFXBACMCr7ZCQCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMxVEuS2e23fY/uGKsoDADSuqhH5eZKOqqgsAMAIVBLkEXG1pPuqKAsAMDJjNkdue4HttbbXbty4cayqBYC2N2ZBHhHLI6I7IrqnTZs2VtUCQNvjUysAkDmCHAAyV9XHD/sk/UzSC21vsP2OKsoFAAxvXBWFRMQJVZQDABg5plYAIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQf4UM3XqVNke0Y+kEa0/derUFu8lgCpV8oUgVOf+++9XRIxqHQPhD6A9MCIH0JCxuFrkinHnMCIH0JCxuFqUuGLcGYzIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHOVBLnto2z/r+0bbX+4ijIBAI1pOshtd0j6T0lHS5ol6QTbs5otFwDQmCr+Z+dfS7oxIm6SJNsXSnqDpPUVlA3gKSI+8SzpjN3Gph6MSBVBPl3SbaX7GyS9vHYl2wskLZCkAw44oIJqAYwlf3LzmP3z5Thj1KtpK1UEeb1/ef2ksx0RyyUtl6Tu7u7R7w2ZGotRDyMeoL1UEeQbJO1fuj9D0h0VlPu0NBajHkY8QHup4lMrv5L0fNvPsT1e0lslfbeCcgEADWh6RB4Rj9k+RdKPJHVI6o2IdU23DADQkCqmVhQRP5D0gyrKAgCMDN/sBIDMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkrpJ/LAHg6cGu97/Wq7XHHnuMeh3thiAH0JCd+afgtkf9n4mDqRUAyB4j8qeg0b585dIVaC8E+VMMl68ARoqpFQDIHEEOAJkjyAEgcwQ5AGSOIAeAzBHkAJA5ghwAMtdUkNt+i+11tv9su7uqRgEAGtfsiPwGSW+SdHUFbQEA7ISmvtkZEf3S2PxFNABAfWM2R257ge21ttdu3LhxrKoFgLY37Ijc9o8l7VNnUU9EfKfRiiJiuaTlktTd3c0fBgGAigwb5BFxxFg0BACwc/j4IQBkrtmPH77R9gZJr5D0fds/qqZZAIBGNfuplW9L+nZFbQEA7ASmVgAgcwQ5AGSOIAeAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQOYIcADJHkANA5ghyAMgcQQ4AmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgDIHEEOAJkjyAEgcwQ5AGSOIAeAzDUV5LY/Z/t3tn9j+9u2d6+qYQCAxjQ7Ir9cUldEvFjS7yV9pPkmAQBGoqkgj4jLIuKxdPfnkmY03yQAwEhUOUc+X9KlFZYHAGjAuOFWsP1jSfvUWdQTEd9J6/RIekzSBUOUs0DSAkk64IADdqqxAIAnGzbII+KIoZbbnifpWEmvi4gYopzlkpZLUnd396DrAQBGZtggH4rtoyR9SNLfRsRD1TQJADASzc6RL5M0RdLltq+3fXYFbQIAjEBTI/KIeF5VDQEA7By+2QkAmSPIASBzBDkAZI4gB4DMEeQAkDmCHAAyR5ADQOYIcgCV6+vrU1dXlySpq6tLfX19LW5ReyPIAVSqr69PPT09Wrp0qSRp6dKl6unpIcxHkYf4O1ejpru7O9auXTvm9bYr22rFeQTq6erq0pw5c7Rq1SqtW7dOnZ2df7l/ww03tLp5WbN9bUR01z7e1Ff0AUAqBhNl69at2+H2wP3yegw+qsPUCoCmRcRffiZMmKC5c+eqs7NTu+yyizo7OzV37lxNmDBhh/VQHYIcQKW2bdumiy66SPPnz9eDDz6o+fPn66KLLtK2bdta3bS2RZADqNSECRN0/PHHq7e3V1OmTFFvb6+OP/54TZgwodVNa1sEOYBKbd++XWvWrNHSpUv1yCOPaOnSpVqzZo22b9/e6qa1Ld7sBFCpWbNmac6cOVq4cKH6+/t18MEHa+7cuVq1alWrm9a2GJEDqFRPT49Wrly5w4h85cqV6unpaXXT2hYjcgCVOuGEEyRphxH54sWL//I4qscXgtoAXwgCnh4G+0IQUysAkDmmVjJR+825RpczUgfaH0GeCQIZwGCYWgGAzBHkAJA5ghwAMkeQA0DmCHIAyBxBDgCZI8gBIHMEOQBkriV/a8X2Rkm3jHnF7WsvSZta3QigDvpmtQ6MiGm1D7YkyFEt22vr/SEdoNXom2ODqRUAyBxBDgCZI8jbw/JWNwAYBH1zDDBHDgCZY0QOAJkjyAEgcwR5xmz32r7H9g2tbgtQZnt/26tt99teZ3tRq9vUzpgjz5jtV0vaImlFRHS1uj3AANv7Sto3Iq6zPUXStZLmRMT6FjetLTEiz1hEXC3pvla3A6gVEXdGxHXp9oOS+iVNb22r2hdBDmBU2Z4p6VBJv2htS9oXQQ5g1NieLOliSadGxOZWt6ddEeQARoXtXVWE+AURcUmr29POCHIAlbNtSedK6o+Iz7e6Pe2OIM+Y7T5JP5P0QtsbbL+j1W0CksMknSTptbavTz/HtLpR7YqPHwJA5hiRA0DmCHIAyBxBDgCZI8gBIHMEOQBkjiAHgMwR5ACQuf8HpXFikFCfVtEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAa9UlEQVR4nO3dfZRddX3v8fcnQ3QiGQkPuYU8QPChOGSuYh0fWlM1ucjlsuRKvW0lcBHMtLnWxYCt90botCXUToHYa6VRVk2biJQwYgWDoLagGaTjUjThUk0YatUQCUFJSNI8EZpMvvePvSfdczjzeM7Mmd/J57XWrJyzn36/c/bvfM5v//beJ4oIzMwsXVNqXQEzM6uMg9zMLHEOcjOzxDnIzcwS5yA3M0ucg9zMLHEO8jIk3S7pzyaorN+Q9LSk/ZLeOBFl1htJD0v6nREu+y5J2wrPN0t6V5XqcbmkBwvPQ9JrqrHtMdTlKkk9tSg7L3/E+yQVkpZLurPW9Shn0gW5pKckvZAH225JX5U0dxzKeVjSobycnZLulXTGGLZT6Yf1L4CrI2J6RPy/Mtv/uKQfSjoiaXmZ+ZdJ2irpgKR1kk4pzHu5pDWS9kr6uaQ/KFn3PEkbJR3M/z2vgteRpIiYHxEPD7WMpHn5fj5hmG2tjYgLqlGvegxCGz+TLshzF0fEdOAM4BfAynEq5+q8nF8GZgB/OU7lDOUsYPMQ838MLAO+WjpD0nzgs8AVwC8BB4HbCossB16bl7EQWCbpwnzdlwH3AXcCJwOfB+7Lp48bZSZruxuz4UJ+Mku57qmq9ns+qT9QEXEI+BJwbv80SSdJukPSjrwn+keSpkg6RdI2SRfny02X9GNJHxhBObuAe4CWcvMl/W6+rV2SviJpVj79kXyRf8579u8vs+6UvI5bJT2X1/2kvLe8H2jI1//JIHX7fER8HdhXZvblwP0R8UhE7Af+GHifpKZ8/geAj0fE7ojoBf4GuCqf9y7gBOBTEfFiRPwVIGDRIO/B7ZI+kx8h7ZP0qKRXF+b/mqTvS/q3/N9fK8x7WFKnpG+Tfdm8Ku/hfljSv+bb+7ikV0v6Tn4E8cX+LxVJJ0t6IN/nu/PHc8rVs0y9p+V13y3pCeDNJfOfknR+/vgtkjbk5f9C0ifzxfr38558P/+qsqGLb0v6S0m7gOUqP5xxkaSf5kd9n+j/ElPJYXqx1y+pE/h14NN5eZ/Ol3mdpIfydvgvkn67sP6pedvcK+l7wKsZRKGsNkk/A9bn0/9e2ZHbv0l6JO8o9K8z3P5/t6Qn83U/TdaW+ueV/QyU1OWDyoYYd0v6kKQ3S/qBpD39r3+Q17I8byt35PXaLKm1MH/AEbMKw6bKh9kkLcvr9aykSyRdJOlH+fv8hyVFNkq6Oy/rMUlvKGx7lqR78na6RdI1JfX8kqQ7Je0FrhqivY1eREyqP+Ap4Pz88SvIeop3FObfQdaTbALmAT8C2vJ5FwA/B/4TWWh9aYhyHgZ+J398Gllj/rv8+e3An+WPFwE7gV8BXk52dPBIYTsBvGaIcpaQ9apfBUwH7u0vZyTrF5a7E1heMu0+4GMl0/YDbyLrZQfwS4V5vwn8MH/8+8DXS9Z9APjoIOXfDuwC3kL2BbAW+EI+7xRgN9mRwQnA4vz5qYX3+mfA/Hz+1LxuXwFemU9/Efhm/j6dBDwBXJmvfyrwP/L20AT8PbCu3L4sU++bgX/K6zgX2ARsG6S9fQe4In88HXhb/nheXt8TCutdBRwB2vPXNC2f1lOyb7vzss8ka6v9bW45cGdh2QFllL4m4ETgaeCDeXm/QtYu5+fzvwB8MV+uBXimWJeS96S/rDvy5acV2moTWTv/FPD4CPf/acBesvY1laxtHSm81kE/A4W6/DXQSPYZPgSsI/sczwaeA945yGtZni9/EVmn6Cbgu4N9vhj42X5XXs8/yev9u8AO4K78fZifb/tVhbIOF17n/wa25I+nABvzbb0sf60/Bf5rybqX5MtOY5D2NqbcHOuK4/VH9sHaD+zJ3+TtwH/O5zWQfeDPLSz/v4CHC89XAj/M1zt1iHIeJusd7iFr9GuBmWV29mpgRWG96fkOmVeuoZQp55vAhwvPz8nXP2Ek6xfWKxfk3wQ+VDLtmbyBzs233ViY927gqfzxH5N/EAvz15aWUfIB+NvC84uAJ/PHVwDfK1n+O8BVhff6T0vmB/D2wvONFL6UgP9LdrRQri7nAbtL9uVgQf5T4MLC86UMHuSPADcCp5VsYx7lg/xnJctdxUuDvFj2h4Fv5o+XM7ogfz/wTyXlfRa4gexzcRh4XWHenzN8kL9qiPY2I1/mpBHs/w8wMDwFbOM/gnzQz0ChLrML858H3l94fg/wkUHquRz4RuH5ucALJftgqCB/AWjInzfly7+1pF1eUiir+DqnAM+SHT29tUx7uB74XGHdR0rml21vY/mbrEMrl0TEDLKewdXAtySdTvbN/zJga2HZrWTf2v1WkfVIPhcRzw9TzjURMSMiZkfE5RGxo8wys4rlRTaE8XxJmUMZsH7++ASyMe1K7Sfr0Ra9kmwYZn/heem84dYdzM8Ljw+SfanBS18jvHS/PF1me78oPH6hzPPpAJJeIemz+aH5XrIPwAxJDUPUtd+skrJL61nURna+5Ellw0PvGWbb5V7TUMtszeszFmcBb82HGvZI2kM2tHY6MJOsTY30db6kbpIaJN0s6Sf5e/xUPuu0wvJD7f9j24ospYp1GclnYERtYRCl9WrUyMegn4+IvkI55epSLLv4Oo+SfWHNIts/s0r2zx8y8DWWtpfRtrdBTdYgByAi+iLiXqAPWEB2KHmY7E3rdyZZL5T8g/1ZskPG31N1Lv3aXixP0olkh/rPjGX9vL5HGNhYxmozUByjexXZl9+PImI3WW/hDYXl38B/nFjdDLxekgrzX8/QJ14HU/oaobBfcjGG7fb7KFkv7q0R8UrgHfl0Db7KMc+SHZ0U61VWRPxrRCwmO6S/BfhSvr8Hq/tIXlNp2dvzxwfIhor6nT7Mtp8GvpV3PPr/pkfE75ENBxwpU9ZwimVcBrwXOJ9saGtePn3U73Hepop1Gc/PwHAOMvT7PFrF1zkFmEP2+p4GtpTsn6aIuKiw7oB9OkR7G7VJHeTKvJdsvLc3/+b8ItApqUnSWcAfkA07QPYNCNmY3F8Ad4yw1zaUu4APKrtU7+Vkh6yPRsRT+fxfkI2HDaYL+H1JZ0uanq9/d0QcGUnhkqZKaiTbVydIaiy8prXAxZJ+PW8AfwrcGxH9veo7gD9SdrLwdWRjgLfn8x4m+4K8RtmJ16vz6etHUq8SXwN+WdmlkCcoO+l7LtmYezU0kfWM9ii7vPKGUaz7ReD6/D2YQzamXZak/ylpZt7T2pNP7iMLyqMMvZ8H83/ysucC1wJ359MfB94h6cz8xN/1JeuVtqsHyN7jK/I2MTU/Idicfy7uJTvh+gpJ5wJXjrKeTWTDls+TBd+fj2LdrwLzJb0v7wlfw8DArOgzUKHHgcvyI44LgXdWuL03FV7nR8jes+8C3wP2SvqYshPsDZJaJL15sA0N0d5GbbIG+f3KrujYC3SSnfTq7ym2k/Vmfgr0kAXtGklvIgv1D+QN+xayb8DrKqlIRHyTbDz5HrKex6uBSwuLLAc+nx9O/fZLt8Aa4O/IhgO2kJ08GTRMyvgbshBbDHTkj6/I67YZ+BBZoD9H9mH8cGHdG4CfkB3Kfgv4RET8Q77uv5OdePkAWSNaQjak9e+jqBv5tp4H3kPWc36e7HLJ90TEztFuaxCfIjs5tJPsQ/MPo1j3RrLXvwV4kGxfDOZCYHPe9m4FLo2IQxFxkKwdfjvfz28bRfn3kY2zPk4WeKsBIuIhslD/QT6/9EvvVuA3lV3F8Vf5l/MFZG1vO9lwwi1kR2CQDUFOz6ffDnxuFHWE7Et/K9lR1BNk7/OI5Pv5t8hOLD9PdsnrtwuLVPoZqMS1wMVkbfxyspOolbiP7HxF/8n990XE4TxzLiY7f7OFrK3+LdnRzWDKtrexVEr5oLuZmSVqsvbIzcxshBzkZmaJc5CbmSXOQW5mlria/FjOaaedFvPmzatF0WZmydq4cePOiJhZOr0mQT5v3jw2bNhQi6LNzJIlqewdux5aMTNLnIPczCxxDnIzs8Q5yM3MEucgNzNLnIPczKquq6uLlpYWGhoaaGlpoaurq9ZVqmv+T1fNrKq6urro6Ohg9erVLFiwgJ6eHtra2gBYvHhxjWtXn2ry64etra3h68jN6lNLSwsrV65k4cKFx6Z1d3fT3t7Opk2baliz9EnaGBGtL5nuIDezampoaODQoUNMnTr12LTDhw/T2NhIX9+Y/t8Eyw0W5B4jT5jHIW0yam5u5sYbbxzQNm+88Uaam5trXbW65SBPVP845MqVKzl06BArV66ko6PDYW41t3DhQm655RaWLFnCvn37WLJkCbfccsuAoRarLg+tJMrjkDZZtbS0cMkll7Bu3Tp6e3tpbm4+9txtszIeI68zHoe0ycptc/x4jLzONDc309PTM2BaT0+PxyGt5jxGPvEc5Inq6Oigra2N7u5uDh8+THd3N21tbXR0dNS6anacW7hwITfddBM7d+7k6NGj7Ny5k5tuuslj5OPINwQlqv/Givb29mPjkJ2dnb7hwmpu3bp1NDU1MW3aNKZMmcK0adNoampi3bp1rFy5stbVq0seIzezqpLEgw8+yLvf/e5j0x566CEuuOACapE39cRj5GZmdariIJfUKOl7kv5Z0mZJN1ajYmaWpjlz5nDllVcOOH9z5ZVXMmfOnFpXrW5Vo0f+IrAoIt4AnAdcKOltVdiumSVoxYoVHDlyhCVLltDY2MiSJUs4cuQIK1asqHXV6lbFQR6Z/fnTqfmfB8ImgG/Rt8lo8eLF3HrrrZx44okAnHjiidx6660+ET+OqnLViqQGYCPwGuAzEfFomWWWAksBzjzzzGoUe1zzT4XaZLZ48WK3wwlUlZOdEdEXEecBc4C3SGops8yqiGiNiNaZM2dWo9jjWmdnJ6tXr2bhwoVMnTqVhQsXsnr1ajo7O2tdNTMfLU6wql5HHhF7JD0MXAj4RxXGUW9vLwsWLBgwbcGCBfT29taoRmYZHy1OvGpctTJT0oz88TTgfODJSrdrQ/Nt0DZZ+Whx4lVjaOUMoFvSD4DvAw9FxANV2K4NwT8VapOVjxYnnu/sTJR/KtQmE0mjXsd3eY6e7+ysM729vZxzzjkDpp1zzjnu9VhNRMSxv7vuuouzzz6b9evXA7B+/XrOPvts7rrrrgHLWfX4R7MSNWvWLK655hpmzJhBRHDgwAGuueYaZs2aVeuq2XGu+INu/f/6B93Gl3vkiTp48CB79+6lvb2d/fv3097ezt69ezl48GCtq2bG4sWLjw3xbdq0ySE+zhzkidq1axfLli1jzZo1NDU1sWbNGpYtW8auXbtqXTUzm2AO8oQtWrSITZs20dfXx6ZNm1i0aFGtq2RmNeAgT5R/Yc7M+jnIE+VfmDOzfg7yRPkX5sysn28IMrNxI8nXjFeRbwgyM6tTviEoEWO5BRp8G7TZ8cBBnoihAtmHr2bHNw+tmJklzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmias4yCXNldQtqVfSZknXVqNiZmY2MtW4s/MI8NGIeExSE7BR0kMR8UQVtm1mZsOouEceEc9GxGP5431ALzC70u2amdnIVHWMXNI84I3Ao2XmLZW0QdKGHTt2VLNYM7PjWtWCXNJ04B7gIxGxt3R+RKyKiNaIaJ05c2a1ijUzO+5VJcglTSUL8bURcW81tmlmZiNTjatWBKwGeiPik5VXyczMRqMaPfK3A1cAiyQ9nv9dVIXtmpnZCFR8+WFE9ABj++9rzMysYr6z08wscQ5yM7PEOcjNzBLnIDczS5yD3MwscQ5yM7PEOcjNzBLnIDczS5yD3MwscQ5yM7PEOcjNzBLnIDczS5yD3MwscQ5yM7PEOcjNzBLnIDczS5yD3MwscQ5yM7PEOcjNzBJXlSCXtEbSc5I2VWN7ZmY2ctXqkd8OXFilbZmZ2ShUJcgj4hFgVzW2ZWZmo+MxcjOzxE1YkEtaKmmDpA07duyYqGLNzOrehAV5RKyKiNaIaJ05c+ZEFWtmVvc8tGJmlrhqXX7YBXwHOEfSNklt1diumZkN74RqbCQiFldjO2ZmNnoeWjEzS5yD3MxG5JRTTkHSqP6AUa9zyimn1PiVpqcqQytmVv92795NRIx7Of1fADZy7pGbmSXOQW5mljgHuZlZ4hzkk8xEnFDyySSz+uKTnZPMRJxQ8skks/riHrmZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpa4qgS5pAsl/YukH0u6rhrbNDOzkak4yCU1AJ8B/htwLrBY0rmVbtfMzEamGj9j+xbgxxHxUwBJXwDeCzxRhW2b2SQRN7wSlp80MeXYqFQjyGcDTxeebwPeWrqQpKXAUoAzzzyzCsWa2UTSjXsn7D9fjuXjXkxdqUaQl/tfCl6ytyNiFbAKoLW1dfxbQ6ImotfjHo9ZfalGkG8D5haezwG2V2G7x6WJ6PW4x2NWX6px1cr3gddKOlvSy4BLga9UYbtmZjYCFffII+KIpKuBfwQagDURsbnimpmZ2YhU5T9fjoivAV+rxrbMzGx0fGenmVniHORmZolzkJuZJc5BbmaWOAe5mVniHORmZolzkJuZJc5BbmaWOAe5mVniHORmZolzkJuZJa4qv7ViZscHqdx/P1BdJ5988riXUW8c5GY2ImP5nXxJE/K/Ch3vHOST0Hj3etzjMasvDvJJxr0eMxstn+w0M0ucg9zMLHEOcjOzxDnIzcwS5yA3M0tcRUEu6bckbZZ0VFJrtSplZmYjV2mPfBPwPuCRKtTFzMzGoKLryCOiFybmtl0zMytvwsbIJS2VtEHShh07dkxUsWZmdW/YHrmkbwCnl5nVERH3jbSgiFgFrAJobW31bYhmZlUybJBHxPkTUREzMxsbX35oZpa4Si8//A1J24BfBb4q6R+rUy0zMxupSq9a+TLw5SrVxczMxsBDK2ZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIqCnJJn5D0pKQfSPqypBnVqpiZmY1MpT3yh4CWiHg98CPg+sqrZGZmo1FRkEfEgxFxJH/6XWBO5VUyM7PRqOYY+RLg64PNlLRU0gZJG3bs2FHFYs3Mjm8nDLeApG8Ap5eZ1RER9+XLdABHgLWDbSciVgGrAFpbW2NMtTUzs5cYNsgj4vyh5ku6EngP8F8iwgFtZjbBhg3yoUi6EPgY8M6IOFidKpmZ2WhUOkb+aaAJeEjS45L+ugp1MjOzUaioRx4Rr6lWRczMbGx8Z6eZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIc5GZmiXOQm5klzkFuZpY4B7mZWeIqurPTJo6kMc3375iZ1T/3yBMREWP6M6uFrq4uWlpaAGhpaaGrq6vGNapvDvKE9X9YGhoa/GGxmpI04O+yyy5j8+bNAGzevJnLLrvsJctY9TjIE9XV1cW1117LgQMHiAgOHDjAtdde6zC3migeBc6fP5/169cPmLZ+/Xrmz5/vo8Vx4iBP1LJly2hoaGDNmjW8+OKLrFmzhoaGBpYtW1brqtlxrre3l23btg04Wty2bRu9vb21rlrdUi2+GVtbW2PDhg0TXm49kcR1113H/fffT29vL83NzVx88cXcfPPN7u1YTc2dO5e+vj7Wrl3LggUL6Onp4fLLL6ehoYGnn3661tVLmqSNEdFaOt098oTddtttHDhwAIADBw5w22231bhGZpnSzoQ7F+PLQZ6oKVOmsG/fPl544QWOHj3KCy+8wL59+5gyxbvUamv79u2sWLGC9vZ2GhsbaW9vZ8WKFWzfvr3WVatbvo48UUePHj129n/KlCnHrgI4evRojWtmx7vm5mbmzJnDpk2bjk3r7u6mubm5hrWqb+6+JezSSy/l1FNPBeDUU0/l0ksvrXGNzKCjo4O2tja6u7s5fPgw3d3dtLW10dHRUeuq1S33yBO2fv16urq6jp1QWrx4ca2rZHasHba3tx87Ed/Z2en2OY4qumpF0seB9wJHgeeAqyJi2IEwX7VSublz57J//35mzJjB1q1bOeuss9izZw/Tp0/3lQFmdWq8rlr5RES8PiLOAx4A/qTC7dkIrVixgr6+Pp555hkigmeeeYa+vj5WrFhR66qZ2QSrKMgjYm/h6YmArzGaQI2NjcyePZspU6Ywe/ZsGhsba10lM6uBik92SuqU9DRwOUP0yCUtlbRB0oYdO3ZUWuxxr7Ozk7vvvpstW7bQ19fHli1buPvuu+ns7Kx11cxsgg07Ri7pG8DpZWZ1RMR9heWuBxoj4obhCvUYeeUaGho4dOgQU6dOPTbt8OHDNDY20tfXV8Oamdl4GWyMfNirViLi/BGWcRfwVWDYILfKNTc309PTw8KFC49N6+np8bW6ZsehioZWJL228PS/A09WVh0bKV+ra2b9Kr2O/GZJ55BdfrgV+FDlVbKR8LW6ZtbPv35oZpYI//qhmVmdcpCbmSXOQW5mljgHecL8ny+bGfjXD5PV1dVFR0cHq1evPvbrh21tbQC+csXsOOOrVhLV0tLCypUrB9wQ1N3dTXt7+4Af9Dez+jHYVSsO8kT5Fn2z448vP6wz/bfoF/kWfbPjk4M8Ub5F38z6+WRnonyLvpn18xi5mVkiPEZuZlanHORmZolzkJuZJc5BbmaWOAe5mVnianLViqQdZP+jkFXHacDOWlfCrAy3zeo6KyJmlk6sSZBbdUnaUO6SJLNac9ucGB5aMTNLnIPczCxxDvL6sKrWFTAbhNvmBPAYuZlZ4twjNzNLnIPczCxxDvKESVoj6TlJ/r/dbFKRNFdSt6ReSZslXVvrOtUzj5EnTNI7gP3AHRHRUuv6mPWTdAZwRkQ8JqkJ2AhcEhFP1Lhqdck98oRFxCPArlrXw6xURDwbEY/lj/cBvcDs2taqfjnIzWxcSZoHvBF4tLY1qV8OcjMbN5KmA/cAH4mIvbWuT71ykJvZuJA0lSzE10bEvbWuTz1zkJtZ1UkSsBrojYhP1ro+9c5BnjBJXcB3gHMkbZPUVus6meXeDlwBLJL0eP53Ua0rVa98+aGZWeLcIzczS5yD3MwscQ5yM7PEOcjNzBLnIDczS5yD3MwscQ5yM7PE/X94ICBl3wL8GwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAes0lEQVR4nO3de3Rc5Xnv8e9PsiwF24AFbglg7NxIRFTIRQktUUgcCMWckKRpabBpblLhuKwoSYETGtQ2pKlM4xSS1OEsx6dyCA0MpAFCbjS3mrhi5SYIoQalKQQbjCEIbCIs8EX2c/7YW+pY1tWzpfEe/T5raWlm9t7v+8zsdz/z7ndfRhGBmZnlV1W5AzAzs9I4kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOOZGbmeWcE/kIJF0n6e+nqa4/kvSopB2SXj0ddVYaSXdK+vMJzvtmSVuKnt8v6c0ZxXGBpO8WPQ9JL82i7IOI5f2SuspRd1r/hNdJXki6UtKXyx3HSA65RC5pk6Tn08S2XdK3JC2cgnrulLQzrecpSbdKeuFBlFPqxvqPwAcjYm5E/HxY2b8jqSBpq6TfSrpL0qnD5lkuabOkfklfk1RfNK1W0jpJfZKekHTJsGVfJeluSc+l/19VwvvIpYh4ZUTcOdY8khan63nWOGXdEBFnZRFXJSZCmzqHXCJPnRsRc4EXAr8BVk9RPR9M6zkROBL4zBTVM5ZFwP2jTJsL/Ax4LVAPfAn4lqS5AJJeCXwBeA/wu8BzwP8tWv5K4GVpHUuAj0o6O112NnA78GVgflr27enrU0aJQ7XdHbTxkvyhLM+x51XWn/khvUFFxE7gq8BJg69JOkLS9ZJ6057oX0uqklQvaYukc9P55kp6UNJ7J1DPNuAWoHGk6ZIuTMvaJunrko5NX9+QzvKLtGf/7hGWrUpj3CzpyTT2I9Le8g6gOl3+oRHi+nVEXBMRj0fE3ohYC8wGXp7OcgHwjYjYEBE7gL8B3iVpXjr9vcAnI2J7RPQA/w94fzrtzcAs4LMRsSsi/gkQ8JZRPoPrJF2b7iE9K+knkl5SNP00ST9L9xx+Jum0oml3SuqQdBfJl82L0x7uxZL+Oy3vk5JeIulH6R7EVwa/VCTNl/TNdJ1vTx8fP1KcI8T9gjT27ZIeAF43bPomSWemj18vqTut/zeSrklnG1zPz6Tr+Q+UDF3cJekzkrYBV2rk4YxzJP063ev79OCXmIbtphf3+iV1AG8EPp/W9/l0nldI+l7aDv9L0p8WLX9U2jb7JP0UeAmjKKqrVdIjwL+nr/+rkj2330rakHYUBpcZb/2/VdIv02U/T9KWBqeNuA0Mi+UDSoYYt0taIel1ku6T9Mzg+x/lvVyZtpXr07jul9RUNH2/PWYVDZsqHWaT9NE0rsclvVPSOZJ+lX7OVwyrsk7SzWld90g6pajsYyXdkrbThyV9aFicX5X0ZUl9wPvHaG+TFxGH1B+wCTgzfXwYSU/x+qLp15P0JOcBi4FfAa3ptLOAJ4DfIUlaXx2jnjuBP08fH03SmP8lfX4d8Pfp47cATwGvAWpJ9g42FJUTwEvHqKcFeBB4MUkP+9bBeiay/LCyXgXsBI5In98OXD5snh0kPfj5adm/WzTtT4D/TB//JXDHsGW/CVw6St3XAduA15N8AdwA3JROqwe2k+wZzAKWpc+PKvqsHwFemU6vSWP7OnB4+vou4Afp53QE8ADwvnT5o4A/TtvDPOBfga+NtC5HiPsfgP9IY1wIbAS2jNLefgS8J308F/j99PHiNN5ZRcu9HxgA2tL39IL0ta5h63Z9WvcJJG11sM1dCXy5aN796hj+noA5wKPAB9L6XkPSLl+ZTr8J+Eo6XyPwWHEswz6TwbquT+d/QVFbnUfSzj8L3DvB9X800EfSvmpI2tZA0XsddRsoimUNUEeyDe8EvkayHR8HPAm8aZT3cmU6/zkknaKrgB+Ptn2x/7b95jTOv03jvhDoBW5MP4dXpmW/uKiuPUXv8zLg4fRxFXB3Wtbs9L3+GvjDYcu+M533BYzS3g4qb5aSdKfij2TD2gE8k37IW4HfS6dVk2zwJxXN/7+BO4uerwb+M13uqDHquZOkd/gMSaO/AVgwwsruBFYVLTc3XSGLR2ooI9TzA+DioucvT5efNZHli5Y7PH1fHxtW9oph8z2WNtCFadl1RdPeCmxKH/8N6YZYNP0G4MpR6r8O+Oei5+cAv0wfvwf46bD5fwS8v+iz/rth0wN4Q9Hzuyn6UgKuJtlbGO0LbfuwdTlaIv81cHbR84sYPZFvAD4BHD2sjMWMnMgfGTbf+zkwkRfXfTHwg/TxlUwukb8b+I9h9X0B+DjJdrEHeEXRtJWMn8hfPEZ7OzKdZ7DTMNb6fy/7J08BW/ifRD7qNlAUy3FF058G3l30/BbgI6PEeSXw/aLnJwHPD1sHYyXy54Hq9Pm8dP5Th7XLdxbVVfw+q4DHSfaeTh2hPXwM+GLRshuGTR+xvR3M36E6tPLOiDiSpGfwQeCHko4h+eafDWwumnczybf2oLUkPZIvRsTT49TzoYg4MiKOi4gLIqJ3hHmOLa4vkiGMp4fVOZb9lk8fzyIZ054QSS8AvkHSiK4qmrSDJMEXOxx4Np3GsOmD08ZbdjRPFD1+juRLDQ58j3Dgenl0hPJ+U/T4+RGeDx4LOEzSF9Jd8z6SDeBISdVjxDro2GF1D4+zWCvJ8ZJfKhkeets4ZY/0nsaaZ3Maz8FYBJyaDjU8I+kZkqG1Y4AFJG1qou/zgNgkVUv6B0kPpZ/xpnTS0UXzj7X+h8qKJEsVxzKRbWBCbWEUw+Oq08THoJ+OiL1F9YwUS3Hdxe9zH8kX1rEk6+fYYevnCvZ/j8Pby2Tb26gO1UQOQCTjwrcCe4Fmkl3JPSQf2qATSHqhpBv2F0h2Gf9C2Zz6tbW4PklzSHb1HzuY5dN4B9i/sYxKUi3JbuZjJHsfxe4HisfoXkzy5feriNhO0ls4pWj+U/ifA6v3AydLUtH0kxn9wOtYhr9HKFovqTiIcgddStKLOzUiDgdOT1/X6IsMeZxk76Q4rhFFxH9HxDKSXfpPAV9N1/dosU/kPQ2ve2v6uJ9kqGjQMeOU/Sjww7TjMfg3NyL+gmQ4YGCEusZTXMdy4B3AmSRDW4vT1yf9GadtqjiWkraBEj3H2J/zZBW/zyrgeJL39yjw8LD1My8iziladr91OkZ7m7RDOpEr8Q6S8d6e9JvzK0CHpHmSFgGXkJx5Ack3ICRjcv8IXD/BXttYbgQ+oORUvVqSXdafRMSmdPpvSMbDRlMA/lLSi5ScbbISuDkiBsarWFINycHe54H3pj2AYjcA50p6Y9oA/g64NSIGe9XXA3+t5GDhK0jGAK9Lp91J8gX5ISUHXj+Yvv7v48U1gm8DJyo5FXKWkoO+J5GMuWdhHsln8IyS0ys/PollvwJ8LP0MjicZ0x6RpD+TtCD9nJ9JX95Lkij3MfZ6Hs3/SeteCHwYuDl9/V7gdEknpAf+PjZsueHt6pskn/F7JNWkf6+T1JBuF7eSHHA9TNJJwPsmGec8kmHLp0kS38pJLPst4JWS3pX2hD/E/gnzoLeBDNwLLE/3OM4G3lRiea8tep8fIfnMfgz8FOiTdLmSA+zVkholvW60gsZob5N2qCbybyg5o6MP6CA56DXYU2wj6c38GugiSbTrJL2WJKm/N23YnyL5BvyrUgKJiB+QjCffQtLzeAlwftEsVwJfSnen/vTAElgH/AvJcMDDJAdPRk0mw5wGvI3kANDgGRM7JL0xje1+YAVJQn+SZGO8uGj5jwMPkezK/hD4dET8W7rsbpIDL+8laUQtJENauycY25B0COttJD3np4GPAm+LiKcmW9YoPktycOgpko3m3yax7CdI3v/DwHdJ1sVozgbuT9ve54DzI2JnRDxH0g7vStfz70+i/ttJxlnvJUl4nQAR8T2SpH5fOn34l97ngD9RchbHP6VfzmeRtL2tJMMJnyLZA4NkCHJu+vp1wBcnESMkX/qbSfaiHiD5nCckXc/nkRxYfprklNe7imYpZRso1YeBc0na+AUke7eluJ3keMXgwf13RcSeNOecS3L85mGStvrPJHs3oxmxvR1MUEoH3c3MLKcO1R65mZlNkBO5mVnOOZGbmeWcE7mZWc6V5WY5Rx99dCxevLgcVZuZ5dbdd9/9VEQsGP56WRL54sWL6e7uLkfVZma5JWnEK3Y9tGJmlnNO5GZmOedEbmaWc07kZmY550RuZpZzTuRmlrlCoUBjYyPV1dU0NjZSKBTKHVJFy+z0w/R2sd3AYxFx0DdIN7N8KxQKtLe309nZSXNzM11dXbS2tgKwbNmyMkdXmbLskX8Y6MmwPDPLoY6ODjo7O1myZAk1NTUsWbKEzs5OOjo6yh1axcokkac37P9fJPffNbMZrKenh+bm5v1ea25upqfH/bypklWP/LMkPyYw/Bdshki6SFK3pO7e3pF+GtPMKkFDQwNdXV37vdbV1UVDQ0OZIqp8JSfy9AdDn4yIu8eaLyLWRkRTRDQtWHDArQLMrEK0t7fT2trK+vXr2bNnD+vXr6e1tZX29vZyh1axsjjY+Qbg7ZLOAeqAwyV9OSL+LIOyzSxnBg9otrW10dPTQ0NDAx0dHT7QOYUy/ak3SW8GLhvvrJWmpqbwTbPMzCZH0t0R0TT8dZ9HbmaWc5nexjYi7gTuzLJMMzMbm3vkZmY550RuZpZzTuRmZjnnRG5mlnNO5GZmOedEbmaWc07kZmY550RuZpZzTuRmlrm2tjbq6uqQRF1dHW1tbeUOqaI5kZtZptra2lizZg0rV66kv7+flStXsmbNGifzKZTpTbMmyjfNMqtcdXV1rFy5kksuuWTotWuuuYYrrriCnTt3ljGy/BvtpllO5GaWKUn09/dz2GGHDb323HPPMWfOHMqRbyqJ735oZtOitraWNWvW7PfamjVrqK2tLVNElS/Tux+amV144YVcfvnlAKxYsYI1a9Zw+eWXs2LFijJHVrmcyM0sU6tXrwbgiiuu4NJLL6W2tpYVK1YMvW7Z8xi5mVlOTNkYuaQ6ST+V9AtJ90v6RKllmlm+FQoFGhsbqa6uprGxkUKhUO6QKloWQyu7gLdExA5JNUCXpDsi4scZlG1mOVMoFGhvb6ezs5Pm5ma6urpobW0F8A8wT5GSe+SR2JE+rUn/fI7RNPDVc3Yo6ujoYPny5UPts62tjeXLl9PR0VHu0CpWJgc7JVUDdwMvBa6NiJ+MMM9FwEUAJ5xwQhbVzmhtbW1ce+21VFUl38UDAwNce+21AD6oZGX1wAMP0N/fz7p164Z65C0tLWzevLncoVWsTA92SjoSuA1oi4iNo83ng52lq66uZt++fVRXV7N3796h/1VVVezdu7fc4dkMVldXR1NTE93d3ezatYva2tqh576yszTTckFQRDwD3AmcnWW5dqB9+/YhiVWrVtHf38+qVauQxL59+8odms1wu3bt4q677qKlpYVnnnmGlpYW7rrrLnbt2lXu0CpWFmetLEh74kh6AXAm8MtSy7XxnXLKKaxbt4558+axbt06TjnllHKHZIYkzjjjDDZs2EB9fT0bNmzgjDPOQFK5Q6tYWYyRvxD4UjpOXgV8JSK+mUG5No57772X+fPnExFs3bqV7du3lzskMyKCBx98kC9+8YtDY+Qf+MAHfJ+VKVRyIo+I+4BXZxCLHYTB5O0kboeK2tpampubaWtro6enh4aGBpqbm3niiSfKHVrF8k2zcm5wd9W7rXaouPDCC7n55ptpaWnh2WefpaWlhZtvvpkLL7yw3KFVLF+in1OSWLRoEU888cTQmQHHHHMMmzdv9i6sTbuD6Ui4nU6eb2NbgZ5//nnuuOMOdu/ezR133MHzzz9f7pBshoqIEf/Gm2bZ8N0Pc6yvr2/oQotFixbR19dX7pDMrAycyHNipF3XnTt3smnTJoCh/8Pndc/HrPJ5aCUnRto1Peuss/Y72HnWWWd599VsBnKPPMe+853vAPiKTrMZzj1yM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8u5LH4haKGk9ZJ6JN0v6cNZBGZmZhOTxZWdA8ClEXGPpHnA3ZK+FxEPZFC2mZmNo+QeeUQ8HhH3pI+fBXqA40ot18zMJibTMXJJi0l+9u0nWZZrZmajyyyRS5oL3AJ8JCIOuDG2pIskdUvq7u3tzapaM7MZL5NELqmGJInfEBG3jjRPRKyNiKaIaFqwYEEW1ZqZGdmctSKgE+iJiGtKD8nMzCYjix75G4D3AG+RdG/6d04G5ZqZ2QSUfPphRHQBk/8JbTMzy4Sv7DQzyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7Ocy+o3O9dJelLSxizKMzOzicuqR34dcHZGZZmZ2SRkksgjYgOwLYuyzMxscqZtjFzSRZK6JXX39vZOV7VmZhVv2hJ5RKyNiKaIaFqwYMF0VWtmVvF81oqZWc45kZuZ5VxWpx8WgB8BL5e0RVJrFuWamdn4ZmVRSEQsy6IcMzObPA+tmJnlnBO5mVnOOZGb2YTU19cjaVJ/wKSXqa+vL/M7zZ9MxsgtO/X19Wzfvn3Syw1uNBMxf/58tm3zhbg2Odu3bycipryeybRlSziRH2KmY2PxhmJWWTy0YmaWc07kZmY550RuZpZzTuRmZjnnRG5mlnNO5GZmOedEbmaWc07kZmY550RuZpZzTuRmZjnnRG5mlnNZ/ULQ2ZL+S9KDkv4qizLNzGxiSk7kkqqBa4GlwEnAMkknlVqumZlNTBY98tcDD0bEryNiN3AT8I4MyjUzswnI4ja2xwGPFj3fApw6fCZJFwEXAZxwwgkZVFuZ4uOHw5VHTH0dZpM0HW1zqB6blCwS+Ug3tz7ghtoRsRZYC9DU1DT1d6fPKX2ib1ruRx5XTmkVVoGmo22C2+fByGJoZQuwsOj58cDWDMo1M7MJyCKR/wx4maQXSZoNnA98PYNyzcxsAkoeWomIAUkfBL4DVAPrIuL+kiMzM7MJyeQ3OyPi28C3syjLzMwmx1d2mpnlnBO5mVnOOZGbmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOOZGbmeWcE7mZWc45kZuZ5Vwm91qxbEkj3eI9O/Pnz5/S8q1yTXXbBLfPg+FEfog5mBv3S5qWG/7bzOa2eejy0IqZWc45kZuZ5ZwTuZlZzpWUyCWdJ+l+SfskNWUVlJmZTVypPfKNwLuADRnEYmZmB6Gks1Yiogem55QkMzMb2bSNkUu6SFK3pO7e3t7pqtbMrOKN2yOX9H3gmBEmtUfE7ROtKCLWAmsBmpqafGKpmVlGxk3kEXHmdARiZmYHx6cfmpnlXKmnH/6RpC3AHwDfkvSdbMIyM7OJKvWslduA2zKKxczMDoKHVszMcs6J3Mws55zIzcxyzonczCznnMjNzHLOidzMLOecyM3Mcs6J3Mws55zIzcxyzonczCznnMjNzHLOidzMLOecyM3Mcs6J3Mws55zIzcxyzonczCznSv2FoE9L+qWk+yTdJunIrAIzM7OJKbVH/j2gMSJOBn4FfKz0kMzMbDJKSuQR8d2IGEif/hg4vvSQzMxsMrIcI28B7hhtoqSLJHVL6u7t7c2wWjOzmW3cH1+W9H3gmBEmtUfE7ek87cAAcMNo5UTEWmAtQFNTUxxUtGZmdoBxE3lEnDnWdEnvA94GnBERTtBmZtNs3EQ+FklnA5cDb4qI57IJyczMJqPUMfLPA/OA70m6V9KaDGIyM7NJKKlHHhEvzSoQMzM7OL6y08ws55zIzcxyzonczCznnMjNzHLOidzMLOecyM3Mcs6J3Mws50o6j9ymj6SDmu67JphVPifynHBCNrPReGglxwqFAo2NjVRXV9PY2EihUCh3SGZWBu6R51ShUKC9vZ3Ozk6am5vp6uqitbUVgGXLlpU5OjObTu6R51RHRwfLly+nra2Nuro62traWL58OR0dHeUOzWxobxHw3uI0UDnGXpuamqK7u3va660kVVVVLF68+IAe+aZNm9i3b1+5w7MZZryD8SPxcZ/Jk3R3RDQNf9098pyaPXs2p5122n498tNOO43Zs2eXOzSbgSJi6K++vp7q6mquvvpq+vv7ufrqq6murqa+vn6/+Sw7TuQ5tXv3bm666SZaWlp49tlnaWlp4aabbmL37t3lDs1muG3btnHVVVdxySWXcNhhh3HJJZdw1VVXsW3btnKHVrFKSuSSPinpvvRHJb4r6disArOxzZ49m/PPP59169Yxb9481q1bx/nnn+8euR0SBsfHR3tu2SppjFzS4RHRlz7+EHBSRKwYbzmPkZeuqqqKuXPnsnPnTvbs2UNNTQ11dXXs2LHDY+RWVjU1NVRXV7Nv376htllVVcXevXvZs2dPucPLtSkZIx9M4qk5gAe+psn8+fPZsWMHRx11FFVVVRx11FHs2LGD+fPnlzs0m+EaGhrYtWsXAwMDAAwMDLBr1y4aGhrKHFnlKnmMXFKHpEeBC4C/HWO+iyR1S+ru7e0ttdoZr6+vj/nz53PjjTeyc+dObrzxRubPn09fX9/4C5tNoZ6eHmpra5k1K7lMZdasWdTW1tLT01PmyCrXuIlc0vclbRzh7x0AEdEeEQuBG4APjlZORKyNiKaIaFqwYEF272CGGhgY4LzzzmPp0qXMnj2bpUuXct555w31gszKZWBggNtuu43du3cTEezevZvbbrvNbXMKZXYeuaRFwLciYtyjGh4jL11NTQ21tbUsWLCARx55hBNOOIHe3l527drlcUgrK0ksW7aM++67j56eHhoaGjj55JMpFAo+7bBEUzJGLullRU/fDvyylPJs4mpra+nv72fp0qVs27aNpUuX0t/fT21tbblDsxluzpw5FAoFTj/9dLZt28bpp59OoVBgzpw55Q6tYpV61sotwMuBfcBmYEVEPDbecu6Rl04Sr3nNa/j5z39ORCCJV7/61dxzzz3u9VhZLVy4kG3btrFnz56hs1Zqamqor6/n0UcfLXd4uTZVZ638cUQ0RsTJEXHuRJK4Zeehhx5i0aJFSGLRokU89NBD5Q7JjK1bt7JmzRpOPPFEqqqqOPHEE1mzZg1bt24td2gVy1d25lR1dTV9fX20tbWxY8cO2tra6Ovro7q6utyh2QzX0NDA8ccfz8aNG9m7dy8bN27k+OOP9+mHU8i3sc2pvXv3csQRR7B69Wouu+wyFi1axOGHH85vf/vbcodmM1x7ezvvfve7mTNnDps3b2bRokX09/fzuc99rtyhVSz3yHPs4osvZs6cOUhizpw5XHzxxeUOyWw/B3NXRJs838Y2pxYuXMjevXu54YYbhm5je8EFF1BdXe0DSlZWjY2NrF69miVLlgy9tn79etra2ti4cWMZI8s/38a2wqxatYqBgQFaWlqoq6ujpaWFgYEBVq1aVe7QbIbr6elhy5Yt+/0M4ZYtW3xl5xTyGHlODf6c2+AvAs2ZM4eVK1f6Z96s7I499lguv/zyA/YWjz3WN0edKk7kObZs2TInbjskDR+y9bUNU8tDK2aWqa1bt7Jq1ar9fr1q1apVPo98CrlHbmaZKj6PfND69et9HvkUco/czDLV3t5Oa2sr69evZ8+ePaxfv57W1lba29vLHVrFco/czDI1eNymra1t6O6HHR0dPp4zhXweuZlZTvg8cjOzCuVEbmaWc07kZmY550SeY4VCYb/LoAuFQrlDMrMyyCSRS7pMUkg6OovybHyFQoH29nZWr17Nzp07Wb16Ne3t7U7mZjNQyYlc0kLgrcAjpYdjE9XR0UFnZydLliyhpqaGJUuW0NnZOXTvFTObObLokX8G+CjgmylMo56eHpqbm/d7rbm52XeYM5uBSkrkkt4OPBYRv5jAvBdJ6pbU3dvbW0q1RnIZdFdX136vdXV1+TJosxlo3EQu6fuSNo7w9w6gHfjbiVQUEWsjoikimhYsWFBq3DOeL4M2s0HjXqIfEWeO9Lqk3wNeBPwi/Tmn44F7JL0+Ip7INEo7gC+DNrNBmV2iL2kT0BQRT403ry/RNzObPF+ib2ZWoTK7+2FELM6qLDMzmzj3yM3Mcs6J3Mws55zIzcxyriw/LCGpF9g87RVXrqOBcc8WMisDt81sLYqIAy7EKUsit2xJ6h7plCSzcnPbnB4eWjEzyzkncjOznHMirwxryx2A2SjcNqeBx8jNzHLOPXIzs5xzIjczyzkn8hyTtE7Sk5I2ljsWs2KSFkpaL6lH0v2SPlzumCqZx8hzTNLpwA7g+ohoLHc8ZoMkvRB4YUTcI2kecDfwzoh4oMyhVST3yHMsIjYA28odh9lwEfF4RNyTPn4W6AGOK29UlcuJ3MymlKTFwKuBn5Q3ksrlRG5mU0bSXOAW4CMR0VfueCqVE7mZTQlJNSRJ/IaIuLXc8VQyJ3Izy5ySX2TvBHoi4ppyx1PpnMhzTFIB+BHwcklbJLWWOyaz1BuA9wBvkXRv+ndOuYOqVD790Mws59wjNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLuf8PEmP2SRwLhz8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAd1ElEQVR4nO3dfXRddZ3v8fcnSUnatLQUcgchrUFgMJCLqPFhRnwIw3iBJVdHZ8DYW8SU4TIuKs7ItONkZgS1aCN17KD3jtwhAlqiDqAwKoPKBJmyUKcIw7QG8KGlhEKptKVQaJMm3/vH3qknIY/NTk724fNa66yc/fj77rN/+3t++7f3yVZEYGZm+VVW7ADMzGxynMjNzHLOidzMLOecyM3Mcs6J3Mws55zIzcxyzol8GJKul/TpaSrrjyQ9Lul5Sa+djjJLjaS7JV00znnfIam7YHiTpHdkFMcSSd8vGA5JJ2Sx7kOI5UJJ64tRdlr+uPdJXki6QtLXih3HcGZcIpe0RdKLaWLbJem7khZNQTl3S9qXlvMbSbdKesUhrGeyB+vVwKURMTciHhhm/YWfx/OFiSKd/gFJj0naK+nbkhYWTKuU1C5pj6SnJP3FkGVPk3S/pBfSv6dNYjtyKSJOiYi7R5tHUl26nyvGWNe6iHhnFnGVYiK0qTPjEnnq3IiYC7wC2A5cM0XlXJqW87vAAuDvp6ic0bwS2DTGPOemiX5uYaKQdArwZWAp8DvAC8D/KVjuCuDEtIwmYIWks9JlDwNuA74GHAHcANyWjp8ySszUenfIxkryM1meY8+rrD/zGX1ARcQ+4Gbg5IFxkuZLulHSjrQl+jeSyiQtlNQt6dx0vrmSfinpgnGUsxO4BWgYbrqkP03XtVPS7ZKOScffk87yn2lr+fxhli1LY3xM0tNp7PPT1vLzQHm6/K8m+PEALAH+JSLuiYjngb8F3itpXjr9AuBTEbErIrqA/wdcmE57B1ABfCEi9kfEPwACzhjhM7he0pfSM6TnJP1E0vEF039f0n9Iejb9+/sF0+6WtErSvSRfNq9KW7gflvSLdH2fknS8pPvSM4hvDnypSDpC0nfSfb4rfV87ng9I0uw09l2Sfg68Ycj0LZLOTN+/UdKGtPztkj6fzjawn3en+/n3lHRd3Cvp7yXtBK7Q8N0Z50j6dXrW97mBLzENOU0vbPVLWgW8FfhiWt4X03leLekHaT18RNJ5BcsfmdbNPZJ+ChzPCArKWiZpK/Bv6fh/VnLm9qyke9KGwsAyY+3/P5T0cLrsF0nq0sC0YY+BIbF8SEkX4y5Jl0h6g6SHJO0e2P4RtuWKtK7cmMa1SVJjwfRBZ8wq6DZV2s0maUUa15OS3iPpHEmPpp/zXw8pskrSN9KyfibpNQXrPkbSLWk93SzpI0PivFnS1yTtAS4cpb5NXETMqBewBTgzfT+HpKV4Y8H0G0lakvOAOuBRYFk67Z3AU8B/I0laN49Szt3ARen7o0gq81fT4euBT6fvzwB+A7wOqCQ5O7inYD0BnDBKOS3AL4FXAXOBWwfKGefyW0jOSnYA3wdeUzDtNmDlkPmfB15P0soO4HcKpv0x8F/p+z8H7hiy7HeAj40Qx/XATuCNJF8A64Cvp9MWArtIzgwqgOZ0+MiCz3orcEo6fVYa2+3A4en4/cBd6ec0H/g58MF0+SOB96X1YR7wz8C3h9uXw8T9WeDf0xgXARuB7hHq233A0vT9XODN6fu6NN6KguUuBA4Ay9Ntmp2OWz9k33amZS8mqasDde4K4GsF8w4qY+g2AdXA48CH0vJeR1IvT0mnfx34ZjpfA/BEYSxDPpOBsm5M559dUFfnkdTzLwAPjnP/HwXsIalfs0jq1oGCbR3xGCiI5R+BKpJjeB/wbZLj+FjgaeDtI2zLFen855A0ij4D/Hik44vBx/Y70jj/Lo37T0mOs5vSz+GUdN2vKiirt2A7Lwc2p+/LgPvTdR2Wbuuvgf8xZNn3pPPOZoT6dkh5M4vkm+WL5MB6HtidfsjbgP+eTisnOeBPLpj/fwN3FwxfA/xXutyRo5RzN0nrcDdJpV8H1Ayzs68D2gqWm5vukLrhKsow5dwFfLhg+KR0+YpxLv+WdKfPAT5O8kW1oGDdlwyZ/4m0gi5K111VMO0PgS3p+78lPRALpq8DrhghjuuBfyoYPgd4OH2/FPjpkPnvAy4s+Kw/OWR6AG8pGL6fgi8lYA3J2cJwsZwG7BqyL0dK5L8GzioYvpiRE/k9wJXAUUPWUcfwiXzrkPku5KWJvLDsDwN3pe+vYGKJ/Hzg34eU92XgEyTHRS/w6oJpVzF2In/VKPVuQTrP/HHs/wsYnDwFdPPbRD7iMVAQy7EF058Bzi8YvgX46AhxXgH8sGD4ZODFIftgtET+IlCeDs9L53/TkHr5noKyCrezDHiS5OzpTcPUh48DXylY9p4h04etb4fymqldK++JiAUkLYNLgR9JOprkm/8w4LGCeR8j+dYecC1Ji+QrEfHMGOV8JCIWRMSxEbEkInYMM88xheVF0oXxzJAyRzNo+fR9BUmf9pgi4t6IeDEiXoiIz5B88bw1nfw8SYu20OHAc+k0hkwfmDbWsiN5quD9CyRfavDSbYSX7pfHh1nf9oL3Lw4zPBdA0hxJX05PzfeQHAALJJWPEuuAY4aUPTTOQstIrpc8rKR76F1jrHu4bRptnsfSeA7FK4E3pV0NuyXtJulaOxqoIalT493Ol8QmqVzSZyX9Kv2Mt6STjiqYf7T9f3BdkWSpwljGcwyMqy6MYGhcVRp/H/QzEdFXUM5wsRSWXbid/SRfWMeQ7J9jhuyfv2bwNg6tLxOtbyOaqYkcgIjoi4hbgT7gdJJTyV6SD23AYpJWKOmB/WWSU8Y/Uza3fm0rLE9SNcmp/hOHsnwa7wEGV5aJCH7b/7gJKOyjexXJl9+jEbGLpLXwmoJlX8NvL6xuAk6VpILppzL2hdfhDN1GKNgvBXEfqo+RtOLeFBGHA29Lx2vkRQ56kuTspDCuYUXELyKimeSUfjVwc7q/R4p9PNs0tOxt6fu9JGdZA44eY92PAz9KGx4Dr7kR8Wck3QEHhilrLIVlfAB4N3AmSddWXTp+wp9xWqcKY8n6GJiIFxj9c56owu0sA2pJtu9xYPOQ/TMvIs4pWHbQPh2lvk3YjE7kSrybpL+3K/3m/CawStI8Sa8E/oLkzgtIvgEh6ZO7GrhxnK220dwEfEjJrXqVJKesP4mILen07ST9YSPpAP5c0nGS5qbLfyMiDoxVsKTFkt4i6TBJVZL+kqSFdG86yzrgXElvTSvAJ4FbI2KgVX0j8DdKLha+mqQP8Pp02t0kX5AfUXLh9dJ0/L+NFdcwvgf8rpJbISuUXPQ9maTPPQvzSFpGu5XcXvmJCSz7TeDj6WdQS9KnPSxJ/0tSTdrS2p2O7iNJlP2Mvp9H8pdp2YuAy4BvpOMfBN6W7uP5JKfhhYbWq++QfMZLJc1KX2+QVJ8eF7eSXHCdI+lk4IMTjHMeSbflMySJ76oJLPtd4BRJ701bwh9hcMI85GMgAw8CH0jPOM4C3j7J9b2+YDs/SvKZ/Rj4KbBH0kolF9jLJTVIesNIKxqlvk3YTE3k/6Lkjo49wCqSi14DLcXlJK2ZXwPrSRJtu6TXkyT1C9KKvZrkG/CvJhNIRNxF0p98C0nL43jg/QWzXAHckJ5OnffSNdAOfJWkO2AzycWTEZPJEPOA/0ty4fAJ4Czg7IEuo/QzuYQkoT+dzv/hguU/AfyK5FT2R8DnIuJf02V7SC68XEBSiVpIurR6xhnbQWk87yJpOT8DrADeFRG/mei6RvAFkusEvyE5aP51AsteSbL9m0kuFn91lHnPAjaldW8t8P6I2BcRL5DUw3vT/fzmCZR/G0k/64MkCe86gIj4AUlSfyidPvRLby3wx0ru4viH9Mv5nSR1bxtJd8JqkjMwSLog56bjrwe+MoEYIfnSf4yknv2c5HMel3Q//wnJheVnSG55vbdglskcA5N1GXAuSR1fQnIRdTJuI7leMXBx/70R0ZvmnHNJrt9sJqmr/0RydjOSYevboQSltNPdzMxyaqa2yM3MbJycyM3Mcs6J3Mws55zIzcxyrij/LOeoo46Kurq6YhRtZpZb999//28iombo+KIk8rq6OjZs2FCMos3MckvSsL/YddeKmVnOOZGbmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm1nmOjo6aGhooLy8nIaGBjo6OoodUknzQ1fNLFMdHR20trZy3XXXcfrpp7N+/XqWLVsGQHNzc5GjK01F+e+HjY2N4fvIzUpTQ0MD11xzDU1NTQfHdXZ2snz5cjZu3FjEyPJP0v0R0fiS8U7kZpal8vJy9u3bx6xZsw6O6+3tpaqqir6+Q3pugqVGSuTuIzezTNXX13PllVcO6iO/8sorqa+vL3ZoJcuJ3Mwy1dTUxOrVq2lpaeG5556jpaWF1atXD+pqsWw5keeY7wywmaizs5OVK1fS3t7OvHnzaG9vZ+XKlXR2dhY7tJLlRJ5TA3cGXHPNNezbt49rrrmG1tZWJ3Mruq6uLk466aRB40466SS6urqKFFHp88XOnGpoaODEE0/kjjvuYP/+/VRWVnL22Wfzi1/8wncGWFEtWrSIvr4+1q1bd/D2wyVLllBeXs7jjz9e7PBybaSLnb6PPKc2bdpEV1cXNTU1bN++nQULFnD77bfT399f7NDMGNpA9EPep5a7VnKsurqajo4Oenp66OjooLq6utghmbFt2zba2tpYvnw5VVVVLF++nLa2NrZt21bs0EqWE3mOzZ49e9Rhs2Kor6+ntraWjRs30tfXx8aNG6mtrfXth1PIXSs5dvzxx3P22Wcf7CN/3etex9NPP13ssOxlrrW1lfPPP5/q6mq2bt3K4sWL2bt3L2vXri12aCXLLfKcqq6u5r777mPOnDkAzJkzh/vuu8/dKzYj7N+/nyeeeIL+/n6eeOIJ9u/fX+yQSpoTeU5VVlYCsGvXrkF/B8abFcuKFSuYM2cOd955Jz09Pdx5553MmTOHFStWFDu0kjXpRC6pStJPJf2npE2SrswiMBvdzp07mT9/PnV1dUiirq6O+fPns3PnzmKHZi9z3d3dXHjhhYMudl544YV0d3cXO7SSlUWLfD9wRkS8BjgNOEvSmzNYr42htbWVzZs309/fz+bNm2ltbS12SGYArF27lkcffZT+/n4effRR949PsUkn8kg8nw7OSl++aXQaXHXVVRx33HGUlZVx3HHHcdVVVxU7JDMk8eKLL3LRRRexe/duLrroIl588UUkFTu0kpXJLzsllQP3AycAX4qIlcPMczFwMcDixYtf/9hjj0263JezI488kp07d1JeXk5fX9/BvwsXLuSZZ54pdnj2MiaJww47jIigt7eXWbNmIYmenh7/MGiSpvTf2EZEX0ScBtQCb5TUMMw810ZEY0Q01tTUZFGsmc1QlZWVHHvssZSVlXHsscf6IvwUy/SulYjYDdwNnJXleu2ldu7cyZw5cygrS3ZhWVkZc+bM8cVOmxF6e3tHHbZsZXHXSo2kBen72cCZwMOTXa+NrbKyctAtXm712Eyxb98+tm7dSn9/P1u3bmXfvn3FDqmkZfHLzlcAN6T95GXANyPiOxms18xyqKIiSSsHDhwAoL+//+A4mxpZ3LXyUES8NiJOjYiGiPhkFoHZ2Pr6+mhpaaGqqoqWlhY/D9FmhAMHDhARrFmzhr1797JmzRoi4mBit+z5l505IWnQC2DPnj1s2bKF/v5+tmzZwp49e14yr1kxnHfeeYOeEHTeeecVO6SS5kSeExEx6HXTTTdRU1NDXV0dAHV1ddTU1HDTTTcNms+sGDo7Owc9vcqPeZta7rjKqebmZgBWrVoFJP9E66qrrjo43mw6DT37e+qppzjjjDNGnc8Njey4RZ5jzc3NBx/rtnHjRidxKxqfLRaXE7mZZaq5uZm1a9ce/JfK1dXVrF271g2NKeSHL5cASW7h2IzkupmtKf2JvpmZFY8TuZlZzjmRm5nlnBO5mVnOOZGbmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOOZGbmeWcE7mZWc5l8fDlRZI6JXVJ2iTpsiwCMzOz8cniwRIHgI9FxM8kzQPul/SDiPh5Bus2M7MxZPHw5Scj4mfp++eALuDYya7XzMzGJ9M+ckl1wGuBn2S5XjMzG1lmiVzSXOAW4KMRsWeY6RdL2iBpw44dO7Iq1szsZS+TRC5pFkkSXxcRtw43T0RcGxGNEdFYU1OTRbFmZkY2d60IuA7oiojPTz4kMzObiCxa5G8BlgJnSHowfZ2TwXrNzGwcJn37YUSsB5RBLGZmdgj8y04zs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5zLJJFLapf0tKSNWazPzMzGL6sW+fXAWRmty8zMJiCTRB4R9wA7s1iXmZlNzLT1kUu6WNIGSRt27NgxXcWamZW8aUvkEXFtRDRGRGNNTc10FWtmVvJ814qZWc45kZuZ5VxWtx92APcBJ0nqlrQsi/WamdnYKrJYSUQ0Z7EeMzObOHetmJnlnBO5mVnOOZHPMAsXLkTShF7AhOZfuHBhkbfSzLKUSR+5ZWfXrl1ExJSWMZD8zaw0uEVuZuMyHWeLPmM8NG6Rm9m4TMfZIviM8VC4RW5mlnNO5GZmOedEbmaWc07kZmY550RuZpZzTuRmZjnnRG5mlnNO5GZmOedEbmaWc07kZmY550RuZpZzTuRmZjnnRG5mlnNZPXz5LEmPSPqlpL/KYp1mZjY+k07kksqBLwFnAycDzZJOnux6zcxsfLJokb8R+GVE/DoieoCvA+/OYL1mZjYOWTxY4ljg8YLhbuBNQ2eSdDFwMcDixYszKLY0xScOhyvmT30ZZhM0HXXzYDk2IVkk8uEe5/GSx4hExLXAtQCNjY1T/5iRnNKVe6blmZ1xxZQWYSVoOuomuH4eiiy6VrqBRQXDtcC2DNZrZmbjkEUi/w/gREnHSToMeD9wewbrNTOzcZh010pEHJB0KXAnUA60R8SmSUdmZmbjkkUfORHxPeB7WazLzMwmxr/sNDPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLuUz++6FlSxruoUvZOeKII6Z0/Va6prpuguvnoXAin2EO5VFakqblEVz28ua6OXO5a8XMLOecyM3Mcs6J3Mws55zIzcxyblKJXNKfSNokqV9SY1ZBmZnZ+E22Rb4ReC9wTwaxmJnZIZjU7YcR0QXTc2+pmZkNb9r6yCVdLGmDpA07duyYrmLNzEremC1yST8Ejh5mUmtE3DbegiLiWuBagMbGRv9CwMwsI2Mm8og4czoCMTOzQ+PbD83Mcm6ytx/+kaRu4PeA70q6M5uwzMxsvCZ718q3gG9lFIuZmR0Cd62YmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOOZGbmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOOZGbmeWcE7mZWc45kZuZ5ZwTuZlZzjmRm5nlnBO5mVnOTfaZnZ+T9LCkhyR9S9KCrAIzM7PxmWyL/AdAQ0ScCjwKfHzyIZmZ2URMKpFHxPcj4kA6+GOgdvIhmZnZRGTZR94C3DHSREkXS9ogacOOHTsyLNbM7OWtYqwZJP0QOHqYSa0RcVs6TytwAFg30noi4lrgWoDGxsY4pGjNzOwlxkzkEXHmaNMlfRB4F/AHEeEEbWY2zcZM5KORdBawEnh7RLyQTUhmZjYRk+0j/yIwD/iBpAcl/WMGMZmZ2QRMqkUeESdkFYiZmR0a/7LTzCznnMjNzHLOidzMLOecyM3Mcs6J3Mws55zIzcxyzonczCznnMjNzHLOidzMLOecyM3Mcs6J3Mws55zIzSxzy5cvp6qqCoCqqiqWL19e5IhKm4rxL8QbGxtjw4YN015uqZKE/xW8FZOkCS/jOjtxku6PiMah490iN7NJi4iDr8rKStasWTNo3Jo1a6isrBw0zrLjRG5mmdq/fz+PPPIIVVVVSKKqqopHHnmE/fv3Fzu0kuWulRLgrhWbSSoqKujr63vJ+PLycg4cOFCEiEqHu1ZKUEdHBw0NDQA0NDTQ0dFR5IjMOJjEZ8+ejSRmz549aLxlzy3ynDiUi0ngC0o2/SQxa9YsAHp7ewe9d32cHLfIc67wIlFEUFtby4IFC6irq6OsrIy6ujoWLFhAbW2tLyhZ0S1dupSenh4igp6eHpYuXVrskErapBK5pE9Jeih98PL3JR2TVWA2uu7u7oOJuvBvd3d3McMyA6C9vZ2jjz6asrIyjj76aNrb24sdUkmbbIv8cxFxakScBnwH+LsMYrJxKisro729nf3799Pe3k5ZmU+wrPgqKysB2L59OxHB9u3bB4237E3qyI+IPQWD1YDP5afR0K4Td6XYTFBRUTGh8TZ5k/5kJa0CLgCeBZpGme9i4GKAxYsXT7ZYA1544QXOOOOMg8OHHXZYEaMxS+zdu5fm5mYeeughurq6qK+v59RTT/VdVVNozBa5pB9K2jjM690AEdEaEYuAdcClI60nIq6NiMaIaKypqcluC16mqqur6enp4YgjjkASRxxxBD09PVRXVxc7NDMWLVo06rBla8xEHhFnRkTDMK/bhsx6E/C+qQnThtq/fz/V1dXMnz8fScyfP5/q6mr/es6KrqysjKuvvpqWlhaee+45WlpauPrqq30NZwpN9q6VEwsG/yfw8OTCsfE6cOAAS5Ys4cknn6S/v58nn3ySJUuW+JdzVnQLFiwgImhra6O6upq2tjYiggULFhQ7tJI12a/Iz6bdLA8B7wQuyyAmG4eKigpuvvlm7rjjDnp6erjjjju4+eabfUHJim737t1ccskl7N69e9hhy95k71p5X9rNcmpEnBsRT2QVmI3u8MMP59lnn+WBBx6gt7eXBx54gGeffZbDDz+82KHZy1x9fT0LFy7khBNOoKysjBNOOIGFCxdSX19f7NBKljutcmr37t00NTVx+eWXU11dzeWXX05TU5NbPVZ0TU1NrF69elAf+erVq2lqGvGmNpskJ/KcOuaYY9i0aRN33XUXPT093HXXXWzatIljjvGPa624Ojs7WblyJe3t7cybN4/29nZWrlxJZ2dnsUMrWe5QzTH/IMhmoq6uLh544AE+/elPHxzX29vLZz7zmSJGVdrcIs+pbdu20dbWdvDZiMuXL6etrY1t27YVOzR7mauvr2f9+vWDxq1fv9595FPIiTyn6uvrqa2tZePGjfT19bFx40Zqa2t9sFjRtba2smzZMjo7O+nt7aWzs5Nly5bR2tpa7NBKlrtWcmrgYLnuuus4/fTTWb9+PcuWLWPVqlXFDs1e5pqbmwFYvnz5wZ/or1q16uB4y54fLJFjHR0drFq16uDB0tra6oPFrIT5wRIlqLm5eVDXipO4zRQDjyEsLy/3YwingRO5mWWqo6ODyy67jL179wLJf0O87LLLnMynkBO5mWVqxYoVVFRU0N7ezr59+2hvb6eiooIVK1YUO7SS5URuZpnq7u7mhhtuoKmpiVmzZtHU1MQNN9zgxxBOISdyM7OccyI3s0zV1tZywQUXDLqP/IILLqC2trbYoZUsJ3Izy1RbWxt9fX20tLRQWVlJS0sLfX19tLW1FTu0kuVEbmaZam5uZu3atVRXVyOJ6upq1q5d69tjp5B/EGRmlhP+QZCZWYlyIjczyzkncjOznHMiNzPLOSdyM7OcK8pdK5J2AI9Ne8Gl6yjgN8UOwmwYrpvZemVE1AwdWZREbtmStGG4W5LMis11c3q4a8XMLOecyM3Mcs6JvDRcW+wAzEbgujkN3EduZpZzbpGbmeWcE7mZWc45keeYpHZJT0vaWOxYzApJWiSpU1KXpE2SLit2TKXMfeQ5JultwPPAjRHRUOx4zAZIegXwioj4maR5wP3AeyLi50UOrSS5RZ5jEXEPsLPYcZgNFRFPRsTP0vfPAV3AscWNqnQ5kZvZlJJUB7wW+ElxIyldTuRmNmUkzQVuAT4aEXuKHU+pciI3sykhaRZJEl8XEbcWO55S5kRuZpmTJOA6oCsiPl/seEqdE3mOSeoA7gNOktQtaVmxYzJLvQVYCpwh6cH0dU6xgypVvv3QzCzn3CI3M8s5J3Izs5xzIjczyzkncjOznHMiNzPLOSdyM7OccyI3M8u5/w+JaLLpiD9sQgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEICAYAAABCnX+uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdAUlEQVR4nO3dfXxcV33n8c9PD5HsxMZyHhzihyiUmDUxWUi10N1qW0xwzFNaL69mwaUk1EpS6rUQGF4GKlhcQMvWzSuQdaDZULskJRYiJCwp4AaDlbKClK4dDMQITMBJbIfEdmRjy4kjWf7tH/eMuDPWo2dGV0f+vl8vvTRzn86Ze89858yZO3fM3RERkXhVZF0BEREpjoJcRCRyCnIRkcgpyEVEIqcgFxGJnIJcRCRyCvLAzL5gZp+coLL+i5ntNbNeM3vVRJR5NjGzejNzM6sa4/KDx97M/rOZ/byEddliZjeE2+8ys65SbfsM6vKQmd2YUdnjOiaxMLPHzez1WddjUgR52BnPh2A7bGbfMLP5ZSjnITM7Eco5ZGb3m9mLz2A7bmYvLaIqtwCr3f08d//hENv/hJn9xMxOmtm6Ieb/qZk9YWbHzez/mNns1LwaM9tkZkfN7GkzW1Ow7ivNbIeZPRf+v7Jg/vvCer8J26kp4nFGx93/r7u/bLTlzGydmX1xDNt7o7vfVWy9pmoQSmlMiiAPrnX384AXA88AG8pUzupQzkJgFvDpMpUzkkuBXSPMfwxYC3yjcIaZXQH8b+CdwBzgOeBzqUXWAZeHMpYAa83sDWHdc4CvAV8E6oC7gK+F6ZjZMuBDwNVAPfAS4K/P7CGO3VQMJ0tMpufXuEzFYzKZFbu/J11Dc/cTwFeAl+emmdmLzOxuMzsYeqIfMbMKM5ttZvvM7Nqw3Hlm9piZXT+GcnqA+4DFQ803s5vCtnrM7AEzuyRM/25Y5EehZ/+2IdatCHV8wswOhLq/KPSWe4HKsP4vh6nbXe6+BTg2xOx3AP/k7t91917go8BbzWxGmH898Al3P+zu3cDngXeFea8FqoDPuPsL7v6/AANeF+bfAGx0913ufhj4RGrdofaRm9m7zewX4Z3UZ83MRtoHYV6ud9lkZk8C28Kww/fM7NNmdsTMfmVm/ylM3xu2cUOq7Deb2Q/DO4+9Q71zGaHerzKzR8zsmJl1ALWpea81s32p+x80s/1h2Z+b2dXhhfGvgLeFNvCjsOxDZtZmZt8jeYF9iZ0+nGFmtiG84/mZmV2dmpH3Nr2g159rd0dCmf8xLLPSzLrD/n/QzC5Nrb80lPEbM7ud5FgPt0/WmdlXzOyLZnYUeJeZvdrMHg7H49dmdnvuRT+sM9LxrzSzWyx55/sr4M0F5V0Snlc94Xl2U0Fd7g11OWbJu9OFZvbh0A72mtk1IzyWx83sA2b24/DYO8ysNsw7bXjLUu+wLRlm+5wlQ2K9oU1ebGafCY/xZ3b6cOh/MLOfhvn/kCsrbO8tZrYz7MPvm9mVBfX8oJn9GDhuZlVDtbfhHmced8/8D3gceH24PZ2kp3h3av7dJD3JGSQ9xd1AU5h3DfA0cBFJaH1lhHIeAm4Mty8AtgH/GO5/AfhkuP064BBwFVBD8u7gu6ntOPDSEcpZSdKrfglwHnB/rpyxrJ9a7ovAuoJpXwM+WDCtF/hdkl62A3NS8/4E+Em4/T5gS8G6XwfeH27/CHhbat4FYXvnD1M/D+vPAhYAB4E3jLYPwjH0cFzPBaaRvGCcBP6c5IXuk8CTwGfDMbiG5IXtvLCN1wKvIOmMXEnyLm55wfarhqjzOcATYV9Uh/3Tnzr2rwX2hdsvA/YCl6S2+zvh9jrgi0O0ryeBK0heMKvJb3O5x5gr+23Ab4DZhc+DwjKGekzA8rCPF4XyPgJ8P3XsjobHVx3KPJmryxD7ZV3YD8vDPp1G0qZ+L2y7HugG3jvG4/9u4GfAfGA20JmuP/AvJO8ka4FXhnWvTtXlBLAslH03sAdoDY/lJmDPKHnyb8Aloexu4N2pY9A1RDt+aSoHDoXHXkuSEXtIOki5dtlZUNajqcf5PX7blq4CDgCvCeveEJavSa27M6w7jRHa26hZUYogLvYvPKBe4EhobE8BrwjzKoEXgJenlv8L4KHU/Q3AT8J6Q4ZO6on2XChnP3APcGHqAOYOwEZgfWq980gaeX3hgR+mnO8Aq1L3XxbWrxrL+qn1hgry7+QaZWrafpIAmh+2XZuatxR4PNz+KPClgnXvyZUB/JLwRAz3q8P26oepnwONqftfBj402j7gt6H0ktT8dwG/SN1/Bae/KD0LvHKYunwG+HTqCTBckP9BaCeWmvZ9hg7yl5I8EV8PVBdsZx1DB/nHh5iWDvLCsv8NeGfqeTCeIN9C6NCE+xUk7ftSkuD519Q8A/YxcpB/d6h5qWXeC3x1jMd/G6l2SvJC7OH4zwcGgBmp+Z8CvpCqy9bUvGtJ8qEy3J8RtjVrmHo+DvxZ6v564I7UMRgtyD+fmtcMdBe0yyMFZaUf55uAX4bbf0fy7jhd1s+BP0ytuzI1b9j2NtrfZBpaWe7us0h6X6uBfzGzi0l6FrleVM4TwNzU/TtJhkj+wd2fHaWc97j7LHef6+7vcPeDQyxzSbo8T4Ywni0ocyR564fbVSRj2sXqBWYWTJtJ0lvtTd0vnDfaukPNz90eaogn5+nU7edIXvRgbPtgb8G2nkndfh7A3QunnQdgZq8xs05Lhtt+Q9IDvGCEeuZcAuz38MxJ1e007v4YSXitAw6Y2ZcsDLGNoPAxFRqq7NG2OZxLgdvC2/YjQA9JYM8N2xysSyhztLrlzQ/DGV+35MPvo8D/4PR9PNLxT28vvY8vAXrc/VjB/PTzq/C4H3L3gdR9UmUNZbh6jUVh2UO2wZTCx5k7npcC788dn3CM5pN/vNPH6EzaGzA5x8gH3P1+klfsRpK3Of0kOyVnAUkvFDOrJPnw727gL624s0lynkqXZ2bnAufnyhzv+qG+J8lvEGdqF/DvU3V7CcmL325PxrV/nZ4fbu9KrXtlbhwzuLJgfuG6z4zhxXEoY9kHzpnbDDwAzHf3FwF3MMIYcMqvgbkF+2DBcAu7+2Z3byR5LA78TW7WcKuMUv5QZT8Vbh8nGVrMuXiU7e4F/iJ0THJ/09z9+ySPc/DMr1DmaGeCFZbxdyTDI5e7+0ySzwXGso8pLJ/8ffwUMNt++7lObv5Yn1/FyNvHobNYrMLHmTuee4G2guMz3d3bU8vn7fMR2tuIJl2QW+KPScZ7u8Or8JeBNjObET7MWUMy7ABJ44JkTPYW4O4Q7sXYDPy5Jafq1ZD0RH7g7o+H+c+QjP0Opx14n5ldZmbnhfU73P3kWAo3s+rwgUkFUGVmtanHdA9wrSXnO58LfBy4P9W7uRv4iJnVmdm/IxlP/EKY9xDJC+R7LPngdXWYvi21bpOZvdzM6kjGXHPrjldR+2AMZpD06k6Y2auBPx3jeg+TvKC8J3y49Fbg1UMtaGYvM7PXhTZwgqQ3lusVPgPU2/jPTLkolF1tZteRjG9/M8zbCbw9zGsgGd/OOQicIr/d3QF82JIzmXInBVwX5n0DuMLM3mrJGRHvIf+FYSxmkIyz94a29JfjWPfLJI9zXmhLH8rNcPe9JMNZnwpt+0qgiaRtl9uPSPbLK8NzbF0JtvnfwuOcTZJHHWH654F3h3ePZmbnWvIh/YyhNjJKexvRZAryf7LkjI6jQBtwg7vneorNJK+kvwK6SIJ2k5n9LkmoXx8C/29IXsU+VLjx8XD375CMJ99H0rP4HeDtqUXWAXeFt0v/dYhNbAL+keRMgz0kB6V5HFX4PMlBXEHyAc/zJKcbEvbJu0ka/QGSJ9uq1LofIxnrfoLkA6W/dfd/Duv2kXyYdT3J5wQrSYa0+sL8fyYZT+wM6z8Rtncmit0Ho1kFfNzMjgH/nSQ4RhUe61tJxkoPk3zgeP8wi9cA/5PkXWHuA/Vcx+He8P9ZM3tkHPX+AcnpoYdI2vmfpN7xfJSkrR0mOe1zc6rez4Xlvxfa3e+5+1dJ2vyXwtDHo8Abw/KHgOtC/Z8NZX5vHPUE+ADJC+QxkjbZMfLieT4PPEgSnI9w+j5eQTLu/xTwVeBj7r51nPUbN3ffTdL5+TbwC5I8KdZm4Fsk+fQrkg9EcfftJB2p20mO6WOMcBYYI7e3EVn+cJ2IiMRmMvXIRUTkDCjIRUQipyAXEYmcglxEJHKZXBjnggsu8Pr6+iyKFhGJ1o4dOw65+4WF0zMJ8vr6erZv355F0SIi0TKzIb+FrKEVEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKcgj1t7ezuLFi6msrGTx4sW0t7ePvpKITDn6gdVItbe309raysaNG2lsbKSrq4umpiYAVqxYkXHtRGQilaxHbsmPrf7QzL5eqm3K8Nra2ti4cSNLliyhurqaJUuWsHHjRtra2rKumohMsFIOrbSQ/MipTIDu7m4aGxvzpjU2NtLdrUMgcrYpSZCb2TzgzcDfl2J7MrpFixbR1ZV/Tfyuri4WLVqUUY1EJCul6pF/BlhL8lNUQzKzm81su5ltP3hwqN87lvFobW2lqamJzs5O+vv76ezspKmpidbW1qyrJiITrOgPO83sLcABd99hZq8dbjl3v5Pk1+5paGjQzxIVKfeBZnNzM93d3SxatIi2tjZ90ClyFir6p97M7FMkvyd5EqgFZpL8GPCfDbdOQ0OD66JZIiLjY2Y73L2hcHrRQyvu/mF3n+fu9SQ/ULxtpBAXEZHS0heCREQiV9Igd/eH3P0tpdymiMRH3zqeWOqRi0hJtbe309LSwvHjx3F3jh8/TktLi8K8jBTkIlJSa9eupa+vDwAzA6Cvr4+1a9dmWa0pTUEeMb19lclo3759TJs2jU2bNnHixAk2bdrEtGnT2LdvX9ZVm7IU5JFKv30F9PZVJpU1a9bkXQdozZo1WVdpSlOQR2rt2rVUVVXl9Xqqqqr09lUmhVtvvTXvW8e33npr1lWa0or+QtCZ0BeCimdmfOtb32Lp0qWD07Zu3co111xDFsdUJGf+/PkcO3aMuro6nnzySRYsWMDhw4eZMWMGe/fuzbp6USvbF4JERNLWr1+Pu7N//35OnTrF/v37cXfWr1+fddWmLP2wRKTmzZvHddddR11dHU888QSXXnophw8fZt68eVlXTYSamhpmz57Nk08+ydy5cwc/y5HyUI88UsuXL+fYsWM8//zzADz//PMcO3aM5cuXZ1wzOdu1tbXR0dHBnj17GBgYYM+ePXR0dOhHT8pIQR6pzs5OrrrqKg4cOIC7c+DAAa666io6Ozuzrpqc5bq7u7n33nupra3FzKitreXee+/Vj56UkYI8Urt27WLnzp3ccsstHD9+nFtuuYWdO3eya9eurKsmZ7lZs2Zxxx13UFdXR0VFBXV1ddxxxx3MmjUr66pNWQrySJkZN910E2vWrGH69OmsWbOGm266afCbdCJZOXLkCADuzqlTpwbPospNl9JTkEfK3dmyZUveubpbtmzRqYeSuVOnTlFbW0tPTw8APT091NbWcurUsD8gJkXSWSuRqqmp4ZxzzuHqq6/G3TEzLr/8cmpqarKumgh9fX0MDAwA0N/frxAvM/XII7Vw4UJ279492AN3d3bv3s3ChQszrpkIgyE+3H0pLQV5pB599NFxTReRqUtBHil3p7Kykvr6eioqKqivr6eyslJj5DJpVFRU5P2X8tEejpiZ5X0NWmesyGSSa49ql+WnDzsjdvLkycHb/f39GdZE5HTpz2+kvNQjF5GyyJ2pojNWyk9BLiISOQV55DQOKSIK8shpHFJEFOQiIpFTkItIWVRXV+f9l/JRkItIWeROidWpseWn88gjMZ4PM9PLauxcJsJY26faZnmoRx4Jd8/7W716NRUVFcyZMweAOXPmUFFRwerVq/OWE5kIY21zapvloSCP1IYNG1i1atXgxfqPHDnCqlWr2LBhQ8Y1k7PdNddcM67pUjzL4pWxoaHBt2/fPuHlTlVmph6OTCrLli1j69atg9fKX7p0KQ8++GDW1Yqeme1w94bC6RojF5GSy4W2mekr+hNAQysiIpFTkIuIRE5BLiISOQW5iEjkFOQiIpFTkIuIRE5BLiISOQW5iEjkig5yM5tvZp1m1m1mu8yspRQVExGRsSnFNztPAu9390fMbAaww8y2uvtPS7BtEREZRdE9cnf/tbs/Em4fA7qBucVuV0RExqakY+RmVg+8CvjBEPNuNrPtZrb94MGDpSxWROSsVrIgN7PzgPuA97r70cL57n6nuze4e8OFF15YqmJFRM56JQlyM6smCfF73P3+UmxTRETGphRnrRiwEeh291uLr5KIiIxHKXrkvw+8E3idme0Mf28qwXZFRGQMij790N27gLH/MrCIiJSUvtkpIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BbmISOQU5CIikVOQi4hETkEuIhI5BfkkM3v2bMxsXH/AuJafPXt2xo9SYjQRbVPt88xUZV0ByXf48GHcvaxl5J5gIuMxEW0T1D7PhHrkIiKRU5CLiEROQS4iEjkFuYhI5BTkIiKRU5CLiEROQS4iEjkFuYhI5BTkIiKRU5CLiEROQS4iErmSBLmZvcHMfm5mj5nZh0qxTRERGZuig9zMKoHPAm8EXg6sMLOXF7tdEREZm1L0yF8NPObuv3L3PuBLwB+XYLsiIjIGpbiM7Vxgb+r+PuA1hQuZ2c3AzQALFiwoQbFTk39sJqx7UfnLEBmniWibg+XIuJQiyIe6ePBpFy129zuBOwEaGhrKf1HjSNlfH52Q65H7urIWIVPQRLRNUPs8E6UYWtkHzE/dnwc8VYLtiojIGJQiyP8fcLmZXWZm5wBvBx4owXZFRGQMih5acfeTZrYaeBCoBDa5+66iayYiImNSkt/sdPdvAt8sxbZERGR89M1OEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCJXkq/oS2mZDXVl4NKpq6sr6/Zl6ip32wS1zzOhIJ9kzuR6z2Y2IdeJlrOb2ubkpaEVEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRiVxRQW5mf2tmPzOzH5vZV81sVqkqJiIiY1Nsj3wrsNjdrwR2Ax8uvkoiIjIeRQW5u3/L3U+Gu/8KzCu+SiIiMh6lHCNfCWwZbqaZ3Wxm281s+8GDB0tYrIjI2a1qtAXM7NvAxUPManX3r4VlWoGTwD3Dbcfd7wTuBGhoaPAzqq2IiJxm1CB399ePNN/MbgDeAlzt7gpoEZEJNmqQj8TM3gB8EPhDd3+uNFUSEZHxKHaM/HZgBrDVzHaa2R0lqJOIiIxDUT1yd39pqSoiIiJnRt/sFBGJnIJcRCRyCnIRkcgpyEVEIqcgFxGJnIJcRCRyCnIRkcgpyEWk5Jqbm6mtrQWgtraW5ubmjGs0tSnII6Yni0xGzc3N3H777bzwwgsAvPDCC9x+++1qn2VkWVznqqGhwbdv3z7h5U4lzc3NfO5zn+Oiiy7i6aef5uKLL+bAgQOsWrWKDRs2ZF09OcuY2bjX0TX2xs/Mdrh7w2nTFeRxOJMnCujJIhMv11bnzJnDM888M/gf1B6LNVyQF3WtFZk4hU+A3JPFzHD3wf9DLSsy0cyMnp4eAHp6evLap5SexsgjV1FRkfdfZDJwd/r7+wHo7+9XiJeZnv2RmzZtWt5/ETn7KMgj19vbm/dfRM4+CvLIVVZW5v0XkbOPgjxyAwMDef9FJov0dxykvBTkIlIWJ06cyPsv5aMgFxGJnII8UsOdbqjTEGWyqK6uzvsv5aNnfaROnTo1rukiE62mpibvv5SPgjxiN954I+4++HfjjTdmXSURAGbOnMnx48cBOH78ODNnzsy4RlObgjxi9913H52dnfT399PZ2cl9992XdZVEADh69CjXXnstBw8e5Nprr+Xo0aNZV2lK07VWIlVRUcGRI0dYsWLF4IWJjhw5ojFyydwVV1zBc889xwMPPMCFF14IwGWXXcb06dMzrtnUpWd9pFatWgXAs88+m/c/N10kK62trQBs27aNvr4+tm3bljddSk898kht2LCB3bt3s3XrViD5QtDSpUt1LXLJ3IoVK4Dkmvnd3d0sWrSItra2welSeuqRR6q9vZ2HH36YqqrktbiqqoqHH36Y9vb2jGsmIhNNQR6p1atX09vby/nnn09FRQXnn38+vb29rF69OuuqyVmuvb2dlpaWvLNWWlpa1MkoIwV5pHp6eqirq2Pz5s2cOHGCzZs3U1dXN3gxf5GsrF27lqqqKjZt2sSJEyfYtGkTVVVVrF27NuuqTVkK8ogtXbp08AeYm5ubWbp0adZVEmHfvn3cddddLFmyhOrqapYsWcJdd93Fvn37sq7alKUgj1hHRweHDh3C3Tl06BAdHR1ZV0lEMqAgj1TuNzv7+vpwd/r6+vKmi2Rl3rx5XH/99XlfVrv++uuZN29e1lWbshTkkXJ3pk+fnvcLQdOnT9dvI0rm1q9fz8DAACtXrqSmpoaVK1cyMDDA+vXrs67alKUgj1hLSwsLFy6koqKChQsX0tLSknWVRFixYgW33XYb5557LmbGueeey2233abzyMvIsujBNTQ0+Pbt2ye83Klk/vz5DAwMcM8999DY2EhXVxfveMc7qKysZO/evVlXT0TKwMx2uHtD4XT1yCO1fv16ent7WbZsGeeccw7Lli2jt7dXb19FzkIK8ojV1tYyd+5czIy5c+fqtxFFzlIK8ki1tbXR0dHBnj17OHXqFHv27KGjo4O2trasqyYiE6wkQW5mHzAzN7MLSrE9GV13dzeNjY150xobG+nu7s6oRiKSlaKD3MzmA0uBJ4uvjozVokWL6OrqypvW1dXFokWLMqqRiGSlFD3yTwNrAZ3APIFaW1tpamrK+9JFU1OTrvkschYq6nrkZvZHwH53/9Fo3yg0s5uBmwEWLFhQTLGCrvksIr816nnkZvZt4OIhZrUCfwVc4+6/MbPHgQZ3PzRaoTqPXERk/IY7j3zUHrm7v36YDb4CuAzI9cbnAY+Y2avd/eki6ysiImN0xmPk7v4Td7/I3evdvR7YB1ylEBeR9vZ2Fi9eTGVlJYsXL9aPSpSZfrNTREqqvb2d1tZWNm7cOHj5iKamJgB9hlMmutaKiJTU4sWL2bBhA0uWLBmc1tnZSXNzM48++miGNYvfcGPkCnIRKanKykpOnDhBdXX14LT+/n5qa2sZGBjIsGbx00WzRGRC6MtqE09BLiIlpS+rTTx92CkiJaUvq008jZGLiERCY+QiIlOUglxEJHIKchGRyCnIRUQipyAXEYlcJmetmNlB4IkJL3jqugAY9fLBIhlQ2yytS939wsKJmQS5lJaZbR/qlCSRrKltTgwNrYiIRE5BLiISOQX51HBn1hUQGYba5gTQGLmISOTUIxcRiZyCXEQkcgryiJnZJjM7YGb6/SyZVMxsvpl1mlm3me0ys5as6zSVaYw8Ymb2B0AvcLe7L866PiI5ZvZi4MXu/oiZzQB2AMvd/acZV21KUo88Yu7+XaAn63qIFHL3X7v7I+H2MaAbmJttraYuBbmIlJWZ1QOvAn6QbU2mLgW5iJSNmZ0H3Ae8192PZl2fqUpBLiJlYWbVJCF+j7vfn3V9pjIFuYiUnJkZsBHodvdbs67PVKcgj5iZtQMPAy8zs31m1pR1nUSC3wfeCbzOzHaGvzdlXampSqcfiohETj1yEZHIKchFRCKnIBcRiZyCXEQkcgpyEZHIKchFRCKnIBcRidz/B9VRPHOkD88kAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def normal_random_box_plots(num_random_numbers):\n", + " x = random.normal(loc=0, scale=1, size=num_random_numbers)\n", + " y = random.normal(loc=0, scale=1, size=num_random_numbers)\n", + "\n", + " data = [x, y]\n", + "\n", + " fig1, ax1 = plt.subplots()\n", + " ax1.set_title('Box Plot of ' + str(num_random_numbers) + ' normal distributed random numbers')\n", + " ax1.boxplot(data)\n", + " plt.show()\n", + "\n", + "for i in [1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]:\n", + " normal_random_box_plots(i)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAXZklEQVR4nO3de5CldX3n8feHGXQwXJXWAEMco9F42RVjo1tFjAQp5SIYUyYaRQIxEhJFctmFZXd1cdUkbpkNu1qKIyog3lihUInoqjgSokD1yEVhvCA3EXQauSheUOC7fzxPU4fD6T6nZ3qmnZ/vV1VXnXN+v/P8vs/lfPo5v/Oc7lQVkqRt33bLXYAkaWkY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQl0iS05O8eSuN9eIk30lyd5JnbI0xl8NitmmSNUkqycr+/gVJ/nSJ6nhOkm8M3L8hyYFLsexNqGX/JDcvx9j9+FvtON9akhyV5OLlrmMpNBHo/Qvsp33A3ZHkX5LsvQXGWZfkZ/04tyU5N8kem7CcSvKEzSjlbcBrq2rHqrp8xPLflOSrSe5NcvJmjLPNqqqDq+qMcf0m2RdV9a9V9aSlqKvFQNQvjyYCvXdYVe0I7AF8H3j7Fhrntf04TwR2Bf55C42zkMcCVy/Qfi1wAvAvW6ecTpIVW3O8rWHujH9btC3Xvq1a7m3eUqADUFU/Az4GPGXusSS7JDkzyWySG5P8tyTbJXlkkpuTHNb32zHJtUmOnGCc24FzgKeNak/y6n5Ztyf5RJI9+8cv6rtc2Z/pv3TEc7fra7wxyca+9l2SPDzJ3cCK/vnfnqe2M6rqAuBH49YjyclJzu7H+FGSq5NMD7Q/uX9ncmffdvhA2+lJ3pXkU0l+DPx+/27pPyW5KsmPk7w3yWP6KZAfJflckt0GlvF/k3wvyV1JLkry1HE1989bkeRt/Tul64BDh9rXJfnz/vYTknyxH+O2JB/tH3/Ivpib0khyYpLvAe+fZ5pj3yTX9O8I359kVb/Mh7x9n3sXkOQY4BXACf14n+zb90xyTn98Xp/kdQPP3aHfznckuQbYd8x2qSSvSfIt4Fv9Y/873RTdD5OsT/Kcgf7j9v8zknylb/sosGpovJHH+UAtf5XkW/3z35Tk8Um+3NdydpKHzbMeRyW5uN/Hd/Tb5eCB9gdNe/XrcVZ/e2767eh+ve9IcmySffvj8s4k73jokHl7f4x8PcnzBhp26Y/jW5N8N8mb05+89HX+W5J/TnI7cPJ8x9tWUVXb/A9wA3Bgf/sRwBnAmQPtZwIfB3YC1gDfBF7Vtz0f+B7waOA9wMcWGGcd8Of97d2BC4EP9PdPB97c3z4AuA34HeDhdO8WLhpYTgFPWGCcP6M7y/5NYEfg3LlxJnn+QL+zgJPH9DkZ+BlwCN0vin8ALunbtu/r+C/Aw/r1+hHwpIF1vgvYj+7kYFW/Ly4BHgPsBWwEvgI8o98WFwL/fWhdd+rbTgGuGGh7YJuOqPtY4OvA3sAjgS/022XliH31YeC/DtT4u/NtS2B/4F7grX1NO/SP3Tx0vH1tYOx/G9j3RwEXD9X6wBjD69TXtB54Q7+NfxO4DnhB3/6PwL/24+zdj3vzqG0yMNZn+/479I8dATwKWAn8Hd3xvmqC/f8w4Ebgb/pj4SXAL1jccf4JYGfgqcA9wOf7ddwFuAb403nW46h+rFf3df0lcAuQ4df8wHqc1d9e0499ar+/n9+v43l0r/O54/K5A2PdO7CeL6U7rh/Zt58HvBv4tf75lwF/MfTc4/rtuwMLHG9bPAu31kBbdCW6nXs3cGe/cW8B/l3ftqI/kJ4y0P8vgHUD998OfLV/3qMWGGcd8JN+nO8CHwSmhl+owHuB/znwvB37g3PN8At8nnE+D/zVwP0n9c9fOcnzB543aaB/buD+U4Cf9refQ/fi326g/cNzy+zX+cyh5d0AvGLg/jnAuwbuHwecN08tu/brtsvwNh3R90Lg2IH7z2f+QD8TWAusHrGcUYH+c/rAG3hsONAHxz4E+HZ/+ygWF+jPBm4a6n8S8P7+9nXAQQNtxzA+0A8Ys8/vAJ4+wf7/PQZCtH/sSyzuON9voH09cOLA/X8CTpmnxqOAawfuP6Jf3q8P7INxgb7XQPsPgJcOHZd/PTDW8HpeBryS7sTkHvpfjn3bnwBfGHju8P6b93jb0j8tTbn8QVXtSnem8Frgi0l+ne5Meu5MY86NdL+l56ylmzp5f1X9YMw4r6uqXatqr6p6RVXNjuiz5+B4VXU33QG114i+ozzo+f3tlXQH15bwvYHbPwFWpZsL3BP4TlXdP1TL4Hp8Z8Tyvj9w+6cj7u8ID0yb/GOSbyf5Id2LFLp9Ns6eQ2PfOF9Hus8TAlzWTyn82Zhlz1Y3dbeQ4bH3nK/jGI8F9uynAe5McifdO6K5fb2Y9RxVG0n+LsmGfgrgTrqz48FtvND+/271KTVi/EmO84mOhXk8UFdV/aS/uVD/YYsZe9R67km3f7YHbh3YP++mO1OfM/waWOzxtmRaCnQAquq+qjoXuA/4Xbq3hL+g2zFzfoPuDHvug7x30/1W/cts3tUnc24ZHC/Jr9G95f3upjy/r/deHnxAbg23AHsnGTxOHth2vWLTvRx4EXAgXcis6R/PBM+9lW4KYrCukarqe1X16qrak+7d2TvH7OdJ1ml47Fv62z+mO5sEoD+pWGjZ3wGu708S5n52qqpD+vaJ13PUGP18+YnAHwO79Sc9dzH5Nt4ryWDfwfE39zjfHA/azsDwdl6sUet5C93+uQfYfWD/7FxVg5/1PGifbsLxtmSaC/R0XgTsBmyoqvuAs4G3JNkpyWOBv6WbjoDubAi6udy3AWdm86/W+BBwdJJ9kjwc+Hvg0qq6oW//Pt084nw+DPxNkscl2bF//ker6t5JBk+yfboP6bYDViZZtYnrdCndC+eEfpn7A4cBH9mEZY2yE92L5Qd0L86/X8RzzwZel2R1ug9Z//N8HZP8UZLV/d076F6A9/X3x+2L+bymH/uRdMfQ3AdfVwJP7ff9KrqpgEHD410G/DDdh7A79O9anpZk7sPPs4GTkuzWr8Nxi6xzJ7qTgVm6Y+ENdHPak/hy/9zXJVmZ5A+BZw20jzvOt6QrgJf1x+U03fz+5ng03Xpun+SPgCcDn6qqW4H/B/xTkp3TXbDw+CTPnW9BY463LaqlQP9kuitAfgi8he7DlrlL+46jC6brgIvpDsT3JXkmXbgf2Qf/W+k2/rzhMImq+jzwerp5uluBxwMvG+hyMnBG/xbuj0cs4n3AB4CLgOvpPtBZzAv5PXRvKf+E7sOZn9LNBy5KVf0cOBw4mO6dzjvpttXXF7useZxJ99b2u3QfkF2yiOe+B/gMXYB+he6D4/nsC1zaHx+fAI6vquv7tpNZeF/M50N0L/Tr+p83A1TVN4H/AXyO7iqT4S+svBd4Sj/eef1xdxiwD92+vg04je4dC8Ab6bbR9f14H1hEjdBtowvoLgS4ke5YGjVN9hD9/v9DunniO+g+LDx3oH3ccb4lvb4f7w66bfShzVzepcBv0W3/twAvGZh+PZJu2vaafryP0V0ePZ+Fjrctau4TY0nSNq6lM3RJ+pVmoEtSIwx0SWrExIHef/p+eZLzR7TtkuSTSa7sr7s8emnLlCSNs5g/JHM8sIHRlzy9Brimqg5LMgV8I8kH+0/JR9p9991rzZo1iypWkn7VrV+//raqmhrVNlGg99dUHkp3Oc/fjuhSwE79hfk7ArfTXb86rzVr1jAzMzPJ8JKkXpJ5vy086ZTLKXRfZ71/nvZ30F2Ifwvd30Q5fujr4nOFHJNkJsnM7Oyob8xLkjbV2EBP8kJgY1WtX6DbC+i+ubUn3Rck3pHkIVMzVbW2qqaranpqauQ7BknSJprkDH0/4PAkN9B95fuA9H93eMDRwLnVuZbuW22/vaSVSpIWNDbQq+qkqlpdVWvovtZ7YVUdMdTtJuB5AEkeQ/fnXq9b4lolSQvY5H+XlORYgKo6FXgTcHqSr9L9FbcTq+q2pSlRkjSJRQV6Va2j+8cBc0E+9/gtdP9gQJK0TPymqCQ1wkCXpEZs8hy6tqCTdxnfZ0nGuWvrjCNpqzDQfxkZtJI2gVMuktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGTBzoSVYkuTzJ+fO075/kiiRXJ/ni0pUoSZrEYv5j0fHABmDn4YYkuwLvBA6qqpuSPHqJ6pMkTWiiM/Qkq4FDgdPm6fJy4NyqugmgqjYuTXmSpElNOuVyCnACcP887U8EdkuyLsn6JEcuSXWSpImNDfQkLwQ2VtX6BbqtBJ5Jdxb/AuD1SZ44YlnHJJlJMjM7O7upNUuSRpjkDH0/4PAkNwAfAQ5IctZQn5uBT1fVj6vqNuAi4OnDC6qqtVU1XVXTU1NTm1m6JGnQ2ECvqpOqanVVrQFeBlxYVUcMdfs48JwkK5M8Ang23QeokqStZDFXuTxIkmMBqurUqtqQ5NPAVXTz7KdV1deWqEZJ0gRSVcsy8PT0dM3MzCzL2JK0rUqyvqqmR7X5TVFJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRkwc6ElWJLk8yfkL9Nk3yX1JXrI05UmSJrWYM/TjgQ3zNSZZAbwV+MzmFiVJWryJAj3JauBQ4LQFuh0HnANsXIK6JEmLNOkZ+inACcD9oxqT7AW8GDh1oYUkOSbJTJKZ2dnZRRUqSVrY2EBP8kJgY1WtX6DbKcCJVXXfQsuqqrVVNV1V01NTU4ssVZK0kJUT9NkPODzJIcAqYOckZ1XVEQN9poGPJAHYHTgkyb1Vdd6SVyxJGmlsoFfVScBJAEn2B/7jUJhTVY+bu53kdOB8w1yStq5Nvg49ybFJjl3KYiRJm26SKZcHVNU6YF1/e+QHoFV11OYWJUlaPL8pKkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRkwc6ElWJLk8yfkj2l6R5Kr+50tJnr60ZUqSxlm5iL7HAxuAnUe0XQ88t6ruSHIwsBZ49hLUJ0ma0ERn6ElWA4cCp41qr6ovVdUd/d1LgNVLU54kaVKTTrmcApwA3D9B31cBF4xqSHJMkpkkM7OzsxMOLUmaxNhAT/JCYGNVrZ+g7+/TBfqJo9qram1VTVfV9NTU1KKLlSTNb5I59P2Aw5McAqwCdk5yVlUdMdgpyb+nm5I5uKp+sPSlSpIWMvYMvapOqqrVVbUGeBlw4Ygw/w3gXOCVVfXNLVKpJGlBi7nK5UGSHAtQVacCbwAeBbwzCcC9VTW9JBVKkiaSqlqWgaenp2tmZmZZxpakbVWS9fOdMPtNUUlqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNWLiQE+yIsnlSc4f0ZYk/yfJtUmuSvI7S1umJGmcxZyhHw9smKftYOC3+p9jgHdtZl2SpEWaKNCTrAYOBU6bp8uLgDOrcwmwa5I9lqhGSdIEJj1DPwU4Abh/nva9gO8M3L+5f+xBkhyTZCbJzOzs7KIKlSQtbGygJ3khsLGq1i/UbcRj9ZAHqtZW1XRVTU9NTS2iTEnSOJOcoe8HHJ7kBuAjwAFJzhrqczOw98D91cAtS1KhJGkiYwO9qk6qqtVVtQZ4GXBhVR0x1O0TwJH91S7/Abirqm5d+nIlSfNZualPTHIsQFWdCnwKOAS4FvgJcPSSVCdJmtiiAr2q1gHr+tunDjxewGuWsjBJ0uL4TVFJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDVibKAnWZXksiRXJrk6yRtH9NklyScH+hy9ZcqVJM1n5QR97gEOqKq7k2wPXJzkgqq6ZKDPa4BrquqwJFPAN5J8sKp+viWKliQ91NhAr6oC7u7vbt//1HA3YKckAXYEbgfuXcI6JUljTDSHnmRFkiuAjcBnq+rSoS7vAJ4M3AJ8FTi+qu4fsZxjkswkmZmdnd3M0iVJgyYK9Kq6r6r2AVYDz0rytKEuLwCuAPYE9gHekWTnEctZW1XTVTU9NTW1maVLkgYt6iqXqroTWAccNNR0NHBuda4Frgd+e0kqlCRNZJKrXKaS7Nrf3gE4EPj6ULebgOf1fR4DPAm4bmlLlSQtZJKrXPYAzkiygu4XwNlVdX6SYwGq6lTgTcDpSb4KBDixqm7bUkVLkh5qkqtcrgKeMeLxUwdu3wI8f2lLkyQtht8UlaRGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI8YGepJVSS5LcmWSq5O8cZ5++ye5ou/zxaUvVZK0kJUT9LkHOKCq7k6yPXBxkguq6pK5Dkl2Bd4JHFRVNyV59BaqV5I0j7GBXlUF3N3f3b7/qaFuLwfOraqb+udsXMoiJUnjTTSHnmRFkiuAjcBnq+rSoS5PBHZLsi7J+iRHzrOcY5LMJJmZnZ3dvMolSQ8yUaBX1X1VtQ+wGnhWkqcNdVkJPBM4FHgB8PokTxyxnLVVNV1V01NTU5tZuiRp0KKucqmqO4F1wEFDTTcDn66qH1fVbcBFwNOXpEJJ0kQmucplqv/QkyQ7AAcCXx/q9nHgOUlWJnkE8Gxgw1IXK0ma3yRXuewBnJFkBd0vgLOr6vwkxwJU1alVtSHJp4GrgPuB06rqa1usaknSQ6S7iGXrm56erpmZmWUZW5K2VUnWV9X0qDa/KSpJjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEaMDfQkq5JcluTKJFcneeMCffdNcl+SlyxtmZKkcVZO0Oce4ICqujvJ9sDFSS6oqksGOyVZAbwV+MwWqFOSNMbYM/Tq3N3f3b7/qRFdjwPOATYuXXmSpElNNIeeZEWSK+jC+rNVdelQ+17Ai4FTxyznmCQzSWZmZ2c3tWZJ0ggTBXpV3VdV+wCrgWcledpQl1OAE6vqvjHLWVtV01U1PTU1tWkVS5JGmmQO/QFVdWeSdcBBwNcGmqaBjyQB2B04JMm9VXXeUhUq6ZfEybtspXHu2jrjNGRsoCeZAn7Rh/kOwIF0H34+oKoeN9D/dOB8w1xqlEH7S2uSM/Q9gDP6q1i2A86uqvOTHAtQVQvOm0uSto6xgV5VVwHPGPH4yCCvqqM2vyxJ0mL5TVFJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUiFSN+jtbW2HgZBa4cVkGb9PuwG3LXYQ0gsfm0npsVY382ynLFuhaWklmqmp6ueuQhnlsbj1OuUhSIwx0SWqEgd6OtctdgDQPj82txDl0SWqEZ+iS1AgDXZIaYaBv45K8L8nGJF8b31vaepLsneQLSTYkuTrJ8ctdU+ucQ9/GJfk94G7gzKoa/l+v0rJJsgewR1V9JclOwHrgD6rqmmUurVmeoW/jquoi4PblrkMaVlW3VtVX+ts/AjYAey1vVW0z0CVtcUnW0P3ns0uXt5K2GeiStqgkOwLnAH9dVT9c7npaZqBL2mKSbE8X5h+sqnOXu57WGeiStogkAd4LbKiq/7Xc9fwqMNC3cUk+DHwZeFKSm5O8arlrknr7Aa8EDkhyRf9zyHIX1TIvW5SkRniGLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSI/4/M5YbmogAt/IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVl0lEQVR4nO3de3RdZZ3G8echLRZoKY1EpQWpt2EFM2vECc6FohYYRnAQx+WFjhfQaL0WdFyimFHqDPEyywsuZslYCWAFowywGJzRGRGCGEaLacURCKPItbRAkEK5VUL9zR/7Tdfu6UlOknOS0zd8P2tl9ZyzL+9v7/2ep/u8+1wcEQIA5GePZhcAAJgaAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEeB1sX2j7rBlq629t32P7MduHzUSbzTCZfWp7qe2wPSfd/4HtkxtUx5G2/690/07bxzRi3VOo5dW2Nzaj7dT+jPXzmWL7FNsDza6jXtkGeHpCPZkCbYvt/7R90DS0c63tbamdB21fbvuAKawnbL+4jlK+KOlDETE/In5RZf3l/fGY7R/W0VaWIuK4iPhmrfkmciwi4icRcUgj6pqNAYjdQ7YBnpwQEfMlHSDpfknnTFM7H0rt/JGk/SR9ZZraGc/Bkm6uMc8JKeDnR8SxM1GU7ZaZaGcmjZ7R5yjn2nPVzH2ee4BLkiJim6RLJR06+pjthbbX2h62fZftf7C9h+1W2xttn5Dmm2/7NtvvmEA7D0m6TFJHtem235PW9ZDtK20vTo9fl2b5ZTo7fkuVZfdINd5l+4FU+0Lbz7L9mKSWtPxvJ7l7qtW52vYlqY1Hbd9su7M0vT298ng4TXtdadqFts+1/X3bj0tans7+P2b7f20/brvX9nPTkMajtn9ke1FpHf9m+z7bj9i+zvZLJ1h3i+0vpldCt0t6bcX0a22/O91+se0fpzYetP3d9Pgux2J0iML2x23fJ+mCMYYtDrd9S3rFd4HteWmdu7wcHz3Lt71S0lslnZ7a+16avtj2Zal/3mH71NKye6X9vMX2LZIOr7FfwvYHbf9G0m/SY191MeS21fZ620eW5q91/A+zvSFN+66keRXtVe3npVo+YPs3afl/sv0i2z9NtVxie88xtuMU2wPpGG9J++W40vSdhrHSdlyUbo8Op70zbfcW2++zfXjqlw/b/pddm/Q5qY/cavvo0oSFqR9vtn2v7bOcTlZSndfb/orthyStHqu/TbuIyPJP0p2Sjkm395b0TUlrS9PXSvp3SQskLZX0a0ldadqxku6T9BxJ35B06TjtXCvp3en2/pKukfStdP9CSWel20dJelDSyyU9S8WrgetK6wlJLx6nnXdJuk3SCyXNl3T5aDsTXP5OFa9ChiX9UNKfjDPvaknbJB2v4j+Gz0n6WZo2N9XxSUl7pu16VNIhpW1+RNIRKk4A5qW2fybpuZKWSHpA0gZJh6V9cY2kMyu2dUGadrakG0vTduzTKnW/T9Ktkg6S1CqpP+2XOVWOVZ+k7lKNy8bal5JeLelpSV9INe2VHttYsX9vKrV9fenYnyJpoKLWHW1UblOqab2kT6d9/EJJt0v66zT985J+kto5KLW7sdo+KbV1VZp/r/TY2yQ9W9IcSR9V0d/nTeD47ynpLkkfSX3hjZJGNLl+fqWkfSW9VNLvJV2dtnGhpFsknTzGdpyS2npPquv9kjZJcuVzvrQdF6XbS1Pb/5qO97FpG69Q8Twf7ZevKrX1dGk736KiX7em6VdI+rqkfdLyN0h6b8Wyq9L+3Uvj9LdpzcGZaGRaCi8O5mOSHk47c5OkP07TWlLHObQ0/3slXVu6f46kX6Xlnj1OO9dKeiK1c6+kiyW1VT4xJfVK+ufScvNTZ1xaLTSqtHO1pA+U7h+Slp8zweWPSB1pb0lnqHjC7jfGvKsl/ah0/1BJT6bbR6Zl9yhN75O0urTNayvWd6ekt5buXybp3NL9VZKuGKOW/dK2Lazcp1XmvUbS+0r3j9XYAb5W0hpJB1ZZT7UAf0op4EqPVQZ4ue3jJf023T5FkwvwP5N0d8X8Z0i6IN2+XdJrStNWqnaAH1Xj+bJF6T/1Gsf/lSqFZnrsfzS5fn5Eafp6SR8v3f+SpLPHqPEUSbeV7u+d1ve80jGoFeBLStN/J+ktFf3yw6W2KrfzBklvV3Ei8nul/wzTtBWS+kvLVh6/MfvbdP7lPoTy+ojYT8WZwIck/dj281ScKY+eSYy6S8X/wqPWqBgKuSAiflejnVMjYr+IWBIRb42I4SrzLC63FxGPqehAS6rMW81Oy6fbc1R0ppoi4vqIeDIinoiIz6n4D+fIcRa5r3T7CUnzXIzlLZZ0T0T8oaKW8nbcU2V995duP1nl/nxpxzDI523/1vZWFU9KqThmtSyuaPuusWaUdLokS7ohDRG8q8a6h6MYihtPZduLx5qxhoMlLU4v6x+2/bCKVzyjx3oy21mtNtn+qO2h9JL+YRVnv+V9PN7xvzdSKlVpfyL9fEJ9YQw76oqIJ9LN8eavNJm2q23nYhXHZ66kzaXj83UVZ+KjKp8Dk+1vDZF7gEuSImJ7RFwuabukZSpe4o2oOBCjnq/iDHr0wtvXVfyv+X7X9+6QUZvK7dneR8VL2Hunsnyq92nt3AEnI1R0qMnaJOkg2+W+sWPfldY9VX8n6URJx6gIlaXp8YnUulnFkEK5rqoi4r6IeE9ELFbx6utrNY7zRLapsu1N6fbjKs4WJUnpJGK8dd8j6Y50UjD6tyAijk/TJ7yd1dpI490fl/RmSYvSSc4jmvg+XmK7PG+5/Xr7eT122s+SKvfzZFXbzk0qjs/vJe1fOj77RkT5Ws1Ox3QK/a0hZkWAu3CipEWShiJiu6RLJPXYXmD7YEl/L+mitMgn07/vUvH2vLWu/90U35b0Ttsvs/0sSZ+VtC4i7kzT71cxDjiWPkkfsf0C2/PT8t+NiKdrNWz7+baPsL2n7Xm2P6bibOv6KWzHOhVPlNNtz7X9akknSPrOFNZVzQIVT47fqXgyfnYSy14i6VTbB7q4KPqJsWa0/SbbB6a7W1Q84ban+7WOxVg+mNpuVdGHRi9U/VLSS9Oxn6fipX1ZZXs3SNrq4qLpXulVSYft0YuVl0g6w/aitA2rJlnnAhX/+Q9LmmP70yrGpCfip2nZU23Psf0GSa8oTa/Vz6fTjZJOSv2yU8X4fD2eo2I759p+k6R2Sd+PiM0qriN9yfa+Lt5g8CLbrxprRTX627TJPcC/5+IdGlsl9ai4ODL6VrtVKoLodkkDKjre+bb/VEWYvyMF/RdU7Owxw2AiIuJqSZ9SMc62WdKLJJ1UmmW1pG+ml2RvrrKK8yV9S9J1ku5QcQFmok/cBZLOVdFx7pX0GknHTWBoqNp2PCXpdZKOU/FK5msq9tWtk13XGNaqeKl6r4oLWj+bxLLfkPTfKgJzg4oLvWM5XNK61D+ulHRaRNyRpq3W+MdiLN9W8cS+Pf2dJUkR8WtJ/yjpRyreBVL5AZFeSYem9q5I/e4ESS9TcawflHSeilckkvQZFfvojtTetyZRo1Tsox+ouHB/l4q+VG3Yaxfp+L9BxTjvFhUX9y4vTa/Vz6fTp1J7W1Tso2/Xub51kl6iYv/3SHpj6TnzDhXDsLek9i5V8XblsYzX36bN6NVdAEBmcj8DB4BnLAIcADJFgANApghwAMjUjH4Jy/777x9Lly6dySYBIHvr169/MCLaKh+f0QBfunSpBgcHZ7JJAMie7aqfxmUIBQAyVTPAbZ/v4utNbyo91mr7KhdfGXmVS18VCgCYGRM5A79QxSf7yj4h6eqIeImKb9Gr61OMAIDJqxngEXGdpIcqHj5RxfdvK/37+gbXBQCoYapj4M9NX/ii9O9zxprR9krbg7YHh4erfQsrAGAqpv0iZkSsiYjOiOhsa9vlXTAAgCmaaoDf7/TL7OnfBxpXEgBgIqYa4FdKOjndPlnFb08CAGZQzQ/y2O5T8fuA+7v4le4zVfzo6iW2uyTdLelN01nkM9nOPxgycXxNMDD71QzwiFgxxqSjG1wLqhgviG0T1MAzGJ/EBIBMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApgjw3URra6tsT+pP0qTmb21tbfJWAmikmr9Kj5mxZcuWaf+F+dHQBzA7cAYOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFN1Bbjtj9i+2fZNtvtsz2tUYQCA8U05wG0vkXSqpM6I6JDUIumkRhUGABhfvUMocyTtZXuOpL0lbaq/JADAREw5wCPiXklflHS3pM2SHomIHzaqMADA+OoZQlkk6URJL5C0WNI+tt9WZb6VtgdtDw4PD0+9UgDATuoZQjlG0h0RMRwRI5Iul/SXlTNFxJqI6IyIzra2tjqaAwCU1RPgd0v6c9t7u/ilgKMlDTWmLABALfWMga+TdKmkDZJ+lda1pkF1AQBqqOsn1SLiTElnNqgWAMAk8ElMAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMlXX94GjceLMfaXVC6e/DQCzBgG+m/BntioiprcNW7F6WpsAMIMYQgGATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZKquALe9n+1Lbd9qe8j2XzSqMADA+Or9RZ6vSvqviHij7T0l7d2AmgAAEzDlALe9r6RXSjpFkiLiKUlPNaYsAEAt9QyhvFDSsKQLbP/C9nm296mcyfZK24O2B4eHh+toDgBQVk+Az5H0cknnRsRhkh6X9InKmSJiTUR0RkRnW1tbHc0BAMrqCfCNkjZGxLp0/1IVgQ4AmAFTDvCIuE/SPbYPSQ8dLemWhlQFAKip3nehrJJ0cXoHyu2S3ll/SQCAiagrwCPiRkmdDaoFADAJfBITADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKbq/S4UNJDtaV3/okWLpnX9AGYWAb6biIhJL2N7SssBmB0YQgGATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcQMP09fWpo6NDLS0t6ujoUF9fX7NLmtX4LhQADdHX16fu7m719vZq2bJlGhgYUFdXlyRpxYoVTa5uduIMHEBD9PT0qLe3V8uXL9fcuXO1fPly9fb2qqenp9mlzVqeyW+z6+zsjMHBwRlrb7bj2wixO2lpadG2bds0d+7cHY+NjIxo3rx52r59exMry5/t9RHRWfk4Z+AAGqK9vV0DAwM7PTYwMKD29vYmVTT7EeAAGqK7u1tdXV3q7+/XyMiI+vv71dXVpe7u7maXNmtxERNAQ4xeqFy1apWGhobU3t6unp4eLmBOI8bAM8YYOPDMwBg4AMwyBDgAZIoAB4BM1R3gtlts/8L2fzSiIADAxDTiDPw0SUMNWA8AYBLqCnDbB0p6raTzGlMOAGCi6j0DP1vS6ZL+MNYMtlfaHrQ9ODw8XGdzAIBRUw5w238j6YGIWD/efBGxJiI6I6Kzra1tqs0BACrUcwZ+hKTX2b5T0nckHWX7ooZUBQCoacoBHhFnRMSBEbFU0kmSromItzWsMgDAuHgfOABkqiFfZhUR10q6thHrAgBMDGfgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgExNOcBtH2S73/aQ7Zttn9bIwgAA45tTx7JPS/poRGywvUDSettXRcQtDaoNADCOKZ+BR8TmiNiQbj8qaUjSkkYVBmD30NraKtvT/tfa2trsTc1OPWfgO9heKukwSesasT4Au48tW7YoIqa9HdvT3sZsU/dFTNvzJV0m6cMRsbXK9JW2B20PDg8P19scACCpK8Btz1UR3hdHxOXV5omINRHRGRGdbW1t9TQHACip510oltQraSgivty4kgAAE1HPGfgRkt4u6SjbN6a/4xtUFwCghilfxIyIAUlcdQBmuThzX2n1wplpB5PSkHehAJi9/JmtM/YulFg97c3MKnyUHgAyRYADQKYYQgFQ00x8yGbRokXT3sZsQ4ADGNdMjH9jahhCAYBMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApvhR491crV8DH2s6P0QLzH4E+G6OIAYwFoZQADRMX1+fOjo61NLSoo6ODvX19TW7pFmNM3AADdHX16fu7m719vZq2bJlGhgYUFdXlyRpxYoVTa5udvJMvkTv7OyMwcHBGWsPwMzp6OjQOeeco+XLl+94rL+/X6tWrdJNN93UxMryZ3t9RHTu8jgBDqARWlpatG3bNs2dO3fHYyMjI5o3b562b9/exMryN1aAMwYOoCHa29s1MDCw02MDAwNqb29vUkWzHwEOoCG6u7vV1dWl/v5+jYyMqL+/X11dXeru7m52abNWXRcxbb9G0lcltUg6LyI+35CqAGRn9ELlqlWrNDQ0pPb2dvX09HABcxpNeQzcdoukX0v6K0kbJf1c0oqIuGWsZRgDB4DJm44x8FdIui0ibo+IpyR9R9KJdawPADAJ9QT4Ekn3lO5vTI/txPZK24O2B4eHh+toDgBQVk+AV/sSjl3GYyJiTUR0RkRnW1tbHc0BAMrqCfCNkg4q3T9Q0qb6ygEATFQ9Af5zSS+x/QLbe0o6SdKVjSkLAFBLXZ/EtH28pLNVvI3w/IjoqTH/sKS7ptwgKu0v6cFmFwFUQd9srIMjYpcx6Bn9KD0ay/ZgtbcWAc1G35wZfBITADJFgANApgjwvK1pdgHAGOibM4AxcADIFGfgAJApAhwAMkWAZ8j2+bYfsM3vVGG3Yvsg2/22h2zfbPu0Ztc0mzEGniHbr5T0mKS1EdHR7HqAUbYPkHRARGywvUDSekmvH+9rpjF1nIFnKCKuk/RQs+sAKkXE5ojYkG4/KmlIVb6lFI1BgAOYFraXSjpM0rrmVjJ7EeAAGs72fEmXSfpwRGxtdj2zFQEOoKFsz1UR3hdHxOXNrmc2I8ABNIxtS+qVNBQRX252PbMdAZ4h232SfirpENsbbXc1uyYgOULS2yUdZfvG9Hd8s4uarXgbIQBkijNwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAy9f+4PA5exNKmmAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAEICAYAAAB25L6yAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAATeklEQVR4nO3de7SldV3H8feHGZDLgMzEybjJiKaFWpKz1LKM8FKRJNnNFBMvEZnXTDPTHC90Wy611UVDJUTwFlB2V5dKLM1FDYgZjinJZbgfYAAhDLVvfzzPgWc2+5yzz8zZc37OvF9rzZq993P5fZ/L/uzf/j17n52qQpLUrj1WugBJ0sIMaklqnEEtSY0zqCWpcQa1JDXOoJakxhnUYyQ5I8mbd1JbP5NkS5I7khy9M9psUZJK8pAJ592Y5Kz+9gP7fbdqmep4Z5LX9bePSXL1cqx3O2vZaefhPO1PfEy+XSQ5P8kLVrqOpWouqJNckeSu/sm3Nck/JDl8Cu2cn+TrfTs3JTkvycHbsZ4dPZnfAryoqtZU1efGrP9NSb6Q5JtJNo6Z/swkVya5M8nfJFm3A7V826mqq/p9962F5ktyUpJPT7C+U6rqTctR264YdFoZzQV17/iqWgMcDNwA/MmU2nlR385DgQOBt02pnYUcAVy6wPTLgFcB/zA6IcnDgb8Ang08APgf4M+nUONou6un3cZKWK5e+UrYVY9Jq9LZafnZalADUFVfB84Bjpp7LMn9k5yZZLbvSb42yR5J1iW5Osnx/XxrklyW5JcnaOcW4FzgEeOmJ/mVfl23JPnbJIf0j1/Qz/L5vmf+i2OW3aOv8cokN/a13z/J/ZLcAazql//veWp7b1X9E/C1MZOfBfxdVV1QVXcArwOenmT/ebbjiiS/meQ/ktyW5ENJ9l5sO/tpleTXk3wF+MrcsECSV/XbdV2SE5Icl+TL/TpeM1j+MUk+m+TWft4/TbLXuDrH1P2gJP+S5GtJPg4cNJi2vq9tdX//pCRf7ee9PMmzknwv8E7gB/vjdGs/7xlJ3pHkH5PcCfzYuOGGJK/p33VdkeRZg8e3eRs97LXPd24keWqSS/r98K9Jvm+w/NFJLu5r/xBwz7EZs09OSvKZJG9LcguwMcmDk3wyyc19vWcnOXCwzGLH/5X9sbk2yfNG2hv7vBtTy639/v+h/vEt/fnxnAW25fx07xw/02/7x5Ic1E+7z/BTvx1P6m9vTPJXSc7ql/1Ckocm+e2+3S1JnjLS5IOT/Fu/Dz6SwbvQJI/rj8utST6f5JiROk9N8hm6TtGR4863+bZzh1RVU/+AK4An9bf3Bd4LnDmYfibwEWB/YD3wZeD5/bSnANcD3wm8CzhngXbOB17Q3z4I+CTwvv7+GcCb+9vHAjcBPwDcj653f8FgPQU8ZIF2nkfXKz4SWAOcN9fOJMsP5jsL2Djy2EeA3xp57A7g0Qvs238DDgHWAZuBU5awnR/vl9sHOAb4JvC7wJ7ArwCzwPv7Y/Nw4OvAkf3yjwYeB6zuj9tm4GWT7Afgs8Bb+7qeQPeidVY/bX2/7GpgP+B24GH9tIOBh/e3TwI+PbLeM4DbgMfTdVr2Hjn2c9s41/aPAncO1n/POTSujdFt6vftjcBj6V6gn9Mfk/sBewFXAi/v9+fPAd+Yq2XMPjmpr+3F/bbvAzwEeHK/vhngAuDtEx7/n6B79/qIfj++f1g/Cz/v5mp5br9dbwauAv6sr+Up/TFbs8Bz8b/p3tnu09//g8ExuHqBjNhId579eL8fzgQuB36He8/Ly0faumawnedy77l0KHAzcBzd+fDk/v7MYNmr6M7t1cD9med8W/ZcnMZKd6ig7iDcAdzaH/xrgUf201YB/wscNZj/V4HzB/f/BPhCv9x3LNDO+XSvirf2B+7swQE5g3ufrO8B/miw3Bq6J9D6xQKmn/4J4IWD+w/rl189yfKD5cYF9Sfon2iDx64Bjllg3544uP9HwDuXsJ3HDqYfA9wFrOrv79/P89jBPBcBJ8xTy8uAvx7cH7sfgAf258F+g8fez/xBfSvws8A+I+s5ifFBfeaYx0aDetj2h4HXDc6hpQT1O4A3jbT3X3QvAE+gO2czmPavLBzUVy1yzpwAfG7C4386fTj29x86Vz+LPO/6Wr4ymPbIftkHDB67GXjUAs/F1w7uvxD458ExWCyoPz6YdjxdfoyelwcO2hpu51HA3f02/haDTlQ//aPAcwbLvnEwbd7zbbn/tTr0cUJVHUj3avwi4F+SfBddz3eu5zHnSrpXwjmn0b1a/mVV3bxIOy+pqgOr6tCqelZVzY6Z55Bhe9UNMdw80uZCtlm+v72abkx5R90BHDDy2AGMHyaZc/3g9v/QBTJMtp1bRtZ1c917Ee+u/v8bBtPvmlt//3b075Ncn+R24PcYDGEs4BBga1XdOXjsynEz9vP8InAKcF26C9Hfs8j6R7dp1Li2D5lv5kUcAbyif1t9az8Ec3i/vkOAa6pPgEFbC9mm9iTfmeSDSa7p9/FZ3HcfL3T8h+sbtj3J8270uFNVY8+FecxX1yRG27lpzHk5XN/odu5Jt41HAD8/cnx+mK6nfJ9lt/N82y6tBjUAVfWtqjoP+BbdDruJrpd3xGC2B9L1IucuBv0F3dufX8vyXHG/dthekv2A75hrc6nLc28P8Ybxsy/JpcD3D2o7ku7F7cvbsa5JtrNGF1qCdwBfAr67qg4AXgNkguWuA9b29cx54HwzV9VHq+rJdE+uL9ENgcH8tS+2TePavra/fSfd8Nyc71pkXVuAU/vOwdy/favqA3TbeWiS4T6Zdzvnqf33+8e+r9/HJzLZPqZvf/jpqmHbCz7vpmybfdw/x2d2cJ2j2/kNum3cQtejHh6f/arqDwbzb7PPFzjfllXTQZ3O04C1wOb+VfLDwKlJ9k9yBPAbdD0H6J780I0LvwU4Mzt+Jf/9wHOTPCrJ/eh6ghdW1RX99Bvoxp/n8wHg5ekuiK3pl/9QVX1zksaT7Nlf8NkDWJ1k78E2nQ0cn+RH+jB5I3BeVS3Uo57PYtu5o/anG8+7o+91/NokC1XVlcAm4A1J9kryw3Rvb+8jyQOS/HS/L/6X7h3HXM/qBuCwTHgBc8Rc2z8CPBX4q/7xS+gu3u7bdwqeP7Lc6LnxLuCUJI/tz+39kvxUuou/n6V7AX9JktVJng48Zol17k8/bJjkUOCVS1j2w8BJSY5Ksi/w+rkJEzzvpunLwN79ftoTeC1dZ2RHnDjYzjfSXcv6Ft32HJ/kx5Os6p9rxyQ5bNxKFjnfllWrQf136T4RcTtwKt0Y0dxH2F5M9yr7VeDTdAFzepJH0508v9zv9D+ke/V79Y4UUlWfoPs0xbl0vY4HA88YzLIReG//VukXxqzidOB9dBd2Lqe78PHiJZTwLrq3b79Ed4HkLrqP49Hvk1PoAvtGuifqC5ew7ntMsJ076jeBZ9INy7wL+NASln0m3QW4W+gC5Mx55tsDeAVdj/cWurHfuf3xSbp3INcnuWkJbV8PbO3XeTbdNYEv9dPeRje+eQPdRe+zR5bdyODcqKpNdBe3/rRf52V047tU1d3A0/v7W+neUp+3hDoB3kB3wfI2uo9zTrx8dZ8sejvdfrqs/39o7PNuifUtWVXdRncM303Xg78T2NEvIb2P7lrE9XQXkF/St7UFeBpdh2+Wrof9SubPyYXOt2WVbYfEJEmtabVHLUnqGdSS1DiDWpIaZ1BLUuOm8odcDjrooFq/fv00Vi1Ju6SLLrropqoa+xnxqQT1+vXr2bRp0zRWLUm7pCTzfhPVoQ9JapxBLUmNM6glqXEGtSQ1zqCWpMYZ1JLUOINakhpnUEtS4/yJ+UZs+8Mek/PP1Eq7PoO6EfMFbhLDWNrNOfQhSY0zqCWpcQa1JDXOoJakxnkxUdKC/ETSyjOoJS1oocD1U0k7h0MfktQ4g1qSGmdQS1LjDGpJapxBLUmNM6glqXETBXWSlye5NMl/JvlAkr2nXZgkqbNoUCc5FHgJsKGqHgGsAp4x7cIkSZ1Jhz5WA/skWQ3sC1w7vZIkSUOLBnVVXQO8BbgKuA64rao+Nu3CJEmdSYY+1gJPAx4EHALsl+TEMfOdnGRTkk2zs7PLX6kk7aYmGfp4EnB5Vc1W1TeA84AfGp2pqk6rqg1VtWFmZma565Sk3dYkQX0V8Lgk+6b7M1pPBDZPtyxJ0pxJxqgvBM4BLga+0C9z2pTrkrSTrVu3jiRL+gcsaf5169at8FZ+e5roz5xW1euB10+5FkkraOvWrVP/k6Xb+7etd3d+M1GSGmdQS1LjDGpJapxBLUmNM6glqXEGtSQ1zqCWpMYZ1JLUOINakhpnUEtS4wxqSWqcQS1JjTOoJalxBrUkNc6glqTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDXOoJakxhnUktQ4g1qSGmdQS1LjDGpJapxBLUmNM6glqXEGtSQ1zqCWpMYZ1JLUOINakhpnUEtS4wxqSWqcQS1JjTOod7J169aRZOJ/wJLmT8K6detWeCslLafVK13A7mbr1q1U1VTbmAt4SbuGiXrUSQ5Mck6SLyXZnOQHp12YJKkzaY/6j4F/rqqfS7IXsO8Ua5IkDSwa1EkOAJ4AnARQVXcDd0+3LEnSnEmGPo4EZoG/TPK5JO9Ost/oTElOTrIpyabZ2dllL1SSdleTBPVq4AeAd1TV0cCdwKtHZ6qq06pqQ1VtmJmZWeYyJWn3NUlQXw1cXVUX9vfPoQtuSdJOsGhQV9X1wJYkD+sfeiLwxalWJUm6x6Sf+ngxcHb/iY+vAs+dXkmSpKGJgrqqLgE2TLkWSdIYfoVckhpnUEtS4wxqSWqcQS1JjTOoJalxBrUkNc6glqTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDXOoJakxhnUktQ4g1qSGmdQS1LjDGpJapxBLUmNM6glqXEGtSQ1zqCWpMYZ1JLUOINakhpnUEtS4wxqSWqcQS1JjTOoJalxBrUkNc6glqTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDVu4qBOsirJ55L8/TQLkiRtayk96pcCm6dViCRpvImCOslhwE8B755uOZKkUZP2qN8OvAr4v/lmSHJykk1JNs3Ozi5LcZKkCYI6yVOBG6vqooXmq6rTqmpDVW2YmZlZtgIlaXc3SY/68cBPJ7kC+CBwbJKzplqVJOkeiwZ1Vf12VR1WVeuBZwCfrKoTp16ZJAnwc9SS1LzVS5m5qs4Hzp9KJZKksexRS1LjDGpJatyShj604+r1B8DG+0+/DUm7DIN6J8sbbqeqpttGQm2cahOSdiKHPiSpcQa1JDXOoJakxhnUktQ4g1qSGmdQS1LjDGpJapxBLUmN8wsvkgC/Ndsyg1oS4LdmW+bQhyQ1zqCWpMYZ1JLUOINakhpnUEtS4wxqSWqcQS1JjTOoJalxBrUkNc6glqTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDXOX3iRdI8kU13/2rVrp7r+XZVBLQlgu36GK8nUf75LDn1IUvMMaklqnEEtSY0zqCWpcYsGdZLDk3wqyeYklyZ56c4oTJLUmeRTH98EXlFVFyfZH7goycer6otTrk2SxAQ96qq6rqou7m9/DdgMHDrtwiRJnSWNUSdZDxwNXDhm2slJNiXZNDs7uzzVSZImD+oka4BzgZdV1e2j06vqtKraUFUbZmZmlrNGSdqtTRTUSfakC+mzq+q86ZYkSRqa5FMfAd4DbK6qt06/JEnS0CQ96scDzwaOTXJJ/++4KdclSeot+vG8qvo0MN0/qSVJmpffTJSkxhnUktQ4g1qSGmdQS1LjDGpJapw/xSVpQYv9juJ80/2JruVjUEtakIG78hz6kKTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDXOoJakxvnNxBWw2Fdyd9TatWunun5JO5dBvZMt9eu4SfwKr7Sbc+hDkhpnUEtS4wxqSWqcQS1JjTOoJalxBrUkNc6glqTGGdSS1DiDWpIaZ1BLUuMMaklqnEEtSY0zqCWpcQa1JDXOoJakxhnUktQ4g1qSGucvvDRioZ/nWmiav/4i7foM6kYYuJLm49CHJDVuoqBO8hNJ/ivJZUlePe2iJEn3WjSok6wC/gz4SeAo4JeSHDXtwiRJnUl61I8BLquqr1bV3cAHgadNtyxJ0pxJgvpQYMvg/tX9Y9tIcnKSTUk2zc7OLld9krTbmySox3027D4fUaiq06pqQ1VtmJmZ2fHKJEnAZEF9NXD44P5hwLXTKUeSNGqSoP534LuTPCjJXsAzgL+dblmSpDmZ5IsWSY4D3g6sAk6vqlMXmX8WuHJZKtRBwE0rXYQ0D8/P5XNEVY0dN54oqLVykmyqqg0rXYc0jufnzuE3EyWpcQa1JDXOoG7faStdgLQAz8+dwDFqSWqcPWpJapxBLUmNM6gbleT0JDcm+c+VrkUaSnJ4kk8l2Zzk0iQvXemadnWOUTcqyROAO4Azq+oRK12PNCfJwcDBVXVxkv2Bi4ATquqLK1zaLssedaOq6gLglpWuQxpVVddV1cX97a8BmxnzFzW1fAxqSdstyXrgaODCla1k12ZQS9ouSdYA5wIvq6rbV7qeXZlBLWnJkuxJF9JnV9V5K13Prs6glrQkSQK8B9hcVW9d6Xp2BwZ1o5J8APgs8LAkVyd5/krXJPUeDzwbODbJJf2/41a6qF2ZH8+TpMbZo5akxhnUktQ4g1qSGmdQS1LjDGpJapxBLUmNM6glqXH/D6gGEc1y7bjyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAUa0lEQVR4nO3de5Skd13n8feHmYRcJrcxDeZGhnDJbkCXyBxAEDYbCCoSE1l3RQgkiMbocl1EgYUl3JT1cIA96oIDxBgyBDDJCggr5oAxB2WjkxAXwiCJuc3k2kkmV4MB/O4fz9OkptJdfanq7vmN79c5fbqqnsvv+1zqU7/6PdVdqSokSe15xGoXIElaGgNckhplgEtSowxwSWqUAS5JjTLAJalRBvgiJDk7ybtXqK2fS7ItyX1Jjl2JNndFSSrJ4xc475lJzu1vP6bfd2smVMeHk7ytv31cku2TWO8Sa1mx83CO9hd8TFqR5OIkv7zadSxWMwGe5LokD/RPyh1JPp/kiGVo5+Ik3+nbuT3JhUkOWcJ6xj3J3we8qqrWVdXXhtb9qCTnJbkpyd1J/jrJ04fmeUmS65Pcn+RPk6wfo5bmVNUN/b77/qj5kpyW5CsLWN8ZVfWuSdS2OwagVkczAd47sarWAYcAtwK/t0ztvKpv54nAgcAHlqmdUY4Erpxj2jrg74CnAuuBPwY+n2QdQJInAX8IvAx4NPBPwP9a7oKTrF3uNlbDpHrxq2F3PSa7qnRWLFdbC3AAquo7wPnAMTOPJTkgyTlJpvue51uTPCLJ+iTbk5zYz7cuydVJXr6Adu4ELgCePNv0JL/Sr+vOJJ9Ncmj/+CX9LH/f9+R/YZZlH9HXeH2S2/raD0jyyCT3AWv65f9xlrquqar3V9XNVfX9qtoE7Akc3c/yUuBzVXVJVd0HvA14UZL95tiO65L8RpL/1/foP5Vkr/m2s59WSf5LkquAq2aGF5L8Zr9dNyc5OckLkny7X8dbBpZ/WpKvJrmrn/f3k+w591HZqe7HJvmrJPcmuQg4eGDahr62tf3905Jc0897bZKXJvm3wIeBH++P0139vGcn+VCSLyS5H/gPmWXYIslb+ndp1yV56cDjO70dH+zlz3VuJHlhkiv6/fA3SX50YPljk1ze1/4p4AfHZpZ9clq6d2QfSHIncGaSxyX5cpI7+no3JzlwYJn5jv8b+2NzU5JfGmpv1ufdLLXc1e//Z/aPb+vPj1NHbMvFSd7Vr+PeJH+R5OB+2sOGsfrteF5/+8wkf5Lk3H7Zryd5YpI39+1uS/L8oSYfl+Rv+33wmQy8a03yjP643JXk75McN1Tne5L8NV1n6ajZzre5tnMsVdXED3Ad8Lz+9j50vc5zBqafA3wG2A/YAHwbeGU/7fnALcCjgI8A549o52Lgl/vbBwNfBj7e3z8beHd/+3jgduDHgEfSvRu4ZGA9BTx+RDu/BFwNHEXXo75wpp2FLD+0rqcA3wEO6O9/BvitoXnuA546Yt/+LXAoXY9+K3DGIrbzon65vYHjgO8B/x3YA/gVYBr4RH9sntTXelS//FOBZwBr++O2FXjdQvYD8FXg/X1dzwHuBc7tp23ol10L7AvcAxzdTzsEeFJ/+zTgK0PrPRu4G3gWXSdnr6FjP7ONM23/e+D+gfX/4ByarY3hber37W3A0+leuE/tj8kj6V6Yrwde3+/Pnwe+O1PLLPvktL62V/fbvjfweOCEfn1TwCXABxd4/H+K7t3uk/v9+InB+hn9vJup5RX9dr0buAH4g76W5/fHbN2I5+I/0r0T3ru//96BY7B9REacSXee/WS/H84BrgX+Gw+dl9cOtXXjwHZewEPn0mHAHcAL6M6HE/r7UwPL3kB3bq8FDmCO823iubgcK12WQruDcx9wV39S3AT8SD9tDfDPwDED8/8qcPHA/d8Dvt4v90Mj2rmY7lX0rv6Abh44UGfz0JP4Y8DvDiy3ju6JtWG+4Omnfwn49YH7R/fLr13I8gPL7d9v15uH1n3G0Hw3AseN2LenDNz/XeDDi9jO4wemHwc8AKzp7+/Xz/P0gXkuA06eo5bXAf974P6s+wF4TH8e7Dvw2CeYO8DvAv4jsPfQek5j9gA/Z5bHhgN8sO1PA28bOIcWE+AfAt411N4/0L0wPIfunM3AtL9hdIDfMM85czLwtQUe/7PoQ7O//8SZ+pnnedfXctXAtB/pl330wGN3AE8Z8Vx868D9Xwf+fOAYzBfgFw1MO5EuP4bPywMH2hrczmOAB/tt/C0GOlf99C8Cpw4s+86BaXOeb5P+aW0I5eSqOpDu1ftVwF8l+WG6nvJMT2XG9XSvnDM20b26/lFV3TFPO6+pqgOr6rCqemlVTc8yz6GD7VU3VHHHUJuj7LR8f3st3Zj1giTZG/gc8H+r6ncGJt1HF+yD9qfr7czlloHb/0QX1A+rc47t3Da0rjvqoYuHD/S/bx2Y/sDM+vu3tX+W5JYk9wC/zcBQyAiHAjuq6v6Bx66fbcZ+nl8AzgBuTncB/N/Ms/7hbRo2W9uHzjXzPI4E3tC/Pb+rH8o5ol/focCN1SfDQFuj7FR7uoven0xyY7+Pz+Xh+3jU8R9c32DbC3neDR93qmrWc2EOc9W1EMPt3D7LeTm4vuHt3INuG48E/tPQ8fkJup71w5Zd4vm2JK0FOADVjfteCHyfbkfeTtcrPHJgtsfQ9TpnLkL9Id3bqF/LZD4BcNNge0n2BX5ops3FLs9DPcpbZ599Z0keCfxp396vDk2+Evh3A/MeRfei9+0F1jZnnXNsZw0vtAgfAr4FPKGq9gfeAmQBy90MHNTXM+Mxc81cVV+sqhPonnTfohtKg7lrn2+bZmv7pv72/XTDfDN+eJ51bQPe03caZn72qarz6LbzsCSD+2TO7Zyj9t/pH/vRfh+fwsL2MX37g5/2Gmx75PNume20j/vn+NSY6xzezu/SbeM2uh744PHZt6reOzD/Tvt8xPk2UU0GeDonAQcBW/tX1U8D70myX5Ijgf9K19OALhSgG3d+H3BOxv9kwSeAVyR5Sh+mvw1cWlXX9dNvpRvfnst5wOvTXYhb1y//qar63nwNJ9mD7iLuA8DLq+pfhmbZDJyY5Nl9yLwTuLCqRvXA5zLfdo5rP7rxwvv6XsqvLWShqroe2AK8I8meSX6C7m3ywyR5dJKf7ffFP9O9Q5npid0KHJ4FXjgdMtP2s4EXAn/SP34F3UXjffrOwiuHlhs+Nz4CnJHk6f25vW+Sn0l30fmrdC/sr0myNsmLgKctss796IcfkxwGvHERy34aOC3JMUn2Ad4+M2EBz7vl9G1gr34/7QG8la6TMo5TBrbznXTXyr5Ptz0nJvnJJGuS7NVfRD18tpXMc75NVGsB/rl0n9C4B3gP3RjUzEftXk33qnwN8BW64DkryVPpTqqX9wfjf9C9Wr5pnEKq6kt0n+64gK6X8jjgxQOznAn8cf+W6z/PsoqzgI/TXVC6lu6Cy6sX2Pwz6QLj+XRPyvv6n2f3tV1J9/ZtM93Fsf3oxg8XbQHbOa7fAF5CN7zzEeBTi1j2JXQX/u6kC5Zz5pjvEcAb6HrId9KNLc/sjy/TvWO5Jcnti2j7FmBHv87NdNccvtVP+wDd+OmtdBfbNw8teyYD50ZVbaG7qPb7/Tqvphs/pqoeBF7U399B99b8wkXUCfAOuguldwOfX8zyVfV/gA/S7aer+9+DZn3eLbK+Rauqu+mO4Ufpevz3A+P+cdXH6a513EJ34fo1fVvbgJPoOoLTdD3yNzJ3fo463yYqOw+tSZJa0VoPXJLUM8AlqVEGuCQ1ygCXpEat6D+6Ofjgg2vDhg0r2aQkNe+yyy67vaoe9jn3FQ3wDRs2sGXLlpVsUpKal2TWv751CEWSGmWAS1KjDHBJapQBLkmNmjfAk5zVf4PFNwYeW5/koiRX9b8PWt4yJUnDFtIDP5vuWzkGvQn4UlU9ge7LA8b6x1CSpMWbN8Cr6hK6/6g16CS6/7JG//vkCdclSZrHUsfAH11VNwP0vx8114xJTk+yJcmW6enZvthGkrQUy34Rs6o2VdXGqto4NTXuF2ZI2pUkWfSPJmepAX5rkkMA+t+3Ta4kSa2Y68t255umyVhqgH8WOLW/fSrwmcmUI0laqIV8jPA8uu/lOzrJ9iSvBN4LnJDkKuCE/r4kaQXN+8+squoX55j03AnXIklaBP8SU5IaZYBLUqMMcEkjrV+/fkkfFVzsMuvXr1/lLW3Pin6hg6T27NixY0U+/udnxBfPAN/FLfWk9vO20u7PAN/FjQriJAa19K+YY+CS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaNVaAJ3l9kiuTfCPJeUn2mlRhkqTRlhzgSQ4DXgNsrKonA2uAF0+qMEnSaOMOoawF9k6yFtgHuGn8kiRJC7HkAK+qG4H3ATcANwN3V9VfDM+X5PQkW5JsmZ6eXnqlkqSdjDOEchBwEvBY4FBg3ySnDM9XVZuqamNVbZyamlp6pZKknYwzhPI84Nqqmq6q7wIXAs+cTFmSpPmME+A3AM9Isk+SAM8Ftk6mLEnSfMYZA78UOB+4HPh6v65NE6pLkjSPteMsXFVvB94+oVokSYvgX2JKUqMMcElqlAG+i1i/fj1JFvUDLGr+9evXr/JWSpqkscbANTk7duygqpa1jZnQl7R7sAcuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDVqrABPcmCS85N8K8nWJD8+qcIkSaOtHXP5/wn8eVX9fJI9gX0mUJMkaQGWHOBJ9geeA5wGUFUPAg9OpixJ0nzGGUI5CpgG/ijJ15J8NMm+wzMlOT3JliRbpqenx2hOkjRonABfC/wY8KGqOha4H3jT8ExVtamqNlbVxqmpqTGakyQNGifAtwPbq+rS/v75dIEuSVoBSw7wqroF2Jbk6P6h5wLfnEhVkqR5jfsplFcDm/tPoFwDvGL8kiRJCzFWgFfVFcDGCdUiSVoE/xJTkhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1KixAzzJmiRfS/JnkyhIkrQwk+iBvxbYOoH1SJIWYawAT3I48DPARydTjiRpocbtgX8Q+E3gX+aaIcnpSbYk2TI9PT1mc5KkGUsO8CQvBG6rqstGzVdVm6pqY1VtnJqaWmpzkqQh4/TAnwX8bJLrgE8Cxyc5dyJVSZLmteQAr6o3V9XhVbUBeDHw5ao6ZWKVSZJGWrvaBahTb98fzjxg+duQtNuYSIBX1cXAxZNY179Wecc9VNXytpFQZy5rE5JWkH+JKUmNMsAlqVGOgUsaaSWuz/ygHS2KAS5ppJW4PgNeo1kKh1AkqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKr1TbhSRZ1vUfdNBBy7p+SSvLAN9FLOU7B5OsyHcVSto1OYQiSY2yBy5pXss9vAcO8S2FAS5pJIf3dl0OoUhSowxwSWqUAS5JjTLAJalRBrgkNWrJAZ7kiCR/mWRrkiuTvHaShUmSRhvnY4TfA95QVZcn2Q+4LMlFVfXNCdUmSRphyT3wqrq5qi7vb98LbAUOm1RhkqTRJjIGnmQDcCxw6SzTTk+yJcmW6enpSTQnSWICAZ5kHXAB8Lqqumd4elVtqqqNVbVxampq3OYkSb2xAjzJHnThvbmqLpxMSZKkhRjnUygBPgZsrar3T64kSdJCjNMDfxbwMuD4JFf0Py+YUF2SpHks+WOEVfUVYPn/x6QkaVb+JaYkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNWrtaheg0ZIsaXpVLUc5knYhBvguziCWNBeHUCSpUQa4JDXKAJekRjkGLmnJRl1k9wL78hurB57kp5L8Q5Krk7xpUkVJakNVLfpHk7PkAE+yBvgD4KeBY4BfTHLMpAqTJI02Tg/8acDVVXVNVT0IfBI4aTJlSZLmM06AHwZsG7i/vX9MkrQCxgnw2a5QPGyAK8npSbYk2TI9PT1Gc5KkQeME+HbgiIH7hwM3Dc9UVZuqamNVbZyamhqjOUnSoHEC/O+AJyR5bJI9gRcDn51MWZKk+Sz5c+BV9b0krwK+CKwBzqqqKydWmSRppLH+kKeqvgB8YUK1SJIWISv5wfok08D1K9bg7u9g4PbVLkKahefmZB1ZVQ+7iLiiAa7JSrKlqjaudh3SMM/NleE/s5KkRhngktQoA7xtm1a7AGkOnpsrwDFwSWqUPXBJapQBLkmNMsAblOSsJLcl+cZq1yINSnJEkr9MsjXJlUleu9o17c4cA29QkucA9wHnVNWTV7seaUaSQ4BDquryJPsBlwEnV9U3V7m03ZI98AZV1SXAnatdhzSsqm6uqsv72/cCW/F7ApaNAS5pWSTZABwLXLq6ley+DHBJE5dkHXAB8Lqqume169ldGeCSJirJHnThvbmqLlztenZnBrikiUkS4GPA1qp6/2rXs7szwBuU5Dzgq8DRSbYneeVq1yT1ngW8DDg+yRX9zwtWu6jdlR8jlKRG2QOXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalR/x8c2Mb3pBTruAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAUXklEQVR4nO3de5ScdX3H8c+HLLdcIIlZkYRLwAst4gXd4w2lFAEtilCrlQpqFKXRAmIVRaslXqjW41F71KJRESMBQUgLXqpwxMgBOegGsIpBQEhIyIUNJEAiitBv/3h+Y55M5j7P7ua3vF/n7NmZeS6/73OZz/zm98zsOiIEAMjPTuNdAACgNwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCPAu2L7A9ifGqK2/tb3K9mbbh45Fmzsi22H7aR3Ou8D2hen2fmnfTaqoji/b/ki6fYTt1VWst8daxuw8bNJ+x8ckF7aX2n77eNfRrWwC3PYK24+kJ+VG29+3ve8otLPU9h9SOxtsL7G9dw/r6fck/4yk0yJiakTc3GD95f2x2fZVddPfaHul7S22/9v2zD5qyU5E3JP23eOt5rM9z/Z1HaxvfkR8vIraJmIAYnxkE+DJcRExVdLektZL+sIotXNaaucZkqZL+twotdPK/pJubTPPcSmkpkbEMbUHbT9T0lckvUnSXpJ+L+k/R63Sre0OjHYb46GqXvx4mKjHZEflwpjlam4BLkmKiD9IukzSwbXHbO9pe5HtkdTz/LDtnWzPtL3a9nFpvqm277T95g7aeUDS5ZIOaTTd9jvSuh6wfaXt2enxa9Msv0y94zc0WHanVONK2/el2ve0vavtzZImpeV/1+XukaSTJH03Iq6NiM2SPiLptbanNdmOFbbfZ/t/bT9o+xLbu7XbzjQtbP+T7Tsk3VEbXrD9/rRda22fYPtY27endXyotPwLbN9ge1Oa94u2d+lkI20fYPunth+2fbWkWaVpc1NtA+n+PNt3pXnvtn2S7b+U9GVJL07HaVOa9wLb59n+ge0tkv660bCF7Q+ld2krbJ9Uenybt+PlXn6zc8P2q23fkvbDz2w/u7T8obZvSrVfIunPx6bBPpln+3rbn7P9gKQFtp9q+xrb96d6F9ueXlqm3fE/Kx2bNbbfVtdew+ddg1o2pf3/kvT4qnR+vKXFtiy1/fG0jodtX2V7Vpq23TBW2o6j0u0Ftr9j+8K07K9sP8P2B1O7q2wfU9fkU23/PO2DK1x612r7Rem4bLL9S9tH1NV5ru3rVXSWDmx0vjXbzr5ERBY/klZIOirdnizpm5IWlaYvknSFpGmS5kq6XdIpadoxktZJerKkr0q6rEU7SyW9Pd2eJekaSd9K9y+Q9Il0+0hJGyQ9T9KuKt4NXFtaT0h6Wot23ibpTkkHSpoqaUmtnQ6XX6HiXciIpKskPac07QpJH6ibf7Ok57dY188lzZY0U9JySfO72M6r03K7SzpC0mOS/lXSzpLekWq8KB2bZ0r6g6QD0/LPl/QiSQPpuC2XdGYn+0HSDZI+m+o6XNLDki5M0+amZQckTZH0kKSD0rS9JT0z3Z4n6bq69V4g6UFJh6no5OxWd+xr21hr+68kbSmtf6nSOdSojfptSvv2PkkvVPHC/ZZ0THaVtIuklZLek/bn6yT9qVZLg30yL9V2etr23SU9TdLRaX2Dkq6V9PkOj/8rVZxnh6T9eFG5frV+3tVqeWvark9IukfSl1Itx6RjNrXFc/F3Kt4J757uf6p0DFa3yIgFKs6zV6T9sEjS3ZL+RVvPy7vr2rq3tJ2Xa+u5NEfS/ZKOVXE+HJ3uD5aWvUfFuT0gaU81Od8qz8XRWOmoFFocnM2SNqWTYo2kZ6VpkyT9UdLBpfn/UdLS0v0vSPpVWu5JLdpZquJVdFM6oItLB+oCbX0Sf13Sp0vLTVXxxJrbLnjS9B9Lelfp/kFp+YEOlz8sndSTJX1QxQvU9NK659fNf6+kI1rs25NL9z8t6ctdbOeRpelHSHpE0qR0f1qa54WleZZJOqFJLWdK+q/S/Yb7QdJ+6TyYUnrsIjUP8E2S/k7S7nXrmafGAb6owWP1AV5u+1JJHymdQ90E+HmSPl7X3m9VvDAcruKcdWnaz9Q6wO9p81w6QdLNHR7/85VCM91/Rq1+tXnepVruKE17Vlp2r9Jj90t6bovn4odL998l6YelY9AuwK8uTTtORX7Un5fTS22Vt/NgSY+mbfyASp2rNP1Hkt5SWvZjpWlNz7eqf3IbQjkhIqarePU+TdJPbT9FRU+51lOpWanilbNmoYpX129ExP1t2jkjIqZHxJyIOCkiRhrMM7vcXhRDFffXtdnKNsun2wMqxqzbiojrI+KRiPh9RHxSxQnzsjR5s6Q96hbZQ0Vvp5l1pdu/VxHU29XZZDtX1a3r/th68fCR9Ht9afojtfWnt7Xfs73O9kOS/k2loZAWZkvaGBFbSo+tbDRjmucNkuZLWuviAvhftFl//TbVa9T27GYzt7G/pPemt+eb0lDOvml9syXdGykZSm21sk3ttp9s+9u27037+EJtv49bHf/y+sptd/K8qz/uioiG50ITzerqRH07Gxqcl+X11W/nziq2cX9Jr687Pi9V0bPebtkez7ee5BbgkqSIeDwilkh6XMWO3KCiV7h/abb9VPQ6axehvqLibdQ7Xc0nANaU27M9RdKTam12u7y29ijXN569rZDkdPtWSc8p1Xagihe923tYbyfbGfULdeE8SbdJenpE7CHpQ9q6Ha2slTQj1VOzX7OZI+JHEXG0iifdbSqG0qTmtbfbpkZtr0m3t6h4Z1TzlDbrWiXp3NRpqP1MjoiLVWznHNvlfdJ0O5vU/sn02LPTPj5Zne1jpfbLn/Yqt93yeTfKttnH6Tk+2Oc667fzTyq2cZWKHnj5+EyJiE+V5t9mn7c43yqVZYC7cLykGZKWp1fVSyWda3ua7f0l/bOKnoZUhIJUjDt/RtIi9//JgoskvdX2c23vqqLneGNErEjT16sY327mYknvcXEhbmpa/pKIeKxdwy4+43yY7V1s72b7LBU9hevTLIslHWf7ZSlkPiZpSUS06oH3up39mqZivHBz6qW8s5OFImKlpGFJH0374aUq3iZvx/Zetl+T9sUfVbxDqfXE1kvaxx1eOK1Ta/tlkl4t6Tvp8VtUXDSenDoLp9QtV39ufFXSfNsvTOf2FNuvcnHR+QYVL+xn2B6w/VpJL+iyzmlKw4+250g6q4tlL5U0z/bBtidLOqc2oYPn3Wi6XdJuaT/tLOnDKjop/Ti5tJ0fU3Gt7HEV23Oc7VfYnpSec0fY3qfRStqcb5XKLcC/6+ITGg9JOlfFGFTto3anq3hVvkvSdSqC53zbz1dxUr05HYx/V/FqeXY/hUTEj1V8uuNyFb2Up0o6sTTLAknfTG+5/r7BKs6X9C0VF5TuVnHB5fQOm5+moue6UUVv55WS/qY2NJT2yXwVQX5fmv9dXWzen3Wwnf16n6Q3qhje+aqkS7pY9o0qLvw9oCJYFjWZbydJ71XRQ35AxdhybX9co+IdyzrbG7poe52K/b9GxX6eHxG3pWmfUzF+ul7FxfbFdcsuUOnciIhhFRfVvpjWeaeK8WNFxKOSXpvub1Tx1nxJF3VK0kdVXCh9UNL3u1k+Iv5H0udV7Kc70++yhs+7LuvrWkQ8qOIYfk3Fc2CLpH6/XPUtFdc61qm4cH1GamuVpONVdARHVPTIz1Lz/Gx1vlXK2w6tAQBykVsPHACQEOAAkCkCHAAyRYADQKbG9A/dzJo1K+bOnTuWTQJA9pYtW7YhIrb7nPuYBvjcuXM1PDw8lk0CQPZsN/z2LUMoAJCptgFu+/z05xd/XXpspu2rbd+Rfs8Y3TIBAPU66YFfoOKbfmVnS/pxRDxdxV++6+tbjQCA7rUN8Ii4VsXXQcuOV/EVYaXfJ1RcFwCgjV7HwPeKiLWSlH4/ubqSAACdGPWLmLZPtT1se3hkpNGf1QYA9KLXAF/v9J/a0+/7ms0YEQsjYigihgYH+/1zvQCAml4D/EoV/7dP6fcV1ZQDAOhU2y/y2L5Yxf+fm+Xiv0CfI+lTki61fYqKf+b5+tEs8ols23/E0jn+TDAw8bUN8Ij4hyaTXl5xLWigVRDbJqiBJzC+iQkAmSLAASBTBDgAZGpM/xohgImll4vsXLepDgEOoGfNwpgL7GODIRQAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgO4iZM2fKdlc/krqaf+bMmeO8lQCqNDDeBaCwceNGRcSotlELfQATAz1wAMgUAQ4AmSLAAbQ0FtdnuEbTG8bAAbQ0FtdnJK7R9KKvHrjt99i+1favbV9se7eqCgMAtNZzgNueI+kMSUMRcYikSZJOrKowAEBr/Y6BD0ja3faApMmS1vRfEgCgEz0HeETcK+kzku6RtFbSgxFxVf18tk+1PWx7eGRkpPdKAQDb6GcIZYak4yUdIGm2pCm2T66fLyIWRsRQRAwNDg72XikAYBv9DKEcJenuiBiJiD9JWiLpJdWUBQBop58Av0fSi2xPdvH5n5dLWl5NWQCAdvoZA79R0mWSbpL0q7SuhRXVBQBoo68v8kTEOZLOqagWAEAX+Co9AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMjUw3gUA2LHFOXtIC/Ycm3bQFQIcQEv+6EOKiNFvx1YsGPVmJhSGUAAgUwQ4AGSqrwC3Pd32ZbZvs73c9ourKgwA0Fq/Y+D/IemHEfE627tImlxBTQCADvQc4Lb3kHS4pHmSFBGPSnq0mrIAAO30M4RyoKQRSd+wfbPtr9meUj+T7VNtD9seHhkZ6aM5AEBZPwE+IOl5ks6LiEMlbZF0dv1MEbEwIoYiYmhwcLCP5gAAZf0E+GpJqyPixnT/MhWBDgAYAz2PgUfEOturbB8UEb+V9HJJv6mutCeWsfi2G990AyaWfj+FcrqkxekTKHdJemv/JT0xjcW33fimGzCx9BXgEXGLpKGKagEAdIFvYgJApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAy1XeA255k+2bb36uiIABAZ6rogb9b0vIK1gMA6EJfAW57H0mvkvS1asoBAHSq3x745yW9X9L/NZvB9qm2h20Pj4yM9NkcAKCm5wC3/WpJ90XEslbzRcTCiBiKiKHBwcFemwMA1OmnB36YpNfYXiHp25KOtH1hJVUBANrqOcAj4oMRsU9EzJV0oqRrIuLkyioDALTE58ABIFMDVawkIpZKWlrFugAAnakkwAFMbLZHvY0ZM2aMehsTDQEOoKWI6HoZ2z0th+4wBg4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQKQIcADJFgANApghwAMjUwHgXgK1sj+r6Z8yYMarrBzC2CPAdRER0vYztnpYDMDEwhAIAmSLAASBTBDgAZIoAB4BM9Rzgtve1/RPby23favvdVRYGAGitn0+hPCbpvRFxk+1pkpbZvjoiflNRbQCAFnrugUfE2oi4Kd1+WNJySXOqKgwA0FolY+C250o6VNKNDaadanvY9vDIyEgVzQEAVEGA254q6XJJZ0bEQ/XTI2JhRAxFxNDg4GC/zQEAkr4C3PbOKsJ7cUQsqaYkAEAn+vkUiiV9XdLyiPhsdSUBADrRTw/8MElvknSk7VvSz7EV1QUAaKPnjxFGxHWSRvfP5wEAmuKbmACQKQIcADJFgANApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkCkCHAAyRYADQKYIcADIFAEOAJkiwAEgUwQ4AGSKAAeATBHgAJApAhwAMkWAA0CmCHAAyBQBDgCZIsABIFMEOABkigAHgEwR4ACQqYHxLgCt2e5pekSMRjkAdiAE+A6OIAbQDEMoAJApAhwAMkWAA0CmCHAAyBQBDgCZ6ivAbb/S9m9t32n77KqKApAH2w1/2k1DNXr+GKHtSZK+JOloSasl/cL2lRHxm6qKA7Bj42Ou46ufHvgLJN0ZEXdFxKOSvi3p+GrKAgC000+Az5G0qnR/dXpsG7ZPtT1se3hkZKSP5gAAZf0EeKPBrO3eT0XEwogYioihwcHBPpoDAJT1E+CrJe1bur+PpDX9lQMA6FQ/Af4LSU+3fYDtXSSdKOnKasoCALTT86dQIuIx26dJ+pGkSZLOj4hbK6sMANBSX3+NMCJ+IOkHFdUCAOgC38QEgEx5LD+Ib3tE0soxa3DimyVpw3gXATTAuVmt/SNiu4/xjWmAo1q2hyNiaLzrAOpxbo4NhlAAIFMEOABkigDP28LxLgBognNzDDAGDgCZogcOAJkiwAEgUwR4hmyfb/s+278e71qAMtv72v6J7eW2b7X97vGuaSJjDDxDtg+XtFnSoog4ZLzrAWps7y1p74i4yfY0ScskncB/6hod9MAzFBHXSnpgvOsA6kXE2oi4Kd1+WNJyNfhHL6gGAQ5gVNieK+lQSTeObyUTFwEOoHK2p0q6XNKZEfHQeNczURHgACple2cV4b04IpaMdz0TGQEOoDK2LenrkpZHxGfHu56JjgDPkO2LJd0g6SDbq22fMt41Aclhkt4k6Ujbt6SfY8e7qImKjxECQKbogQNApghwAMgUAQ4AmSLAASBTBDgAZIoAB4BMEeAAkKn/B19pgFV3sEirAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAU0UlEQVR4nO3debStdX3f8ffHe1GGi8CFIzJfMWrC0BZzVxM1sQa1VaPFdNlGoyhixDRxSlwxNiaFODW11KFJEwOCiiDEhdQhUYMBkaVR9IKkCjeNiEwyXaYyRCuYb/94fqdsNmfe+557f7fv11pnnb33M/y+z/P89mc/wx5SVUiS+vOIbV2AJGllDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4AtI8uEk71iltn4pyfVJ7k1y1Gq02ZskxyX58jLGvybJs9rt303ywSnWcm+SQ9vtVesn89RSSX5iG7W9rG3SgyQb2jpdu61rWcx2G+DtyfeD9kS5M8lfJjloK7RzUZIftnZuS3Jekv1WMJ9Jn0QnA6+tqnVV9c055v/2JN9K8kCSk+YY/itJrk1yX5JPJlk/MuxRSU5PcneSm5P81gR1dqmq3lVVv7rYeK0/LDpe205XT1rXjhiAWj3bbYA3L6iqdcB+wC3AH22ldl7b2nkisCfw3q3UzkIOAa5YYPhVwJuBvxwfkORw4M+AY4F9gX8A/mRklJOAJ7Q2fgF4c5LnTKXqBfSwB7NcPS9TBtv7c36HsrX7Sxcbs6p+CJwLHDb7WJI9kpyRZEvb8/y9JI9Isj7JDUle0MZbl+SqJC9fQjt3AJ8AjphreJJXt3ndkeTTSfZvj1/cRvnbtif/y3NM+4hW47VJbm2179H2ju8F1rTpvztPbR+pqs8B98wx+KXAZ6rq4qq6F/h94N8k2b0Nfznw9qq6s6o2A6cCx82zjM9o6+9Nrc6bkrxyZPic670NOy7JV5K8N8kdwEnt9MKfJPlcWzdfSfLYJO9rR1Z/N3rKKMlbknw3yT1JrkzyS3PVOU/tx7aabk/y1rFhJyU5s93eOcmZbby7knwjyb5J3gn8PPDHrdY/buNXkt9I8h3gOyOPjR5x7ZPkC63uLyU5pI33sMPx2b38JD8FfAB4Smvvrjb8UUlOTnJdkluSfCDJLiPT/3bbLjcmOX6RdXJRkncm+QrDC/uhSV6ZZHOr9eokrxkZf7Htv3fr+3cn+Trw+LH2ntrW5/9u/586Vss7kvxNW97PtPmd1eb3jSQb5lmO2fX4irZebhvdxhk7jTW7HCP3r2nr7X9mOEo9rW3zz7X18NdJ9hpr9vi2jm9K8qaReT1ipJ/enuTjaUe8I3W+Ksl1wIXz9beFttuSVdV2+QdcAzyr3d4V+AhwxsjwM4BPAbsDG4C/B17Vhv1L4GbgMQxhde4C7VwE/Gq7vQ9wIfDRdv/DwDva7aOB24AnA49iOBq4eGQ+BfzEAu0cz7AXfSiwDjhvtp2lTD8y3pnASWOPfQr4nbHH7gV+GtirzXvfkWEvAr41z/yfATwAvA3YCXgewxN/ryWs9+PatK8D1gK7tHV4W6tl57Z+v8fworIGeAfwxZH2/y2wP8POxS8D9wH7jcz/y/PUfVhb5qe37fOeVstsHzoJOLPdfg3wmdav1rTaHj3eH8a2zReA9cAu49urLeM9I22/f7bOto4KWDtPn3vYMgHvAz7d2tu91fqf2rDnMByNHgHsBnxsob7T2roOOLxtk52AX2QI3gD/om3fJy9x+58DfLy1fQTw/ZFlXQ/cyXAkuBZ4Sbu/90gtV7W29wCuZOg/z2rjnwF8aJ7lmF2PpzL0q38K/B/gp8afqyPLccNYnnyN4Qj1AOBW4DLgqLbNLgROHGvr7LacRwJbeLAvvbHN68A27Z8BZ49Ne0abdhcW6G8T5+Q0ZrI1/toKvxe4q3WoG4Ej27A1beMdNjL+a4CLRu7/EfCtNt3eC7RzUeugd7XOeBYwM94pgNOAd49Mtw64H9gw/oSep50LgF8fuf+kNv3apUw/Mt1cAX4B8Gtjj32/deKD2rx3Hhn2bOCaeeb/DOAHPDRwbgV+drH1zhBG143N78PAqSP3XwdsHrl/JHDXAst7OXDMyPznC/D/CJwzcn834EfMHeDHA38D/JN5+sNcAX70HI+NBvho2+uAH7d1v4FlBDhDqN4HPH7ksacA32u3Twf+cGTYExfqO62tty3Spz4JvGGJ2/9+4CdHhr2LBwP8WODrY/P+KnDcSC1vHRn2X4HPjdx/AXD5PDXOrscDRx77OvDi8efqyHKMB/hLR+5/AvjTsX75ybG2Rpfz3cBp7fZm4Jkjw/Zr62XtyLSHjgyft79N+re9n0J5YVXtyfAq91rgS0key7Cn/Ejg2pFxr2V4ZZ11CsMewoeq6vZF2nl9Ve1ZVQdU1Uurassc4+w/2l4NpypuH2tzIQ+Zvt1ey7BHMKl7gUePPfZohr3Ce0fujw+bz+1V9cDI/X9gCKWlrPfr55jfLSO3fzDH/XWzd5K8PMnl7VDzLoZtuM8Ctc7af7TtqrqPYfvM5aPAXwHntEPkdyfZaZH5z7Vccw5vfeOOVtNyzTDsqV06sg4+3x6HseXkodti0doAkjw3ydcynAq8i2Eve3Qdz7f9Zxj67Hztj/fx2eGj/WPJfWEeN89R11Itt+3x5ZzdnocA/2Nk+2xmeMHed55pV9LflmR7D3AAqurHVXUew0r6OYZD8vsZVuSsgxn2OkmyhuGw5gzg32c6b7G6cbS9JLsBe8+2udzpW70P8NBOtFJXMBxSztZ2KMOL3t9X1Z3ATaPD2+2FLpjOZ8H13tQK5gtAO298KsOL9d7txfvbDHuli7mJYY93dl67Mmyfh6mq+6vqD6rqMOCpwPMZTuksVP9iyzXa9jqG0wk3MuxNwxDKsx67wHxvYwiTw9tOxZ5VtUcNF9lhbDkZ1v9i/l8bSR7FsPd5MsNptT2Bz7K0dbyFoc/O1/54H58dvtTnyCTuY/51vFLjy3lju3098NyR7bNnVe1cVXM+DxbpbxPpIsAzOIbhfO7mqvoxw3m4dybZvT3xf4vh9ALA77b/xzN01DNaqE/iY8Ark/yz9iR4F3BJVV3Tht/CcH57PmcDv5nkce0J/i7gz8f2dOaVZKckOzNss7XtwsjsMp0FvCDJz7cXlrcB51XV7F72GcDvJdkryU8Cr2Y45FyWJaz3Se3G0PG3ALSLZ3NeUJ7DucDzk/xckkcyrIM5+3eSX0hyZFt/dzO8KP24DV5sO87neSNtv52hb1zfjua+D7wsyZoMFx1HL/zdAhzYpqOq/pHhRey9SR7T6j0gyb9q438cOC7JYe1F6sRl1vlIhhf3LcADSZ7LcM1oUW37n8dwcXrXJIcBrxgZ5bPAEzO8pXVthov5hwF/scwaV+Jyhm2wvh2lv3EK8/z9tpyHA68E/rw9/gGG58AhAElmWj7NaZH+NpHtPcA/k+EdGncD7wReUVWze46vY3jVvRr4MkPAnp7kpxlC5eWtw/1nhlB4yySFVNUFDO/u+ATDXtDjgRePjHIS8JF2WPXv5pjF6QyHUhczXMT7YVuGpTqVYc/sJcBb2+1jW21XAL/GEOS3Mlz4+vWRaU8EvstwGPgl4L9U1eeX0faoOdf7Cuf1EFV1JcN50a8yBNuRwFeWOO0VwG+0em5iuHh2wzyjP5Yh8O9mOPz9Eg++CL0feFGGd8j8t2WU/zGG9XwHw0Wql44MezXw2wyndA5nOB8660KGo6Gbk9zWHvsdhot9X0tyN/DXDNdMqOGdSO9r013V/i9Ze1F/PcMLwZ3ArzBcMF2q1zKcariZYSfgQyPzvp1h7/JNDMv6ZuD5VXXbw2czdR8F/pbhXPf5PBi2k/gSwzq+ADi5qs5vj7+fYZ2dn+QehguaP7PAfBbqbxNJO8kuSerM9r4HLkmahwEuSZ0ywCWpUwa4JHVqVb+YZ5999qkNGzasZpOS1L1LL730tqqaGX98VQN8w4YNbNq0aTWblKTuJZnzE7eeQpGkThngktQpA1ySOmWAS1KnFg3wDL+leGuSb488tj7Dr498p/0f/yULSdJWtpQ98A8z/ArIqLcAF1TVExi+6GWiL4qSJC3fogFeVRczfMPaqGMYfuKM9v+FU65LkrSIlZ4D37eqbgJo/x8zvZIkSUux1T/Ik+QE4ASAgw9eyo+HSOpFspQf8nkov8J6ela6B35Lkv0A2v9b5xuxqk6pqo1VtXFm5mGfBNUikqzoT1oNC/xQ8oLDNB0rDfBP8+BPKb0C+NR0ytG4hX6ReqHhknZ8S3kb4dkMP3H1pCQ3JHkV8IfAs5N8B3h2uy9JWkWLngOvqpfMM+iZU65FkrQMfhJTkjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROTRTgSX4zyRVJvp3k7CQ7T6swSdLCVhzgSQ4AXg9srKojgDXAi6dVmCRpYZOeQlkL7JJkLbArcOPkJUnanqxfv54ky/oDlj3N+vXrt/GS9mftSiesqu8nORm4DvgBcH5VnT8+XpITgBMADj744JU2J2kbufPOO6mqrd7ObPBr6SY5hbIXcAzwOGB/YLckLxsfr6pOqaqNVbVxZmZm5ZVKkh5iklMozwK+V1Vbqup+4DzgqdMpS5K0mEkC/DrgZ5PsmuHY55nA5umUJUlazIoDvKouAc4FLgO+1eZ1ypTqkiQtYsUXMQGq6kTgxCnVIklaBj+JKUmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwzw7cRqfOOb3/Ym7Vgm+iCPpmc1vvHNb3uTdizugUtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE5NFOBJ9kxybpK/S7I5yVOmVZgkaWFrJ5z+/cDnq+pFSR4J7DqFmiRJS7DiAE/yaODpwHEAVfUj4EfTKUuStJhJTqEcCmwBPpTkm0k+mGS38ZGSnJBkU5JNW7ZsmaA5SdKoSQJ8LfBk4E+r6ijgPuAt4yNV1SlVtbGqNs7MzEzQnCRp1CQBfgNwQ1Vd0u6fyxDokqRVsOIAr6qbgeuTPKk99EzgyqlUJUla1KTvQnkdcFZ7B8rVwCsnL0mStBQTBXhVXQ5snFItkqRl8JOYktSpSU+hSNrB1YmPhpP2WJ12tCwGuKQF5Q/upqq2fjsJddJWb2aH4ikUSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOuX3gW8nVuNL8/3CfGnHYoBvJ1bjS/P9wnxpx+IpFEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMTB3iSNUm+meQvplGQJGlpprEH/gZg8xTmI0lahokCPMmBwC8CH5xOOZKkpZp0D/x9wJuBf5xvhCQnJNmUZNOWLVsmbE6SNGvFAZ7k+cCtVXXpQuNV1SlVtbGqNs7MzKy0OUnSmEn2wJ8G/Osk1wDnAEcnOXMqVUmSFrXiAK+q/1BVB1bVBuDFwIVV9bKpVSZJWpDvA5ekTk3lNzGr6iLgomnMS5K0NO6BS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqem8os8knZsSbZ6G3vttddWb2NHY4BLWlBVLXuaJCuaTsvjKRRJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSp/wgz3Zka3/azU+6STsWA3w74afdJC2Xp1AkqVMGuCR1asUBnuSgJF9MsjnJFUneMM3CJEkLm+Qc+APAm6rqsiS7A5cm+UJVXTml2iRJC1jxHnhV3VRVl7Xb9wCbgQOmVZgkaWFTOQeeZANwFHDJHMNOSLIpyaYtW7ZMozlJElMI8CTrgE8Ab6yqu8eHV9UpVbWxqjbOzMxM2pwkqZkowJPsxBDeZ1XVedMpSZK0FJO8CyXAacDmqnrP9EqSJC3FJHvgTwOOBY5Ocnn7e96U6pIkLWLFbyOsqi8DW/+nqiVJc/KTmJLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdWqiAE/ynCT/K8lVSd4yraIkSYtbcYAnWQP8d+C5wGHAS5IcNq3CJEkLWzvBtP8cuKqqrgZIcg5wDHDlNArTIMmKhlfV1ihHeoiF+qd9c+ubJMAPAK4fuX8D8DPjIyU5ATgB4OCDD56guf8/2dm1PbN/bluTnAOf6+X1YVuzqk6pqo1VtXFmZmaC5iRJoyYJ8BuAg0buHwjcOFk5kqSlmiTAvwE8IcnjkjwSeDHw6emUJUlazIrPgVfVA0leC/wVsAY4vaqumFplkqQFTXIRk6r6LPDZKdUiSVoGP4kpSZ0ywCWpUwa4JHUqq/lG/CRbgGtXrcEd3z7Abdu6CGkO9s3pOqSqHvZBmlUNcE1Xkk1VtXFb1yGNs2+uDk+hSFKnDHBJ6pQB3rdTtnUB0jzsm6vAc+CS1Cn3wCWpUwa4JHXKAO9QktOT3Jrk29u6FmlUkoOSfDHJ5iRXJHnDtq5pR+Y58A4leTpwL3BGVR2xreuRZiXZD9ivqi5LsjtwKfDCqvKnFrcC98A7VFUXA3ds6zqkcVV1U1Vd1m7fA2xm+PlFbQUGuKStIskG4Cjgkm1byY7LAJc0dUnWAZ8A3lhVd2/renZUBrikqUqyE0N4n1VV523renZkBrikqUkS4DRgc1W9Z1vXs6MzwDuU5Gzgq8CTktyQ5FXbuiapeRpwLHB0ksvb3/O2dVE7Kt9GKEmdcg9ckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6RO/V+bgJxeiORT3gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVDUlEQVR4nO3de7RkZX3m8e8jDXJpbg1HQBBbjJJwmYmm1yRqdIyXRI0OZpYzMVEQNGIm8Za4YsxtQKMm4zhekkxiWkWDIMQFjEqiRiMBlsZbg2QUOhMVEZAGDjcRoqPob/7Y7xmL4tyrTne/7fez1lldVfvy/vbebz317l1VXakqJEn9ud+OLkCStDoGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwzwRSR5d5LXbqe2fiHJdUnuSvKI7dFmb5KcnOQTK5j/miRPard/N8k7pljLXUmOare3Wz9ZoJZK8iM7qO0VHZMeJNnY9um6HV3LUnbaAG9Pvm+1J8rtSf42yYPWoJ2Lk3y7tXNLkguSHLaK9Uz6JHoj8OKqWl9Vnx9b9wOSnJPkhiTfSPLJJD85Ns8vJ/lakruTvD/JhpFp909yRpI7k9yY5DcnqLNLVfX6qvqVpeZr/WHJ+dpxunrSunbFANT2s9MGePOMqloPHAbcBPzpGrXz4tbOw4EDgDevUTuLeTBw5QLT1gOfA34C2AD8FfC3SdYDJDkW+EvgROAQ4F+BPx9Z/nTgYa2NnwFemeQp09+Ee+thBLNSPW9TBjv7c36Xstb9pYuDWVXfBs4Djpl7LMn+Sc5MMttGnr+f5H5JNiS5Pskz2nzrk3w5yUnLaOc24HzguPmmJ3lhW9dtST6Y5IHt8UvbLP/URvK/OM+y92s1fi3Jza32/dvo+C5gt7b8V+ap6+qqelNVbauq71XVZmAP4Og2y3OAC6vq0qq6C/gD4D8m2bdNPwn4w6q6vaq2Am8HTl5gGx/f9t8rWp3bkpwyMn3e/d6mndzODt6c5Dbg9HZ54c+TfLjtm08mOTTJW9qZ1T+PXjJK8qokX0nyzSRXJfmFeQ/W/LWf2Gq6NcnvjU07PclZ7faeSc5q892R5HNJDknyOuCxwJ+1Wv+szV9Jfj3Jl4AvjTw2esZ1cJKPtbovSfLgNt99TsfnRvlJfgx4G/Co1t4dbfr9k7wxybVJbkrytiR7jSz/W+243JDk+Uvsk4uTvC7JJxle2I9KckqSra3Wq5O8aGT+pY7/Qa3v35nks8BDx9p7dNuf32j/Pnqsltcm+ce2vRe29Z3d1ve5JBsX2I65/fi8tl9uGT3GGbuMNbcdI/evafvtf2c4S31nO+Yfbvvh75McONbs89s+3pbkFSPrut9IP701yfvSznhH6nxBkmuBixbqb4sdt2Wrqp3yD7gGeFK7vTfDqPPMkelnAh8A9gU2Av8CvKBN+1ngRuABDGF13iLtXAz8Srt9MHAR8J52/93Aa9vtJwC3AI8E7s9wNnDpyHoK+JFF2nk+8GXgKIYR9QVz7Sxn+bF1/TjwbWD/dv8DwG+PzXMXw4j9wLbuQ0amPQv4wgLrfjxwD/AaYHfgaQxP/AOXsd9Pbsu+BFgH7NX24S2tlj3b/v0qw4vKbsBrgX8Yaf8/AQ9kGFz8InA3cNjI+j+xQN3HtG1+XDs+b2q1zPWh04Gz2u0XARe2frVbq22/8f4wdmw+xnD2s9f48Wrb+M2Rtt86V2fbRwWsW6DP3WebgLcAH2zt7dtq/aM27SkMZ6PHAfsA72WRvtPauhY4th2T3YGfZwjeAP++Hd9HLvP4nwu8r7V9HPD1kW3dANzOcCa4Dvildv+gkVq+3NreH7iKof88qc1/JvCuBbZjbj++naFf/Vvg/wI/Nv5cHdmO68fy5NMMZ6iHAzcDlwOPaMfsIuC0sbbOadt5PDDLD/rSy9u6jmjL/iVwztiyZ7Zl92KR/jZxTk5jJWvx13b4XcAdrUPdABzfpu3WDt4xI/O/CLh45P6fAl9oyx20SDsXtw56R+uMZwMz450CeCfwhpHl1gPfBTaOP6EXaOfjwK+N3D+6Lb9uOcuPLLdf267fGVv3r47N9/XWiR/U1r3nyLQnA9cssP7HA9/i3oFzM/BTS+13hjC6dmx97wbePnL/JcDWkfvHA3cssr1XACeMrH+hAP+vwLkj9/cBvsP8Af584B+Bf7NAf5gvwJ8wz2OjAT7a9nrge23fb2QFAc4QqncDDx157FHAV9vtM4A/Hpn28MX6TmvrNUv0qfcDL1vm8f8u8KMj017PDwL8ROCzY+v+FHDySC2/NzLtfwAfHrn/DOCKBWqc249HjDz2WeDZ48/Vke0YD/DnjNw/H/iLsX75/rG2RrfzDcA72+2twBNHph3W9su6kWWPGpm+YH+b9G9nv4TyzKo6gOFV7sXAJUkOZRgp7wF8bWTerzG8ss7ZzDBCeFdV3bpEOy+tqgOq6vCqek5Vzc4zzwNH26vhUsWtY20u5l7Lt9vrGEYEy9JOoy8EPl1VfzQy6S6GYB+1H8Oo8K6R++PTFnJrVd0zcv9fGUJpOfv9unnWd9PI7W/Nc3/93J0kJyW5op1q3sFwDA9epNY5Dxxtu6ruZjg+83kP8HfAue0U+Q1Jdl9i/fNt17zTW9+4rdW0UjMMI7XLRvbBR9rjMLad3PtYLFkbQJKnJvl0hkuBdzCMskf38ULHf4ahzy7U/ngfn5s+2j+W3RcWcOM8dS3XStse38654/lg4H+NHJ+tDC/Yhyyw7Gr627Ls7AEOQA3XfS9g2Ek/zXBK/l2GHTnnSIZRJ0l2YzitORP4L5nOR6xuGG0vyT7AQXNtrnT5Vu893LsTLSjJ/RlGSl9nGPWOupLhlHJu3qMYXvT+papuB7aNTm+3F3rDdDGL7vemVrFeANp147czvFgf1F68v8gwKl3KNoYR79y69mY4PvdRVd+tqldX1THAo4GnM1zSWaz+pbZrtO31DJcTbmAYTcMQynMOXWS9tzCEybFtUHFAVe1fw5vsMLadDPt/Kf+/jdaPzmf41NMhbR9/iOXt41mGPrtQ++N9fG76cp8jk7ibhffxao1v5w3t9nXAU0eOzwFVtWdVzfs8WKK/TaSLAM/gBIbruVur6nsM1+Fel2Tf9sT/TeCstsjvtn+fz9BRz2yhPon3Aqck+fH2JHg98JmquqZNv4nh+vZCzgF+I8lD2hP89cBfj4105tVerc9jeGKfVFXfH5vlbOAZSR7bXlheA1xQVXOj7DOB309yYJIfBV7IcMq5IsvY75Pah6HjzwK0N8/mfUN5HucBT0/y00n2YNgH8/bvJD+T5PjWJ+5keFH6Xpu81HFcyNNG2v5Dhr5xXTub+zrw3CS7ZXjTcfSNv5uAI9pytGP7duDNSR7Q6j08yc+1+d8HnJzkmPYiddoK69yD4cV9FrgnyVMZ3jNaUjv+FzC8Ob13kmOA543M8iHg4Rk+0rouw5v5xwB/s8IaV+MKhmOwoZ2lv3wK6/yDtp3HAqcAf90efxvDc+DBAElmWj7Na4n+NpGdPcAvzPAJjTuB1wHPq6q5keNLGF51rwY+wRCwZyT5CYZQOal1uP/GEAqvmqSQqvo4w6c7zmcYBT0UePbILKcDf9VOq/7zPKs4g+FU6lKGN/G+3bZhOeZetX8WuCPDO/h3JXlsq+1K4FcZgvxmhje+fm1k+dOArzCcBl4C/Peq+sgy2x43735f5brupaquYrgu+imGYDse+OQyl70S+PVWzzaGN8+uX2D2QxkC/06G099L+MGL0FuBZ2X4hMyfrKD89zLs59sY3qR6zsi0FwK/xXBJ51iG66FzLmI4G7oxyS3tsd9meLPv00nuBP6e9omjqvoww5ucF7V5LlpBjbQX9ZcyvBDcDvwywxumy/VihksNNzIMAt41su5bGfrpKxi29ZXA06vqlvuuZureA/wTw7Xuj/KDsJ3EJQz7+OPAG6vqo+3xtzLss48m+SbDG5o/Of8qgMX720TSLrJLkjqzs4/AJUkLMMAlqVMGuCR1ygCXpE5t1/+Y5+CDD66NGzduzyYlqXuXXXbZLVU1M/74dg3wjRs3smXLlu3ZpCR1L8m837j1EookdcoAl6ROGeCS1CkDXJI6ZYBLUqeWDPAMP4Z7c5Ivjjy2IcPPR32p/Tv+U0SSpDW2nBH4uxl+xmnUq4CPV9XDGP6nron+pz9J0sotGeBVdSnDf5E56gSG36ik/fvMKdclSVrCar/Ic0hVbQOoqm1z//H8fJKcCpwKcOSRy/nxEEm9SJbzQz735n9hPT1r/iZmVW2uqk1VtWlm5j7fBNUSkqzqT9oeFvqx3aWmaTpWOwK/KclhbfR9GMOvwGgNLNbhk/iEkH6IrXYE/kF+8Ft4zwM+MJ1yJEnLtZyPEZ7D8BuFRye5PskLgD8GnpzkS8CT231J0na05CWUqvqlBSY9ccq1SJJWwG9iSlKnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUqYkCPMlvJLkyyReTnJNkz2kVJkla3KoDPMnhwEuBTVV1HLAb8OxpFSZJWtykl1DWAXslWQfsDdwweUmSpOVYdYBX1deBNwLXAtuAb1TVR8fnS3Jqki1JtszOzq6+UknSvUxyCeVA4ATgIcADgX2SPHd8vqraXFWbqmrTzMzM6iuVtENs2LCBJCv6A1a8zIYNG3bwlvZn3QTLPgn4alXNAiS5AHg0cNY0CpO0c7j99tupqjVvZy74tXyTXAO/FvipJHtn2PNPBLZOpyxJ0lImuQb+GeA84HLgC21dm6dUlyRpCZNcQqGqTgNOm1ItkqQV8JuYktQpA1ySOmWAS1KnDHBJ6pQBvpPYHl+W8IsS0q5lok+haHq2x5cl/KKEtGtxBC5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSerURAGe5IAk5yX55yRbkzxqWoVJkha3bsLl3wp8pKqelWQPYO8p1CRJWoZVB3iS/YDHAScDVNV3gO9MpyxJ0lImuYRyFDALvCvJ55O8I8k+4zMlOTXJliRbZmdnJ2hOkjRqkgBfBzwS+IuqegRwN/Cq8ZmqanNVbaqqTTMzMxM0J0kaNUmAXw9cX1WfaffPYwh0SdJ2sOoAr6obgeuSHN0eeiJw1VSqkiQtadJPobwEOLt9AuVq4JTJS5K0M6nT9oPT998+7WhFJgrwqroC2DSlWiTthPLqO6mqtW8noU5f82Z2KX4TU5I6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROrdvRBWhQp+0Hp++/9m1I2mUY4DuJvPpOqmpt20io09e0CUnbkZdQJKlTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcmDvAkuyX5fJK/mUZBkqTlmcYI/GXA1imsR5K0AhMFeJIjgJ8H3jGdciRJyzXpCPwtwCuB7y80Q5JTk2xJsmV2dnbC5iRJc1Yd4EmeDtxcVZctNl9Vba6qTVW1aWZmZrXNSZLGTDICfwzwH5JcA5wLPCHJWVOpSpK0pFUHeFX9TlUdUVUbgWcDF1XVc6dWmSRpUX4OXJI6NZX/TraqLgYunsa6JEnL4whckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqem8lV6Sbu2JGvexoEHHrjmbexqDHBJi6qqFS+TZFXLaWW8hCJJnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVP+pNpOZK1/d9DfHJR2LasO8CQPAs4EDgW+D2yuqrdOq7AfNv7uoKSVmmQEfg/wiqq6PMm+wGVJPlZVV02pNknSIlZ9DbyqtlXV5e32N4GtwOHTKkyStLipvImZZCPwCOAz80w7NcmWJFtmZ2en0ZwkiSkEeJL1wPnAy6vqzvHpVbW5qjZV1aaZmZlJm5MkNRMFeJLdGcL77Kq6YDolSZKWY9UBnuEzb+8EtlbVm6ZXkiRpOSYZgT8GOBF4QpIr2t/TplSXJGkJq/4YYVV9Aljbb55IkhbkV+klqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpyYK8CRPSfJ/knw5yaumVZQkaWnrVrtgkt2A/wk8Gbge+FySD1bVVdMqTpBkVdOrai3KkbQTWXWAA/8O+HJVXQ2Q5FzgBMAAnyKDWNJCJrmEcjhw3cj969tjkn5IJJn3b6lpmo5JRuDzHYn7DBeTnAqcCnDkkUdO0JyknY1niDvWJCPw64EHjdw/ArhhfKaq2lxVm6pq08zMzATNSZJGTRLgnwMeluQhSfYAng18cDplSZKWsupLKFV1T5IXA38H7AacUVVXTq0ySdKiJrkGTlV9CPjQlGqRJK2A38SUpE4Z4JLUKQNckjplgEtSp7I9P4ifZBb42nZrcNd3MHDLji5Cmod9c7oeXFX3+SLNdg1wTVeSLVW1aUfXIY2zb24fXkKRpE4Z4JLUKQO8b5t3dAHSAuyb24HXwCWpU47AJalTBrgkdcoA71CSM5LcnOSLO7oWaVSSByX5hyRbk1yZ5GU7uqZdmdfAO5TkccBdwJlVddyOrkeak+Qw4LCqujzJvsBlwDP9sfO14Qi8Q1V1KXDbjq5DGldV26rq8nb7m8BW/K3cNWOAS1oTSTYCjwA+s2Mr2XUZ4JKmLsl64Hzg5VV1546uZ1dlgEuaqiS7M4T32VV1wY6uZ1dmgEuamiQB3glsrao37eh6dnUGeIeSnAN8Cjg6yfVJXrCja5KaxwAnAk9IckX7e9qOLmpX5ccIJalTjsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSerU/wPBl5jI7Xl6EAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAU80lEQVR4nO3debRlZX3m8e8jJSIUAiU3iqCWGDVBaVtTqztqtI1DWo22ppfd0TgBRkwnTolLY6aGGDWJTTt00tGgoEER40LaIa1GIyJL4lQg6QiVjogIyHSZgqC2Yn79x35v2BzufE7dqrf8fta6655z9vD+9t7vefZ0zr2pKiRJ/bnTri5AkrQ+BrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcM8GUkeXeS121QW7+Q5LIkNyd52Ea02ZskRyX53BrGvyTJE9rj307yzhnWcnOSw9vjDesnS9RSSX58F7W9pm3SgyRb2zrdtKtrWcluG+Dtzffd9ka5Icn/TnLvndDOWUm+19q5NskZSQ5Zx3ymfROdALykqjZX1VcWmf94fdyc5JMTw38pyTeT3JLkQ0m2jIbdJcnJSW5KclWS35iizi5V1Ruq6pdXGq/1hxXHa9vp4mnr2hMDUBtntw3w5mlVtRk4BLga+JOd1M5LWjsPBA4E3ryT2lnOfYELVhjnaS04NlfVzy28mOTBwJ8DzwPuAXwH+LPRdMcDD2ht/Czw6iRPmmHti+rhCGatel6mDHb39/weZWf3ly42ZlV9DzgdOGLhtSQHJDklyXw78vzdJHdKsiXJ5Ume1sbbnOSiJM9fRTvXAx8EHrLY8CQvavO6PslHktyrvX52G+Xv2tHxLy4y7Z1ajd9Mck2r/YB2dHwzsFeb/utrXD0AzwE+WlVnV9XNwO8B/zHJ/m3484E/qKobqmoH8A7gqCWW8bFt/b2y1XllkqNHwxdd723YUUnOSfLmJNcDx7fLC3+W5ONt3ZyT5J5J3tLOrP5hfMkoyWuSfD3Jt5NcmOQXVrsSkjyv1XRdkt+ZGHZ8kve2x/skeW8b78YkX05yjySvBx4N/Gmr9U/b+JXk15J8Dfja6LXxGdfBST7V6v5skvu28e5wOr5wlJ/kJ4G3A49o7d3Yht8lyQlJLk1ydZK3J7nraPpXte1yRZJjVlgnZyV5fZJzGHbshyc5OsmOVuvFSV48Gn+l7X/31vdvSvIl4P4T7T2yrc9/ar8fOVHL65L8bVvej7b5ndrm9+UkW5dYjoX1+IK2Xq4db+NMXMZaWI7R80vaevs/Gc5ST2rb/ONtPfxNkoMmmj2mreMrk7xyNK87jfrpdUk+kHbGO6rzhUkuBc5cqr8tt91Wrap2yx/gEuAJ7fG+wF8Ap4yGnwJ8GNgf2Ar8I/DCNuzngKuAH2MIq9OXaecs4Jfb44OBM4H3tOfvBl7XHj8OuBZ4OHAXhrOBs0fzKeDHl2nnGOAi4HBgM3DGQjurnP4ShrOQeeCTwENHwz4M/ObE+DcDPwUc1OZ9j9GwZwJ/v0Q7jwVuBV4L3Bl4CsMb/6BVrPej2rQvBTYBd23r8NpWyz5t/X6DYaeyF/A64DOj9v8TcC+Gg4tfBG4BDhnN/3NL1H1EW+bHtO3zplbLQh86Hnhve/xi4KMM/WqvVtvdJvvDxLb5FLAFuOvk9mrL+O1R229dqLOtowI2LdHn7rBMwFuAj7T29m+1/mEb9qTWDx4C7Ae8j2X6TmvrUuDBbZvcGfh5huAN8O/a9n34Krf/+4EPtLYfAnxrtKxbgBsYzgQ3Ac9uz+8+quWi1vYBwIUM/ecJbfxTgHctsRwL6/EdDP3qocD/A35y8r06Wo7LJ94/X2A4Qz0UuAY4D3hY22ZnAsdNtHVaW84jGd53C33pFW1eh7Vp/xw4bWLaU9q0d2WZ/jZ1Ts4ydGf501b4zcCNrUNdARzZhu3VNt4Ro/FfDJw1ev4nwN+36e6+TDtntQ56Y+uMpwJzk50COAl442i6zcAPgK2Tb+gl2vk08Kuj5w9q029a5fSPap1hX+C3GHZQB47m/SsT43+rdeJ7t3nvMxr2ROCSJdp5LPBdbh841wA/vdJ6ZwijSyfm927gHaPnLwV2jJ4fCdy4zHKfDzx9NP+lAvy/Au8fPd8P+D6LB/gxwN8C/2qJ/rBYgD9ukdfGAT5uezPww7but7KGAGcI1VuA+49eewTwjfb4ZOCPRsMeuFzfaW29doX32oeAl69y+/8A+InRsDdwW4A/D/jSxLw/Dxw1quV3RsP+O/Dx0fOnAecvUePCejxs9NqXgGdNvldHyzEZ4M8ZPf8g8LaJfvmhibbGy/lG4KT2eAfw+NGwQ9p62TSa9vDR8CX727Q/u/sllGdU1YEMe7mXAJ9Nck+GI+W9gW+Oxv0mw551wYkMRwjvqqrrVmjnZVV1YFUdWlXPqar5Rca517i9Gi5VXDfR5nJuN317vInhiGBFVXVOVX23qr5TVX/IsMN5dBt8M3C3iUnuxnBUePPo+eSwpVxXVbeOnn+HIZRWs94vW2R+V48ef3eR55sXniR5fpLz26nmjQzb8OBlal1wr3HbVXULw/ZZzHuAvwbe306R35jkzivMf7HlWnR46xvXt5rWao5hJ33uaB18or0OE8vJ7bfFirUBJHlyki9kuBR4I8NR9ngdL7X95xj67FLtT/bxheHj/rHqvrCEqxapa7XW2vbkci5sz/sC/2u0fXYw7LDvscS06+lvq7K7BzgAVfXDqjqDYSX9DMMp+Q8YVuSC+zAcdZJkL4bTmlOA/5LZfMTqinF7SfYD7r7Q5lqnb/Xeyu070VoUw9EaDDc/Hzqq7XCGnd4/VtUNwJXj4e3xSjdMF7Pseh/VtS7tuvE7GHbWd287769y23Iu50qGI96Fee3LsH3uoKp+UFW/X1VHAI8EnspwSWe5+ldarnHbmxkuJ1zBcDQNQygvuOcy872WIUwe3A4qDqyqA2q4yQ4Ty8mw/lfyL20kuQvD0ecJDJfVDgQ+xurW8TxDn12q/ck+vjB8te+RadzC0ut4vSaX84r2+DLgyaPtc2BV7VNVi74PVuhvU+kiwDN4OsP13B1V9UOG63CvT7J/e+P/BvDeNslvt9/HMHTUU1qoT+N9wNFJ/nV7E7wB+GJVXdKGX81wfXsppwG/nuR+7Q3+BuAvJ450FpXkPkkelWTvdkPkVQxHTOe0UU4Fnpbk0W3H8lrgjKpaOMo+BfjdJAcl+QngRQynnGuyivU+rf0YOv48QLt5tugN5UWcDjw1yc8k2ZthHSzav5P8bJIjW5+4iWGn9MM2eKXtuJSnjNr+A4a+cVk7m/sW8Nwke2W46Ti+8Xc1cFibjqr6Z4ad2JuT/Fir99Ak/76N/wHgqCRHtJ3UcWusc2+Gnfs8cGuSJzPcM1pR2/5nMNyc3jfJEcALRqN8DHhgho+0bspwM/8I4K/WWON6nM+wDba0s/RXzGCev9eW88HA0cBfttffzvAeuC9AkrmWT4taob9NZXcP8I9m+ITGTcDrgRdU1cKR40sZ9roXA59jCNiTk/wUQ6g8v3W4P2YIhddMU0hVfZrh0x0fZDgKuj/wrNEoxwN/0U6r/vMisziZ4VTqbIabeN9ry7Aa+wNvY7gh9C2GG1lPXrg01NbJrzAE+TVt/F8dTX8c8HWG08DPAv+tqj6xyrYnLbre1zmv26mqCxmui36eIdiO5Lad1ErTXgD8WqvnSoZ1dfkSo9+TIfBvYjj9/Sy37YTeCjwzwydk/scayn8fw3q+nuEm1XNGw14EvIrhks6DGa6HLjiT4WzoqiTXttd+k+Fm3xeS3AT8DcM9E6rq4ww3Oc9s45y5hhppO/WXMewIbgB+ieGG6Wq9hOFSw1UMBwHvGs37Ooajy1cyLOurgadW1bV3nM3MvQf4O4Zr3Z/ktrCdxmcZ1vGngROqauG7F29lWGefTPJthhua/3aZ+SzX36aSdpFdktSZ3f0IXJK0BANckjplgEtSpwxwSerUhv5hnoMPPri2bt26kU1KUvfOPffca6tqbvL1DQ3wrVu3sn379o1sUpK6l2TRb9x6CUWSOmWAS1KnDHBJ6pQBLkmdMsAlqVMrBniGf4Z7TZKvjl7bkuHfR32t/Z78V0SSpJ1sNUfg72b463djrwE+XVUPYPhLXVP9pT9J0tqtGOBVdTbDn8gcezrD/6ik/X7GjOuSJK1gvV/kuUdVXQlQVVcu/OH5xSQ5FjgW4D73Wc0/D9FYspp/lHJH/plgbYT19E/75uzs9JuYVXViVW2rqm1zc3f4JqhWsNw/NF1uuLQR7Ju71noD/OokhwC039fMriRJ0mqsN8A/wm3/C+8FwIdnU44kabVW8zHC0xj+R+GDklye5IXAHwFPTPI14IntuSRpA614E7Oqnr3EoMfPuBZJ0hr4TUxJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjo1VYAn+fUkFyT5apLTkuwzq8IkSctbd4AnORR4GbCtqh4C7AU8a1aFSZKWN+0llE3AXZNsAvYFrpi+JEnSaqw7wKvqW8AJwKXAlcA/VdUnJ8dLcmyS7Um2z8/Pr79SSdLtTHMJ5SDg6cD9gHsB+yV57uR4VXViVW2rqm1zc3Prr1SSdDvTXEJ5AvCNqpqvqh8AZwCPnE1ZkqSVTBPglwI/nWTfJAEeD+yYTVk/erZs2UKSNf0Aaxp/y5Ytu3gpJc3SpvVOWFVfTHI6cB5wK/AV4MRZFfaj5oYbbqCqdmobC6Evac+w7gAHqKrjgONmVIskaQ38JqYkdcoAl6ROGeCS1CkDXJI6ZYBLWtZGfMTVj7muz1SfQpG059uIj7iCH3NdD4/AJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnZoqwJMcmOT0JP+QZEeSR8yqMEnS8jZNOf1bgU9U1TOT7A3sO4OaJEmrsO4AT3I34DHAUQBV9X3g+7MpS5K0kmkuoRwOzAPvSvKVJO9Mst/kSEmOTbI9yfb5+fkpmpMkjU0T4JuAhwNvq6qHAbcAr5kcqapOrKptVbVtbm5uiuYkSWPTBPjlwOVV9cX2/HSGQJckbYB1B3hVXQVcluRB7aXHAxfOpCpJ0oqm/RTKS4FT2ydQLgaOnr4kSdJqTBXgVXU+sG1GtUiS1sBvYkpSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnq1LR/C0UzUsfdDY4/YOe3IWmPYYDvJvL7N1FVO7eNhDp+pzYhaQN5CUWSOuURuKRlbcTlvX9pR2tigEta1kZc3gMv8a2Hl1AkqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ2aOsCT7JXkK0n+ahYFSZJWZxZH4C8HdsxgPpKkNZgqwJMcBvw88M7ZlCNJWq1pj8DfArwa+OelRkhybJLtSbbPz89P2ZwkacG6AzzJU4Frqurc5carqhOraltVbZubm1tvc5KkCdMcgT8K+A9JLgHeDzwuyXtnUpUkaUXrDvCq+q2qOqyqtgLPAs6squfOrDJJ0rL8HLgkdWrTLGZSVWcBZ81iXpKk1fEIXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSerUTP4npmYjyU6d/0EHHbRT5y9pYxngu4mqWvM0SdY1naQ9g5dQJKlTHoFLWtHOvrwHXuJbDwNc0rK8vLf78hKKJHXKAJekThngktQpA1ySOmWAS1KnDHBJ6tS6AzzJvZN8JsmOJBckefksC5MkLW+az4HfCryyqs5Lsj9wbpJPVdWFM6pNkrSMdR+BV9WVVXVee/xtYAdw6KwKkyQtbybXwJNsBR4GfHEW85MkrWzqAE+yGfgg8IqqummR4ccm2Z5k+/z8/LTNSZKaqQI8yZ0ZwvvUqjpjsXGq6sSq2lZV2+bm5qZpTpI0Ms2nUAKcBOyoqjfNriRJ0mpMcwT+KOB5wOOSnN9+njKjuiRJK1j3xwir6nPAzv8jwZKkRflNTEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOmWAS1KnDHBJ6pQBLkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSpwxwSeqUAS5JnTLAJalTBrgkdcoAl6ROGeCS1CkDXJI6ZYBLUqcMcEnqlAEuSZ0ywCWpUwa4JHXKAJekThngktQpA1ySOjVVgCd5UpL/m+SiJK+ZVVGSpJWtO8CT7AX8T+DJwBHAs5McMavCJO3+kiz6s9IwzcY0R+D/Brioqi6uqu8D7weePpuyJPWgqtb8o9mZJsAPBS4bPb+8vXY7SY5Nsj3J9vn5+Sma+9G01FGMRzmSpgnwxVLiDrvXqjqxqrZV1ba5ubkpmvvRtJ4jHI9ypB8N0wT45cC9R88PA66YrhxJ0mpNE+BfBh6Q5H5J9gaeBXxkNmVJklayab0TVtWtSV4C/DWwF3ByVV0ws8okSctad4ADVNXHgI/NqBZJ0hr4TUxJ6pQBLkmdMsAlqVMGuCR1Khv5pY8k88A3N6zBPd/BwLW7ughpEfbN2bpvVd3hm5AbGuCarSTbq2rbrq5DmmTf3BheQpGkThngktQpA7xvJ+7qAqQl2Dc3gNfAJalTHoFLUqcMcEnqlAHeoSQnJ7kmyVd3dS3SWJJ7J/lMkh1JLkjy8l1d057Ma+AdSvIY4GbglKp6yK6uR1qQ5BDgkKo6L8n+wLnAM6rqwl1c2h7JI/AOVdXZwPW7ug5pUlVdWVXntcffBnawyP/K1WwY4JJ2iiRbgYcBX9y1ley5DHBJM5dkM/BB4BVVddOurmdPZYBLmqkkd2YI71Or6oxdXc+ezACXNDNJApwE7KiqN+3qevZ0BniHkpwGfB54UJLLk7xwV9ckNY8Cngc8Lsn57ecpu7qoPZUfI5SkTnkELkmdMsAlqVMGuCR1ygCXpE4Z4JLUKQNckjplgEtSp/4/ZN304FMhrqoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVOElEQVR4nO3de5xcZX3H8e+XLBgg4RKyKrewgooNVEVXUalIESylUKi1CmIQRFPlhYDaIlgt8YLVahVvbYlcYiSCCHkJ4qVaNEZ4IZpgKoSgINdAIEtIDBEQgr/+8TwrJ5OZ2dmZ2cuzft6v1752Zs7l+Z05z/nOc87M7jgiBAAozxZjXQAAoD0EOAAUigAHgEIR4ABQKAIcAApFgANAoQjwCtvzbH9slNr6O9v32t5ge7/RaHOisb3I9ttbnPcg2ysr95fbPqhLdRxn+/uV+2H7ud1Ydxu1nGD72rFoO7ff8j4phe05ti8e6zrqGTcBbvsu24/lQFtr+9u2dx+BdhbZfjy385DthbZ3bmM9nR6kn5Z0SkRMiYhf1Fn/R23fZHuj7Tl1pr/Z9t22f2f7m7anVaY9w/aFttfbfsD2e2uWfbHtpbYfzb9f3MF2FCki9omIRc3msd2X93PPEOtaEBGv60ZdEzEAMXLGTYBnR0bEFEk7S3pQ0hdGqJ1TcjvPl7SDpM+OUDvN7CFpeZPpt0s6Q9K3ayfY3kfSeZJmSXqWpEcl/WdlljmSnpfb+EtJZ9g+LC+7laQrJV0saUdJX5F0ZX58xDgZb/2tY0OF+3hWcu2l6vZzPi4PqIh4XNLlkmYOPmZ7e9vzbQ/kkecHbW9he5rtlbaPzPNNsX277eNbaOdhSVdI2rfedNvvyOt62PZVtnfJjy/Os/xfHsm/qc6yW+Qa77a9Ote+fR4db5A0KS//mwa1fSUivivpkTqTj5P0rYhYHBEbJH1I0uttT83Tj5f00YhYGxErJH1Z0gl52kGSeiSdGxG/j4jPS7Kkgxs8B/NsfymfET1i+wbbe1Wmv8r2z23/Nv9+VWXaItvn2L5O6UVmzzyiPdn2bXl9H7W9l+3r8xnDZYMvJrZ3tH113udr8+3d6tVZp+6tc+1rbd8i6WU10++yfUi+/XLbS3L7D9r+TJ5tcD+vy/v5lU6XKK6z/VnbD0ua4/qXLQ63fUc+y/vU4IuXa07Hq6N82+dIerWkL+b2vpjneYHtH+R++Cvbb6wsv1Pum+tt/0zSXmqg0tZJtu+R9MP8+DecztR+a3txHiAMLjPU/j/U9q152S8q9aXBaXWPgZpaTnS6lLjW9jttv8z2L22vG9z+BtsyJ/eV+bmu5bb7K9M3OUN25fKo8+U022fkulbZPtr24bZ/nZ/nD9Q0Odn213NbN9p+UWXdu9i+IvfTO22fWlPn5bYvtr1e0glN+tvwRcS4+JF0l6RD8u1tlEaG8yvT5yuNHKdK6pP0a0kn5Wmvk/SApGcqhdXlTdpZJOnt+fZ0pU781Xx/nqSP5dsHS3pI0kskPUPpbGBxZT0h6blN2nmb0ih6T0lTJC0cbKeV5SvzXSxpTs1jV0p6f81jGyS9VGlUHZKeVZn2Bkk35dvvkfTdmmWvlvS+Bu3Pk/SwpJcrBf8CSZfmadMkrVU6E+iRdGy+v1Plub5H0j55+pa5tqskbZcf/72ka/LztL2kWyS9NS+/k6S/z/1hqqRvSPpmvX1Zp+5PSPpJrnF3STdLWtmgv10vaVa+PUXSK/LtvlxvT2W5EyRtlPTuvE1b58eurdm3P8ptz1Dqq4N9bo6kiyvzbtJG7TZJ2lbSvZJOzO29RKlf7pOnXyrpsjzfvpLuq9ZS85wMtjU/z791pa9OVern50pa1uL+ny5pvVL/2lKpb22sbGvDY6BSy39Lmqx0DD8u6ZtKx/GuklZLek2DbZmT5z9caTD0b5J+2uj40qbH9kG5zn/Ndb9D0oCkr+XnYZ+87j0rbT1Z2c5/knRnvr2FpKV5XVvlbb1D0l/VLHt0nndrNehvbeVmuwt2+0fpgNogaV1+cu+X9Od52iSlA31mZf5/lLSocv8Lkm7Ky+3UpJ1FSqPBdUqdfYGk3jo7+QJJ/15ZbkreEX31Okiddq6RdHLl/t55+Z5Wlq8sVy/Ar5H0zprH7ssdc/e87smVaYdKuivf/pDyAViZvqC2jZqOf37l/uGSbs23Z0n6Wc3810s6ofJcf6Rmekg6oHJ/qSovRpL+Q+nsoF4tL5a0tmZfNgrwOyQdVrk/W40DfLGkD0uaXrOOPtUP8Htq5jtBmwd4te2TJV2Tb8/R8AL8TZJ+UtPeeZLOVjounpT0gsq0j2voAN+zSX/bIc+zfQv7/3htGpqWtFJPB3jDY6BSy66V6Wskvaly/wpJpzeoc46k/63cnynpsZp90CzAH5M0Kd+fmuffv6ZfHl1pq7qdW0hapXS2tH+d/nCWpIsqyy6umV63v7XzM94uoRwdETsojQROkfRj289WeqXfStLdlXnvVnqVHjRXaQRyUUSsGaKdUyNih4jYNSKOi4iBOvPsUm0v0qWKNTVtNrPJ8vl2j9I1605tUBrBVm2ndLllQ+V+7bShlm3kgcrtR5VezKTNt1HafL/cW2d9D1ZuP1bn/hRJsr2N7fPyKfh6pY6/g+1JTWodtEtN27V1Vp2k9H7IrU6XgY4YYt31tqnZPHfnetqxh6T98yWFdbbXKV1Ce7akXqU+1ep2blab7Um2P2H7N/k5vitPml6Zv9n+/+O6IqVTtZZWjoGW+kIDtXVNduvXmNdExFOVdurVUm27up1/UHqh2kVp/+xSs38+oE23sba/DLe/NTTeAlySFBFPRcRCSU9J+gulU8YnlZ6sQTOURp3KB/R5SqeG73J3PsJ1f7U929sqndLf187yud6N2rSTtGu5pOo1uD2VXvR+HRFrlUYHL6rM/yI9/YbpckkvtO3K9Beq+RuqjdRuo1TZL1m0sd5B71Mate0fEdtJOjA/7saL/NEqpbORal11RcRtEXGs0qn7JyVdnvd3o9pb2abatu/Pt3+ndElo0LOHWPe9kn6cBxyDP1Mi4l1Kp/0b67Q1lGobb5Z0lKRDlC5h9eXHh/0c5z5VrWUkj4GhPKrmz/NwVbdzC0m7KW3fvZLurNk/UyPi8Mqym+zTJv1t2MZlgDs5Sul67or8SnmZpHNsT7W9h6T3Kl1ekNIrnpSuuX1a0vwWR2nNfE3SiU4fuXuG0qnpDRFxV57+oNL1rkYukfQe28+xPSUv//WI2NhK47a3tD1ZaR/12J5c2aYFko60/eq84z8iaWFEDI6i50v6oNObgC9QusY3L09bpPTCeKrTG6qn5Md/2EpdNb4j6flOH2nscXozd6bSNfVumKo0Elrn9DHJs4ex7GWSzsrPwW5K16zrsv0W2715ZLUuP/yUUkD+Qc33cyP/nNveXdJpkr6eH18m6UDbM/IbemfVLFfbr65Weo5n5T6xZX6j78/ycbFQ6Y3UbWzPlPTWYdY5Veny5BqlwPv4MJb9tqR9bL8+j3xP1aZB2dEx0KFlkt6czzAOk/SaDtf30sp2nq70nP1U0s8krbf9fqc3zifZ3tf2yxqtqEl/G7bxFuDfcvqExnpJ5yi9mTU4Mny30ujlDknXKgXshbZfqhTmx+cO/UmlV7wzOykkIq5Rul58hdJIYy9Jx1RmmSPpK/m06Y2br0EXSvqq0mn/nUpvijQMkTq+rBRex0r6l3x7Vq5tuaR3KgX5aqWD8OTKsmdL+o3SKeuPJX0qIr6Xl31C6Q2V45U6z9uULl09MYzalNe1RtIRSiPlNUofezwiIh4a7roaOFfpTZ+HlA6W7w1j2Q8rbf+dkr6vtC8aOUzS8tz3PifpmIh4PCIeVeqH1+X9/IphtH+l0nXUZUpBd4EkRcQPlML8l3l67Yvd5yS9welTGZ/PL8qvU+p79ytdNvik0hmXlC41TsmPz5N00TBqlNKL/d1KZ023KD3PLcn7+R+U3jBeo/TR1esqs3R6DHTiNElHKvXx45TeHO3ElUrvRwy+af/6iHgyZ86RSu/P3KnUV89XOptppG5/a6co54vqAIDCjLcROACgRQQ4ABSKAAeAQhHgAFCoUf1nNtOnT4++vr7RbBIAird06dKHIqK39vFRDfC+vj4tWbJkNJsEgOLZrvsXtlxCAYBCEeAAUCgCHAAKRYADQKEIcAAo1JAB7vTluKtt31x5bJrTVzzdln/vOLJlAgBqtTICn6f037OqzlT6hpHnKX3rRkf/+Q8AMHxDBnhELFb6Tryqo5S+s1L599FdrgsAMIR2/5DnWRGxSpIiYpXtZzaa0fZspe8j1IwZrXxZCKo2/eKc1vFvgjEa2umf9M3uGfE3MSNibkT0R0R/b+9mfwmKITT7QtNm04HRQN8cW+0G+IO2d5ak/Ht190oCALSi3QC/Sk9/995blb5uCAAwilr5GOElkq6XtLftlbZPUvoOvENt3ybp0HwfADCKhnwTMyKObTDptV2uBQAwDPwlJgAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwAChURwFu+z22l9u+2fYltid3qzAAQHNtB7jtXSWdKqk/IvaVNEnSMd0qDADQXKeXUHokbW27R9I2ku7vvCQAQCvaDvCIuE/SpyXdI2mVpN9GxPe7VRgAoLlOLqHsKOkoSc+RtIukbW2/pc58s20vsb1kYGCg/UoBAJvo5BLKIZLujIiBiHhS0kJJr6qdKSLmRkR/RPT39vZ20BwAoKqTAL9H0itsb2Pbkl4raUV3ygIADKWTa+A3SLpc0o2SbsrrmtulugAAQ+jpZOGIOFvS2V2qBQAwDPwlJgAUigAHgEIR4ABQKAIcAApFgANAoQjwcWLatGmyPawfScOaf9q0aWO8lQC6qaOPEaJ71q5dq4gY0TYGQx/AxMAIHEBTo3F2yBliexiBA2hqNM4OJc4Q28EIHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFKqjALe9g+3Lbd9qe4XtV3arMABAcz0dLv85Sd+LiDfY3krSNl2oCQDQgrYD3PZ2kg6UdIIkRcQTkp7oTlkAgKF0cgllT0kDki6y/Qvb59vetnYm27NtL7G9ZGBgoIPmAABVnQR4j6SXSPqviNhP0u8knVk7U0TMjYj+iOjv7e3toDkAQFUnAb5S0sqIuCHfv1wp0AEAo6DtAI+IByTda3vv/NBrJd3SlaoAAEPq9FMo75a0IH8C5Q5JJ3ZeEgCgFR0FeEQsk9TfpVoAAMPAX2ICQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEJ1+v/AAUxwcfZ20pztR6cdDAsBPk6MxkHCAYJ2+MPrFREj346tmDPizUwoBPg4MRoHCQcIMLFwDRwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFKrjALc9yfYvbF/djYIAAK3pxgj8NEkrurAeAMAwdBTgtneT9DeSzu9OOQCAVnU6Aj9X0hmS/tBoBtuzbS+xvWRgYKDD5gAAg9oOcNtHSFodEUubzRcRcyOiPyL6e3t7220OAFCjkxH4AZL+1vZdki6VdLDti7tSFQBgSG0HeEScFRG7RUSfpGMk/TAi3tK1ygAATfE5cAAoVE83VhIRiyQt6sa6AACtYQQOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoVM9YF4Cn2R7R9e+4444jun5MXCPdNyX6ZzsI8HEiIoa9jO22lgOGg745fnEJBQAKRYADQKEIcAAoFAEOAIVqO8Bt7277R7ZX2F5u+7RuFgYAaK6TT6FslPS+iLjR9lRJS23/ICJu6VJtAIAm2h6BR8SqiLgx335E0gpJu3arMABAc125Bm67T9J+km6oM2227SW2lwwMDHSjOQCAuhDgtqdIukLS6RGxvnZ6RMyNiP6I6O/t7e20OQBA1lGA295SKbwXRMTC7pQEAGhFJ59CsaQLJK2IiM90ryQAQCs6GYEfIGmWpINtL8s/h3epLgDAENr+GGFEXCtp5P9FGQCgLv4SEwAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQnUU4LYPs/0r27fbPrNbRQEAhtZ2gNueJOlLkv5a0kxJx9qe2a3CAADNdTICf7mk2yPijoh4QtKlko7qTlkAgKH0dLDsrpLurdxfKWn/2plsz5Y0W5JmzJjRQXN/mmy3NT0iRqIcYBPN+id9c+R1MgKvt3c22zMRMTci+iOiv7e3t4Pm/jRFRFs/wGigb46tTgJ8paTdK/d3k3R/Z+UAAFrVSYD/XNLzbD/H9laSjpF0VXfKAgAMpe1r4BGx0fYpkv5H0iRJF0bE8q5VBgBoqpM3MRUR35H0nS7VAgAYBv4SEwAKRYADQKEIcAAoFAEOAIXyaH6w3vaApLtHrcGJb7qkh8a6CKAO+mZ37RERm/0l5KgGOLrL9pKI6B/rOoBa9M3RwSUUACgUAQ4AhSLAyzZ3rAsAGqBvjgKugQNAoRiBA0ChCHAAKBQBXiDbF9pebfvmsa4FqLK9u+0f2V5he7nt08a6pomMa+AFsn2gpA2S5kfEvmNdDzDI9s6Sdo6IG21PlbRU0tERccsYlzYhMQIvUEQslvTwWNcB1IqIVRFxY779iKQVSt+fixFAgAMYEbb7JO0n6YaxrWTiIsABdJ3tKZKukHR6RKwf63omKgIcQFfZ3lIpvBdExMKxrmciI8ABdI1tS7pA0oqI+MxY1zPREeAFsn2JpOsl7W17pe2TxromIDtA0ixJB9teln8OH+uiJio+RggAhWIEDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAof4fr9ECh63zcMkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVbklEQVR4nO3de7RcZX3G8ech4Z4ACTkqgYQjqFigKnoQhYoUwVIKhVqrIIJBNFUWAmqL4NISL3ipFvHWlpRLjEQQIUsQrdWiMcJCJEGqhKBgIBAS4BASQwTk4q9/vO/RncnMnDkzcy7v8ftZ66wzM/vy/mb2u595995zzjgiBAAozxajXQAAoD0EOAAUigAHgEIR4ABQKAIcAApFgANAoQjwCtvzbH98hNr6O9v3295oe7+RaHO8sb3I9jtanPcQ26sq95fZPqRLdZxg+3uV+2H7Bd1Ydxu1zLJ9w2i0ndtveZuUwvYc25eNdh31jJkAt32v7SdyoK2z/W3bM4ahnUW2n8ztPGJ7oe1d2lhPpzvpZyWdFhGTIuJnNet+ju3Lba+2/RvbN9o+oGaet9heafu3tr9pe2pl2ta2L7G9wfaDtt9Xs+zLbC+1/Xj+/bIOnkeRImKfiFjUbB7bvXk7TxxkXQsi4vXdqGs8BiCGz5gJ8OzoiJgkaRdJD0n64jC1c1pu50WSdpL0uWFqp5ndJS1rMG2SpFskvULSVElfkfRt25MkyfY+ki6UdKKk50p6XNK/V5afI+mFuY2/lHSW7SPysltJukbSZZKm5HVfkx8fNk7GWn/r2GDhPpaVXHupuv2aj8kdKiKelHSVpL0HHrO9o+35tvvzyPNDtrewPdX2KttH5/km2b7b9kkttPOopKsl7Vtvuu135nU9avta29Pz44vzLP+XR/JvrrPsFrnGlbYfzrXvmEfHGyVNyMv/uk5dKyLi/IhYExHPRsRcSVtJ2ivPcoKkb0XE4ojYKOnDkt5ge3KefpKkj0XEuohYLum/JM3K0w6RNFHSBRHxu4j4giRLOrTBazDP9pfzEdFjtm+2vWdl+oG2b8lHCrfYPrAybZHt82zfqPQms0ce0Z5q+668vo/Z3tP2TfmI4cqBNxPbU2xfl7f5unx7t3p11ql721z7Ott3SNq/Zvq9tg/Lt19pe0lu/yHb5+fZBrbz+rydX+10iuJG25+z/aikOa5/2uJI2yvyUd5nBt68XHM4Xh3l2z5P0mskfSm396U8z4ttfz/3w1/aflNl+Z1z39xg+6eS9lQDlbZOsX2fpB/kx7/hdKT2G9uL8wBhYJnBtv/htu/My35JqS8NTKu7D9TUcrLTqcR1tt9le3/bP7e9fuD5N3guc3JfmZ/rWma7rzJ9kyNkV06POp9Os31WrmuN7WNtH2n7V/l1/mBNk9vY/npu61bbL62se7rtq3M/vcf26TV1XmX7MtsbJM1q0t+GLiLGxI+keyUdlm9vpzQynF+ZPl9p5DhZUq+kX0k6JU97vaQHJT1HKayuatLOIknvyLenKXXir+b78yR9PN8+VNIjkl4uaWulo4HFlfWEpBc0aeftku6WtIfSiHrhQDutLF+zrpdJelLSjvn+NZI+UDPPRqUR+5S87udWpr1R0i/y7fdK+u+aZa+T9P4Gbc+T9KikVyoF/wJJV+RpUyWtUzoSmCjp+Hx/58prfZ+kffL0LXNt10raIT/+O0nX59dpR0l3SHpbXn5nSX+f+8NkSd+Q9M1627JO3Z+S9ONc4wxJt0ta1aC/3STpxHx7kqRX5du9ud6JleVmSXpG0nvyc9o2P3ZDzbb9YW57plJfHehzcyRdVpl3kzZqn5Ok7SXdL+nk3N7LlfrlPnn6FZKuzPPtK+mBai01r8lAW/Pz/NtW+upkpX5+gaTbWtz+0yRtUOpfWyr1rWcqz7XhPlCp5T8lbaO0Dz8p6ZtK+/Gukh6W9NoGz2VOnv9IpcHQJyX9pNH+pU337UNynf+S636npH5JX8uvwz553XtU2nq68jz/SdI9+fYWkpbmdW2Vn+sKSX9Vs+yxed5t1aC/tZWbnYRuN3+UdqiNktbnF3e1pD/P0yYo7eh7V+b/R0mLKve/KOkXebmdm7SzSGk0uF6psy+Q1FNnI18s6V8ry03KG6K3Xgep0871kk6t3N8rLz+xleUry+2Qn9c5Net+V818D+SOOSOve5vKtMMl3Ztvf1h5B6xMXyBpToP250m6qHL/SEl35tsnSvppzfw3SZpVea0/WjM9JB1Uub9UlTcjSf+mdHTQ6I1sXc22bBTgKyQdUbk/W40DfLGkj0iaVrOOXtUP8Ptq5pulzQO82vapkq7Pt+doaAH+Zkk/rmnvQknnKu0XT0t6cWXaJzR4gO/RpL/tlOcZGCw02/4nadPQtKRV+mOAN9wHKrXsWpm+VtKbK/evlnRmgzrnSPrfyv29JT1Rsw2aBfgTkibk+5Pz/AfU9MtjK21Vn+cWktYoHS0dUKc/nCPp0sqyi2um1+1v7fyMtVMox0bETkojgdMk/cj285Te6beStLIy70qld+kBc5VGIJdGxNpB2jk9InaKiF0j4oSI6K8zz/Rqe5FOVaytabOZTZbPtycqnbNuie1tJX1LqfN8sjJpo1KwV+0g6bE8TTXTB6YNtmwjD1ZuP670ZiZt/hylzbfL/XXW91Dl9hN17g+c69/O9oX5EHyDUsffyfaEJrUOmF7Tdm2dVacoXQ+50+k00FGDrLvec2o2z8pcTzt2l3RAPqWw3vZ6pVNoz5PUo9SnWn2em9Vme4LtT9n+dX6N782TplXmb7b9/7CuSOlUraWVfaClvtBAbV3buPVzzGsj4tlKO/VqqbZdfZ6/V3qjmq60fabXbJ8PatPnWNtfhtrfGhprAS5JinTed6GkZyX9hdIh49NKL9aAmUqjTuUd+kKlQ8N3uzsf4Vpdbc/29kqH9A+0s3yu9xlt2kkasr210uHkA0pHG1XLJFXPwe2h9Kb3q4hYpzQ6eGll/pfqjxdMl0l6iW1Xpr9EjS+oNlP7HKXKdsmijfUOeL/SqO2AiNhB0sH5cTde5A/WKB2NVOuqKyLuiojjlQ7dPy3pqry9G9XeynOqbXt1vv1bpVNCA543yLrvl/SjPOAY+JkUEe9WOux/pk5bg6m28RZJx0g6TOkUVm9+fMivce5T1Vo62gc69Liav85DVX2eW0jaTen53S/pnprtMzkijqwsu8k2bdLfhmxMBriTY5TO5y7P75RXSjrP9mTbu0t6n9InKaT0jielc26flTS/xVFaM1+TdLLTR+62Vjo0vTki7s3TH1I639XI5ZLea/v5Tp8e+YSkr0fEM4M1bHtLpYu4T0g6Kb/jVy2QdLTt1+QN/1FJCyNiYBQ9X9KHnC4CvljpHN+8PG2R0hvj6U4XVE/Lj/9gsLrq+I6kFzl9pHGi08XcvZXOqXfDZKXXYL3TxyTPHcKyV0o6J78Guymds67L9ltt9+TXeX1++FmlgPy9mm/nRv45tz1D0hmSvp4fv03SwbZn5gt659QsV9uvrlN6jU+0vWX+2d/2n+X9YqHShdTtbO8t6W1DrHOy0unJtUqB94khLPttSfvYfkMe+Z6uTYOy7X2gC26T9JZ8hHGEpNd2uL5XVJ7nmUqv2U8k/VTSBtsfcLpwPsH2vrb3b7SiJv1tyMZagH/L6RMaGySdp3Qxa2Bk+B6l0csKSTcoBewltl+hFOYn5Q79aaV3vLM7KSQirlc6X3y10khjT0nHVWaZI+kr+bDpTZuvQZdI+qrSYf89ShdFGoZIjQMlHaV0YWfgExAbbb8m17ZM0ruUgvxhpZ3w1Mry50r6tdIh648kfSYivpuXfUrpgspJSp3n7Uqnrp5qsbY/yKeqjlIaKa+VdJakoyLikaGuq4ELlC76PKK0s3x3CMt+ROn53yPpe0rbopEjJC3Lfe/zko6LiCcj4nGlfnhj3s6vGkL71yidR71NKegulqSI+L5SmP88T699s/u8pDc6fSrjC/lN+fVKfW+10mmDTysdcUnpVOOk/Pg8SZcOoUYpvdmvVDpqukPpdW5J3s7/oHTBeK3SR1dvrMzSyT7QqTMkHa3Ux09QOprtxDVK1yMGLtq/ISKezplztNL1mXuU+upFSkczjdTtb+0U5XxSHQBQmLE2AgcAtIgAB4BCEeAAUCgCHAAKNaL/zGbatGnR29s7kk0CQPGWLl36SET01D4+ogHe29urJUuWjGSTAFA823X/wpZTKABQKAIcAApFgANAoQhwACgUAQ4AhRo0wJ2+HPdh27dXHpvq9BVPd+XfU4a3TABArVZG4POU/ntW1dlK3zDyQqVv3ejoP/8BAIZu0ACPiMVK34lXdYzSd1Yq/z62y3UBAAbR7h/yPDci1khSRKyx/ZxGM9qerfR9hJo5s5UvC0HVpl+c0zr+TTBGQjv9k77ZPcN+ETMi5kZEX0T09fRs9pegGESzLzRtNh0YCfTN0dVugD9kexdJyr8f7l5JAIBWtBvg1+qP3733NqWvGwIAjKBWPkZ4uaSbJO1le5XtU5S+A+9w23dJOjzfBwCMoEEvYkbE8Q0mva7LtQAAhoC/xASAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAdBbjt99peZvt225fb3qZbhQEAmms7wG3vKul0SX0Rsa+kCZKO61ZhAIDmOj2FMlHStrYnStpO0urOSwIAtKLtAI+IByR9VtJ9ktZI+k1EfK92PtuzbS+xvaS/v7/9SgEAm+jkFMoUScdIer6k6ZK2t/3W2vkiYm5E9EVEX09PT/uVAgA20ckplMMk3RMR/RHxtKSFkg7sTlkAgMF0EuD3SXqV7e1sW9LrJC3vTlkAgMF0cg78ZklXSbpV0i/yuuZ2qS4AwCAmdrJwRJwr6dwu1QIAGAL+EhNAU1OnTpXtIf1IGvIyU6dOHeVnWp6ORuAAxr9169YpIoa9nYHgR+sYgQNAoQhwACgUAQ4AhSLAx4iRuFDERSJgfOEi5hgxEheKuEgEjC+MwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoVEcBbnsn21fZvtP2ctuv7lZhAIDmJna4/OclfTci3mh7K0nbdaEmAEAL2g5w2ztIOljSLEmKiKckPdWdsgAAg+nkFMoekvolXWr7Z7Yvsr197Uy2Z9teYntJf39/B80BAKo6CfCJkl4u6T8iYj9Jv5V0du1METE3Ivoioq+np6eD5gAAVZ0E+CpJqyLi5nz/KqVABwCMgLYDPCIelHS/7b3yQ6+TdEdXqgIADKrTT6G8R9KC/AmUFZJO7rwkAEArOgrwiLhNUl+XagEADAF/iQkAhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUJ3+LxQA41ycu4M0Z8eRaQdDQoCPESOxk7CDoB3+yAZFxPC3YyvmDHsz4woBPkaMxE7CDgKML5wDB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQqI4D3PYE2z+zfV03CgIAtKYbI/AzJC3vwnoAAEPQUYDb3k3S30i6qDvlAABa1ekI/AJJZ0n6faMZbM+2vcT2kv7+/g6bAwAMaDvAbR8l6eGIWNpsvoiYGxF9EdHX09PTbnMAgBqdjMAPkvS3tu+VdIWkQ21f1pWqAACDajvAI+KciNgtInolHSfpBxHx1q5VBgBois+BA0ChJnZjJRGxSNKibqwLANAaRuAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwAChUV77UGMD4ZnvY25gyZcqwtzHeEOAAmoqIIS9ju63lMDQE+Bgy3KMcRjjA+EKAjxGMcgAMFRcxAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKHaDnDbM2z/0PZy28tsn9HNwgAAzXXyOfBnJL0/Im61PVnSUtvfj4g7ulQbAKCJtkfgEbEmIm7Ntx+TtFzSrt0qDADQXFfOgdvulbSfpJvrTJtte4ntJf39/d1oDgCgLgS47UmSrpZ0ZkRsqJ0eEXMjoi8i+np6ejptDgCQdRTgtrdUCu8FEbGwOyUBAFrRyadQLOliScsj4vzulQQAaEUnI/CDJJ0o6VDbt+WfI7tUFwBgEG1/jDAibpA0/F/TAQCoi7/EBIBCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUB0FuO0jbP/S9t22z+5WUQCAwbUd4LYnSPqypL+WtLek423v3a3CAADNdTICf6WkuyNiRUQ8JekKScd0pywAwGAmdrDsrpLur9xfJemA2plsz5Y0W5JmzpzZQXN/mmy3NT0ihqMcYBPN+id9c/h1MgKvt3U22zIRMTci+iKir6enp4Pm/jRFRFs/wEigb46uTgJ8laQZlfu7SVrdWTkAgFZ1EuC3SHqh7efb3krScZKu7U5ZAIDBtH0OPCKesX2apP+RNEHSJRGxrGuVAQCa6uQipiLiO5K+06VaAABDwF9iAkChCHAAKBQBDgCFIsABoFAeyQ/W2+6XtHLEGhz/pkl6ZLSLAOqgb3bX7hGx2V9CjmiAo7tsL4mIvtGuA6hF3xwZnEIBgEIR4ABQKAK8bHNHuwCgAfrmCOAcOAAUihE4ABSKAAeAQhHgBbJ9ie2Hbd8+2rUAVbZn2P6h7eW2l9k+Y7RrGs84B14g2wdL2ihpfkTsO9r1AANs7yJpl4i41fZkSUslHRsRd4xyaeMSI/ACRcRiSY+Odh1ArYhYExG35tuPSVqu9P25GAYEOIBhYbtX0n6Sbh7dSsYvAhxA19meJOlqSWdGxIbRrme8IsABdJXtLZXCe0FELBztesYzAhxA19i2pIslLY+I80e7nvGOAC+Q7csl3SRpL9urbJ8y2jUB2UGSTpR0qO3b8s+Ro13UeMXHCAGgUIzAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAo1P8D2k4V9ucUX68AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVY0lEQVR4nO3debRlZX3m8e8DBQJWySA3KpMlxmgDHadSjLTG4BBCS0PbdsQBxJjQxoWgsWM0K2kqg0ns2EYTk7S0IkGIQ4Alxti2topEFsEUSEehjAPzIBRQiAgG0F//sfeVXYc7n1P31lv5fta6655z9vD+ztnvfs679z73nlQVkqT27LDSBUiSlsYAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAE+kOSMJL+/TG39xyTXJ7k7yVOXo83tTZILkvzyAud9XpIbBvevSPK8CdXxyiSfGdyvJD85iXUvoZYTknxpJdru21/wNmlFkvVJzlrpOmayzQR4kmuS3NsH2uYkf5dk/63QzgVJftC3c1uS85I8ZgnrGXcnfSdwUlWtrqqvzLD+4etx9zAg+umvSHJtku8n+XiSvQbTHpbk9CR3JflOkl8bWfYpSS5Nck//+yljPI8mVdXBVXXBXPMkWdtv51XzrOvsqnrRJOraHgNQW882E+C9o6pqNfAY4Bbgz7ZSOyf17fwUsAfwJ1upnbk8FrhinnmO6gN+9TAgkhwMvA84DngUcA/wF4Pl1gNP6Nv4OeAtSY7ol90ZOB84C9gT+Cvg/P7xrSadba2/jW2+cN+WtVx7qyb9mm+TO1RV/QA4Bzho+rEkuyc5M8mmfuT5W0l2SLJXkhuSHNXPtzrJt5Icv4B27gDOBQ6ZaXqSX+nXdUeSTyTZp3/8wn6W/9ePjl82w7I79DVem+TWvvbd+9Hx3cCO/fLfXuTLA/BK4G+r6sKquhv4beAlSdb0048Hfq+qNlfVRuB/ASf0054HrALeXVX/UlV/CgQ4fJbX4Iwkf94fEX0vySVJHj+Y/uwk/5jku/3vZw+mXZDk7UkuonuTObAf0b4+yTf79f1ekscnubg/YvjY9JtJkj2TfLLf5pv72/st5AVKsmtf++YkVwLPGJl+TZIX9LefmWRD3/4tSd7Vzza9ne/st/PPpDtFcVGSP0lyB7A+M5+2ODLJVf1R3h9Pv3ll5HB8OMpP8nbgOcB7+/be28/zpCSf7fvhPyf5xcHyj+z75l1Jvgw8nlkM2nptkuuAz/eP/026I7XvJrmwHyBMLzPf9n9hkq/3y76Xri9NT5txHxip5TXpTiVuTvK6JM9I8k9J7px+/rM8l/V9Xzmzr+uKJOsG07c4Qs7g9Gj602lJ3tLXdXOSY5IcmeQb/ev8myNN7pLko31blyV58mDd+yQ5t++nVyc5eaTOc5KcleQu4IQ5+tviVdU28QNcA7ygv70b3cjwzMH0M+lGjmuAtcA3gNf2014EfAf4CbqwOmeOdi4Afrm/vTddJ/5Qf/8M4Pf724cDtwFPAx5GdzRw4WA9BfzkHO38EvAt4EBgNXDedDsLXP4auqOQTcBngCcPpp0P/MbI/HcDT6cbVRfwqMG0lwJf7W+/CfjfI8t+EnjzLHWcAdwBPJMu+M8GPtJP2wvYTHcksAp4eX//kYPX+jrg4H76Tn1tnwAe0T/+L8Dn+tdpd+BK4NX98o8E/lPfH9YAfwN8fKZtOUPdfwT8fV/j/sDXgBtm6W8XA8f1t1cDz+pvr+3rXTVY7gTgAeAN/XPatX/sSyPb9gt92wfQ9dXpPrceOGsw7xZtjD4n4OHA9cBr+vaeRtcvD+6nfwT4WD/fIcCNw1pGXpPpts7s59910FfX0PXzdwOXL3D77w3cRde/dqLrWw8Mnuus+8Cglv8J7EK3D/8A+DjdfrwvcCvws7M8l/X9/EfSDYb+EPiH2fYvtty3n9fX+d/6un+Fbj/76/51OLhf94GDtu4fPM//Clzd394BuLRf1879c70K+PmRZY/p592VWfrbknJzEuE7iR+6Hepu4M7+xb0J+Lf9tB3pdvSDBvP/F+CCwf0/A77aL/fIOdq5gG40eCddZz8bmJphI38A+O+D5Vb3G2LtTB1khnY+B7x+cP+J/fKrFrj8Yf3G3g14G90b1B6Ddb9uZP4b+465f7/uXQbTXghc09/+bfodcDD9bGD9LHWcAbx/cP9I4Ov97eOAL4/MfzFwwuC1/t2R6QUcNrh/KYM3I+B/0B0dzFTLU4DNI9tytgC/CjhicP9EZg/wC4HfAfYeWcdaZg7w60bmO4GHBviw7dcDn+tvr2dxAf4y4O9H2nsfcCrdfnE/8KTBtD9g/gA/cI5+t0c/z+4L2P7Hs2VoBriBBwN81n1gUMu+g+m3Ay8b3D8XeOMsda4H/u/g/kHAvSPbYK4AvxfYsb+/pp//0JF+ecygreHz3AG4me5o6dAZ+sPbgA8Olr1wZPqM/W0pP9vaKZRjqmoPupHAScAXkzya7p1+Z+DawbzX0r1LTzuNbgTywaq6fZ52Tq6qPapq36p6ZVVtmmGefYbtVXeq4vaRNueyxfL97VV056znVVUXVdW9VXVPVf0h3RvOc/rJd9ONYIceAXyvn8bI9Olp8y07m+8Mbt9D92YGD32O8NDtcv0M67tlcPveGe6vBkiyW5L39Yfgd9F1/D2S7DhHrdP2GWl7tM6h19JdD/l6utNAL55n3TM9p7nmubavZykeCxzan1K4M8mddKfQHg1M0fWphT7Ph9SWZMckf5Tk2/1rfE0/ae/B/HNt/x+vq7p0GtaykH1gQX1hFqN17ZKFn2O+vap+OGhnplqGbQ+f54/o3qj2ods++4xsn99ky+c42l8W299mta0FOABV9cOqOg/4IfDv6A4Z76d7saYdQDfqpN+h30d3aPirmcxHuG4atpfk4XSH9DcuZfm+3gfYspMsRvHg+cUrgOE5uAPp3vS+UVWb6UYHTx4s+2QevGB6BfDTSTKY/tPMf0F1JqPPEQbbZVD3Ur2ZbtR2aFU9Anhu/3hmX+THbqY7GhnWNaOq+mZVvZzu0P0dwDn99p6t9oU8p9G2b+pvf5/uqGrao+dZ9/XAF/sBx/TP6qr6VbrD/gdmaGs+wzZeARwNvIDuFNba/vFFv8Z9nxrWMul9YDHuYe7XebGGz3MHYD+653c9cPXI9llTVUcOlt1im87R3xZtmwzwdI6mO5+7sX+n/Bjw9iRrkjwW+DW6T1JA944H3Tm3dwJnLnCUNpe/Bl6T7iN3D6M7NL2kqq7pp99Cd75rNh8G3pTkcUlW98t/tKoemK/hJAckOSzJzkl2SfLrdCOii/pZzgaOSvKcfsP/LnBeVU2Pos8EfivdRcAn0Z3jO6OfdgHdG+PJ6S6ontQ//vn56prBp4CfSveRxlXpLuYeRHdOfRLW0I2E7kz3MclTF7Hsx4C39a/BfnTnrGeU5FVJpvqR1Z39wz+kC8gfMfd2ns2v923vD5wCfLR//HLguf023p3ucHtotF99ku41Pi7JTv3PM5L8m36/OI/uQupuSQ4CXr3IOtfQnZ68nS7w/mARy/4dcHCSl/Qj35PZMiiXvA9MwOXAK/ojjCOAnx1zfU8fPM830r1m/wB8GbgryW+ku3C+Y5JDkjxjthXN0d8WbVsL8L9N9wmNu4C3013Mmh4ZvoFu9HIV8CW6gD09ydPpwvz4vkO/g+4d763jFFJVn6M7X3wu3Ujj8cCxg1nWA3/VHzb94kPXwOnAh+gO+6+muygya4iMWAP8Jd0FwRuBI4BfmD411L8mr6ML8lv7+V8/WP5U4Nt0h6xfBP64qj7dL3sf3QWV4+k6zy/Rnbq6b4G1/Vhfz4vpRsq3A28BXlxVty12XbN4N911gNvodpZPL2LZ36F7/lfTXQT+0BzzHgFc0fe99wDHVtUPquoeun54Ub+dn7WI9s+nO496OV3QfQCgqj5LF+b/1E8ffbN7D/DSdJ/K+NP+TflFdH3vJrrTBu+gO+KC7lTj6v7xM4APLqJG6N7sr6XrZ1fSvc4L0m/n/0x3wfh2uo+uXjSYZZx9YFynAEfR9fFX0l0cHcf5dNcjpi/av6Sq7u8z5yi66zNX0/XV99Mdzcxmxv62lKLSn1SXJDVmWxuBS5IWyACXpEYZ4JLUKANckhq1rP/MZu+99661a9cuZ5OS1LxLL730tqqaGn18WQN87dq1bNiwYTmblKTmJZnxL2w9hSJJjTLAJalRBrgkNcoAl6RGGeCS1Kh5Azzdl+PemuRrg8f2SvcVT9/sf++5dcuUJI1ayAj8DLr/njX0VrpvGHkC3bdujPWf/yRJizdvgFfVhXTfiTd0NN13VtL/PmbCdUmS5rHUP+R5VFXdDFBVNyf5idlmTHIi3fcRcsABC/myEA1t+cU5C+e/CdZyWEr/tG9Ozla/iFlVp1XVuqpaNzX1kL8E1Tzm+kLTuaZLy8G+ubKWGuC3JHkMQP/71smVJElaiKUG+Cd48Lv3Xk33dUOSpGW0kI8Rfhi4GHhikhuSvJbuO/BemOSbwAv7+5KkZTTvRcyqevksk54/4VokSYvgX2JKUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktSosQI8yZuSXJHka0k+nGSXSRUmSZrbkgM8yb7AycC6qjoE2BE4dlKFSZLmNu4plFXArklWAbsBN41fkiRpIZYc4FV1I/BO4DrgZuC7VfWZ0fmSnJhkQ5INmzZtWnqlkqQtjHMKZU/gaOBxwD7Aw5O8anS+qjqtqtZV1bqpqamlVypJ2sI4p1BeAFxdVZuq6n7gPODZkylLkjSfcQL8OuBZSXZLEuD5wMbJlCVJms8458AvAc4BLgO+2q/rtAnVJUmax6pxFq6qU4FTJ1SLJGkR/EtMSWqUAS5JjTLAJalRBvg2Yq+99iLJon6ARc2/1157rfCzVIuWo2/aP5dmrIuYmpzNmzdTVVu1jekdS1qM5eibYP9cCkfgktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktSosQI8yR5Jzkny9SQbk/zMpAqTJM1t1ZjLvwf4dFW9NMnOwG4TqEmStABLDvAkjwCeC5wAUFX3AfdNpixJ0nzGOYVyILAJ+GCSryR5f5KHj86U5MQkG5Js2LRp0xjNSZKGxgnwVcDTgL+sqqcC3wfeOjpTVZ1WVeuqat3U1NQYzUmShsYJ8BuAG6rqkv7+OXSBLklaBksO8Kr6DnB9kif2Dz0fuHIiVUmS5jXup1DeAJzdfwLlKuA145ckSVqIsQK8qi4H1k2oFknSIviXmJLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUeP+P3BNSJ36CFi/+9ZvQ1qk5eibP25Hi5KqWrbG1q1bVxs2bFi29lqShK29LZajDW1/lqvf2D9nl+TSqnrIdy94CkWSGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGjR3gSXZM8pUkn5xEQZKkhZnECPwUYOME1iNJWoSxAjzJfsC/B94/mXIkSQs17gj83cBbgB/NNkOSE5NsSLJh06ZNYzYnSZq25ABP8mLg1qq6dK75quq0qlpXVeumpqaW2pwkacQ4I/DDgP+Q5BrgI8DhSc6aSFWSpHktOcCr6m1VtV9VrQWOBT5fVa+aWGWSpDn5OXBJatSqSaykqi4ALpjEuiRJC+MIXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1KhVK12AHpRkq65/zz333Krrl7S8DPBtRFUtepkkS1pOWqytPbgABxhLYYBLmpODi22X58AlqVEGuCQ1ygCXpEYtOcCT7J/kC0k2JrkiySmTLEySNLdxLmI+ALy5qi5Lsga4NMlnq+rKCdUmSZrDkkfgVXVzVV3W3/4esBHYd1KFSZLmNpFz4EnWAk8FLplh2olJNiTZsGnTpkk0J0liAgGeZDVwLvDGqrprdHpVnVZV66pq3dTU1LjNSZJ6YwV4kp3owvvsqjpvMiVJkhZinE+hBPgAsLGq3jW5kiRJCzHOCPww4Djg8CSX9z9HTqguSdI8lvwxwqr6ErD1/8ONJGlG/iWmJDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNGivAkxyR5J+TfCvJWydVlCRpfksO8CQ7An8O/AJwEPDyJAdNqjBJ0tzGGYE/E/hWVV1VVfcBHwGOnkxZkqT5rBpj2X2B6wf3bwAOHZ0pyYnAiQAHHHDAGM3965RkSdOramuUI21hrv5p39z6xhmBz7R1HrJlquq0qlpXVeumpqbGaO5fp6pa0o+0HOybK2ucAL8B2H9wfz/gpvHKkSQt1DgB/o/AE5I8LsnOwLHAJyZTliRpPks+B15VDyQ5Cfg/wI7A6VV1xcQqkyTNaZyLmFTVp4BPTagWSdIi+JeYktQoA1ySGmWAS1KjDHBJalSW84P1STYB1y5bg9u/vYHbVroIaQb2zcl6bFU95C8hlzXANVlJNlTVupWuQxpl31wenkKRpEYZ4JLUKAO8baetdAHSLOyby8Bz4JLUKEfgktQoA1ySGmWANyjJ6UluTfK1la5FGkqyf5IvJNmY5Iokp6x0Tdszz4E3KMlzgbuBM6vqkJWuR5qW5DHAY6rqsiRrgEuBY6rqyhUubbvkCLxBVXUhcMdK1yGNqqqbq+qy/vb3gI1035+rrcAAl7RVJFkLPBW4ZGUr2X4Z4JImLslq4FzgjVV110rXs70ywCVNVJKd6ML77Ko6b6Xr2Z4Z4JImJkmADwAbq+pdK13P9s4Ab1CSDwMXA09MckOS1650TVLvMOA44PAkl/c/R650UdsrP0YoSY1yBC5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqP+P+/2Eu9dbCVDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAVn0lEQVR4nO3deZhcVZ3G8fclCWvCEmmVQEJEkBlUBrQH11GGRXFhYHh0AJVF0IgOIKiP4owOcWEcHR7FcZ0gCJFVIQ64oDJAZAAHJwQQQkCQLYFAOhBIAiKiv/njnNLbleqq6qrq5TTfz/P001V17r3n3HtPvXXq1O0uR4QAAOXZYKwbAADoDAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFCoZ32A2z7L9mdHqa6/t73M9jrbu49Gnc8mtmfbDtuT21z+T+fe9t/YvqOHbbnM9hH59pG2r+nVtjtoy0Lb7xmjuod1Tkph+17b+4x1O8Y0wPNB+G0OtNW2f2R75gjUs9D2U7meVbYX2N6mg+2E7R27aMqpko6NiKkRcWOD7X/G9i22n7E9t0H5O2zfZ/sJ2/9le3qlbCPbZ9peY/sh2x+qW3c32zfYfjL/3q2u/MS83uN5Oxt1sZ/FiYj/iYidWy1ne67tc9rY3psi4uxu2zVRAxC9MR5G4PtHxFRJ20h6WNJXRqieY3M9L5K0paQvjVA9zWwvaUmT8rskfVTSj+oLbL9Y0n9KOkzS8yQ9KenrlUXmStop1/G3kj5qe7+87oaSLpF0jqStJJ0t6ZL8uGy/UdJJkvaWNFvSDpI+1dkutm8ihpKT8fC86shEPCfjWbfHe9x0tIh4StJFknapPWZ7C9vzbQ/kkecnbG9ge7rt5bb3z8tNtX2X7cPbqOdRSRdLekmjctvvzdt61Paltmfkx6/Oi9ycR/IHN1h3g9zG+2yvzG3fIo+O10malNf/zRBtOzsiLpO0tkHxOyX9ICKujoh1kj4p6SDb03L54ZI+ExGrI2KppNMlHZnL9pQ0WdJpEfG7iPgPSZa0Vy4/QtIZEbEkIlZL+kxl3UbHKGwfY/vO/M7pa7bd7Bjkstpo8mjb90u6Mk8vXGv7S7Yfs3237Vfnx5flbRxRqfsttm/M7zSWNXqn0qTdu9tebHut7QslbVwp29P28sr9j9l+IC97h+298wviP0k6OPeBm/OyC22fYvtapRfWHbz+tIVtfyW/w7nd9t6VgkFvx+tG+bV+91iu81V5maNsL83H/6e2t6+sv2+u43HbX1U610Mdk7m2L7J9ju01ko60vYftX+TzscL2V2sv9nmdZud/ku1Tnd7p3i3pLXX1zcjPq0fz8+y9dW35Xm7LWqd3oy+y/fHcD5bZfkOTfbnX9kds/yrv+4W2N85l601jufKO2mk67etOU1/rcp98vu3T8j7e7vWnPf/a9m25/Nu1uvL23mr7pnwMr7O9a107P2b7V5KesD25UX8baj8HiYgx+5F0r6R98u1NlUaG8yvl85VGjtOURoa/lnR0LnuDpIckPVcprC5qUs9CSe/Jt7eWdKWk7+T7Z0n6bL69l6RVkl4maSOldwNXV7YTknZsUs9RSqPoHSRNlbSgVk8761eWO0fS3LrHLpH0sbrH1kl6udKoOiQ9r1L2Nkm35NsnSrqsbt0fSvpwvn2zpIMrZVvn7T1niPZFXn9LSbMkDUjar9UxyOcw8nndTNImSi8Uz0h6t9IL3Gcl3S/pa/kcvEHpBW1q3saekl6qNPjYVeld24F125/coM0bSrovH4sp+fj8vnLu95S0PN/eWdIySTMq231hvj1X0jkN+tf9kl6s9EI5RYP7XG0fa3UfLOlxSdPrnwf1dTTaJ0kH5mP8l7m+T0i6rnLu1uT9m5LrfKbWlgbHZW4+DgfmY7qJUp96Zd72bElLJZ3Q5vk/RtLtkmZKmi7pqmr7Jf1c6Z3jxpJ2y+vuXWnLU5LemOueL+keSf+c9+W9ku5pkSe/lDQj171U0jGVc3BNg368YyUHVuV931gpI+5RGhjV+uVVdXXdWtnPa/XnvvQySSslvSKve0RefqPKujfldTdRk/7WMit6EcSd/uQdWSfpsdzJHpT00lw2SdLvJO1SWf59khZW7n9F0i15vYZhU3mCPZnreUDSuZL6KieuduDPkPSFynpTlTr37PoTPkQ9V0j6QOX+znn9ye2sX1mvUYBfUeuMlcceUAqemXnbG1fK9pV0b779SUkX1K17bq0OSb9RfgLm+1Py9mYP0b6Q9NrK/e9KOqnVMdCfw2iHSvmRku6s3H+p1n8xekTSbkO05TRJX6p0/KEC/HW5n7jy2HVqHOA7Kj0B95E0pW47c9U4wD/d4LFqgNfX/UtJh1WeB8MJ8MuUBzL5/gZK/Xt7pcD530qZJS1X8wC/ulFZZZkTJH2/zfN/pSr9VOkFOPL5nynpD5KmVco/J+msSlsur5Ttr5QPk/L9aXlbWw7Rznslvaty/wuSvlk5B60C/PRK2XGSltb1y8fq6qru55sl/Sbf/obSu+FqXXdIen1l3aMqZUP2t1Y/42EK5cCI2FJptHWspJ/bfr7SSKI2aqq5T9K2lfvzlKZCvh0Rj7So5/iI2DIito2Id0bEQINlZlTrizRV8Uhdnc0MWj/fnqw0Z92tdZI2r3tsc6XR6brK/fqyVus2Kq/dbjSVU/NQ5faTSi92UnvHYFndth6u3P6tJEVE/WNTJcn2K2xf5TSt9rjSiG/rJu2smSHpgcjPmErb1hMRdymF1lxJK21f4DyV1kT9PtVrVHerbQ5le0lfzm/PH5P0qFJQb5u3+ae25DpbtW1QeZ62+KHTh9prJP2r1j/Gzc5/dXvVYzxD0qMRsbauvPr8qj/vqyLiD5X7qtTVyFDtakd93Q37YEX9ftbO5/aSPlw7P/kczdTg8109R530N0njaw78DxGxQOkV+rVKb2d+r3QwamYpjTple5LSh3rzJb3f3V0dUvNgtT7bm0l6Tq3O4a6f2/uMBneETi2R9FeVtu2g9KL360jz1iuq5fn2ksq6u9bmKbNd68rr1324jRfFRto5BqHOnSfpUkkzI2ILSd9UkzneihWStq07BrOGWjgizouI1yrtS0j6fK1oqFVa1N+o7gfz7SeUphBrnt9iu8skvS8PSGo/m0TEdUr7+acruXKdra7sqq/jG0rTIDtFxOZK8/7tHGPV16/Bx/hBSdP9589tauXtPr+6MegY50Fit+r3s3Y+l0k6pe78bBoR51eWH3TMm/S3psZNgDs5QGk+d2l+1f2upFNsT8sf0nxIaXpBSp1KSnOup0qan0O9G+dJerfTJXcbKY08ro+Ie3P5w0pzu0M5X9KJtl9ge2pe/8KIeKadym1PyR+EbCBpsu2NK/t0rqT9na5X3kzSpyUtqIxm5kv6hO2tbP+F0nzhWblsodIL4/FOH6gemx+/srLu0bZ3sb2V0pxqbd3h6uoYtGGa0ijuKdt7SHpHm+v9QumF5Pj8odFBkvZotKDtnW3vlfvAU0qjr9oo8GFJsz38K02em+ueYvvtSvPXP85lN0k6JJf1K81f1wxI+qMG97tvSvq405VJtQ/7357LfiTpxbYPcrrC4XgNfkFoxzSlefR1uS+9fxjrfldpP7fLfemkWkFELFOatvpc7tu7SjpaqW+PtJuVjstu+Tk2twfb/Me8n9OV8ujC/Pjpko7J7xZtezOnD9+nNdpIi/7W1HgI8B84XaGxRtIpko6IiNrI8DilV867JV2jFLBn2n65UpgfnoP+80qvWifVb3w4IuIKpfnii5VGEi+UdEhlkbmSzs5vi/6hwSbOlPQdpSsH7lE6GccNowmnK528Q5U+uPmt0mWDysfkGKXOvlLpSfaByronK81l36f0QdG/R8RP8rpPK31IdbjS5wBHKU1dPZ3Lf6I0X3hVXv++vL1OdHsMWvmApE/bXivpX5QCo6W8rwcpzYWuVvogccEQi28k6d+U3gXWPiivDRi+l38/YnvxMNp9vdJlnquU+vnbKu9wPqnU11YrXb55XqXdT+blr8397pUR8X2lPn9BnuK4VdKb8vKrJL09t/+RXOe1w2inJH1E6YVxrVKfvLD54oOcLumnSoG5WOsf40OV5vUflPR9SSdHxOXDbN+wRcSvlQY9/y3pTqU86dZ5kn6mlE93K33QqYhYpDSA+qrSOb1LTa7qUvP+1pQHT8sBAEoxHkbgAIAOEOAAUCgCHAAKRYADQKFG9R/XbL311jF79uzRrBIAinfDDTesioi++sdHNcBnz56tRYsWjWaVAFA82w3/apgpFAAoFAEOAIUiwAGgUAQ4ABSKAAeAQrUMcKcvuF1p+9bKY9NtX+70lUqX5/86BgAYRe2MwM+StF/dYydJuiIidlL6Bpau/gsgAGD4WgZ4RFyt9I0fVQcofX+l8u8De9wuAEALnf4hz/MiYoUkRcQK288dakHbcyTNkaRZs4b8AhQMYfCXuLSPfxOM0dBJ/6Rv9s6If4gZEfMioj8i+vv61vtLULTQ7AtNm5UDo4G+ObY6DfCHbW8jSfn3yt41CQDQjk4D/FJJR+TbR0i6pDfNAQC0q53LCM9X+kLYnW0vt3200ve37Wv7Tkn75vsAgFHU8kPMiDh0iKK9e9wWAMAw8JeYAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUqqsAt32i7SW2b7V9vu2Ne9UwAEBzHQe47W0lHS+pPyJeImmSpEN61TAAQHPdTqFMlrSJ7cmSNpX0YPdNAgC0o+MAj4gHJJ0q6X5JKyQ9HhE/q1/O9hzbi2wvGhgY6LylAIBBuplC2UrSAZJeIGmGpM1sv6t+uYiYFxH9EdHf19fXeUsBAIN0M4Wyj6R7ImIgIn4vaYGkV/emWQCAVroJ8PslvdL2prYtaW9JS3vTLABAK93MgV8v6SJJiyXdkrc1r0ftAgC0MLmblSPiZEkn96gtAIBh4C8xAaBQBDgAFIoAB9DU9OnTZXtYP5KGvc706dPHeE/L09UcOICJb/Xq1YqIEa+nFvxoHyPwcWI0RjmMcICJhRH4ODEaoxxGOMDEwggcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQqK4C3PaWti+yfbvtpbZf1auGAQCam9zl+l+W9JOIeJvtDSVt2oM2AQDa0HGA295c0uskHSlJEfG0pKd70ywAQCvdTKHsIGlA0rdt32j7W7Y3q1/I9hzbi2wvGhgY6KI6AEBVNwE+WdLLJH0jInaX9ISkk+oXioh5EdEfEf19fX1dVAcAqOomwJdLWh4R1+f7FykFOgBgFHQc4BHxkKRltnfOD+0t6baetAoA0FK3V6EcJ+ncfAXK3ZLe3X2TAADt6CrAI+ImSf09agsAYBj4S0wAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCdfvvZAFMcHHy5tLcLUanHgwLAQ6gKX9qjSJi5OuxFXNHvJoJhQAfJ0ZjlMMIB5hYCPBxYjRGOYxwgImFDzEBoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKG6DnDbk2zfaPuHvWgQAKA9vRiBf1DS0h5sBwAwDF0FuO3tJL1F0rd60xwAQLu6HYGfJumjkv441AK259heZHvRwMBAl9UBAGo6DnDbb5W0MiJuaLZcRMyLiP6I6O/r6+u0OgBAnW5G4K+R9He275V0gaS9bJ/Tk1YBAFrqOMAj4uMRsV1EzJZ0iKQrI+JdPWsZAKAprgMHgEJN7sVGImKhpIW92BYAoD2MwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAo1OSxbgCA8c/2iNex1VZbjXgdEw0BPo6M9JOEJwg6ERHDXsd2R+theAjwcYInCYDhYg4cAApFgANAoQhwACgUAQ4Aheo4wG3PtH2V7aW2l9j+YC8bBgBorpurUJ6R9OGIWGx7mqQbbF8eEbf1qG0AgCY6HoFHxIqIWJxvr5W0VNK2vWoYAKC5nsyB254taXdJ1zcom2N7ke1FAwMDvagOAKAeBLjtqZIulnRCRKypL4+IeRHRHxH9fX193VYHAMi6CnDbU5TC+9yIWNCbJgEA2tHNVSiWdIakpRHxxd41CQDQjm5G4K+RdJikvWzflH/e3KN2AQBa6Pgywoi4RtLI/49JAEBD/CUmABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFAEOAAUigAHgEIR4ABQKAIcAApFgANAoQhwACgUAQ4AhSLAAaBQBDgAFIoAB4BCEeAAUCgCHAAKRYADQKEIcAAoFAEOAIUiwAGgUAQ4ABSKAAeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCF6irAbe9n+w7bd9k+qVeNAgC01nGA254k6WuS3iRpF0mH2t6lVw0DADTXzQh8D0l3RcTdEfG0pAskHdCbZgEAWpncxbrbSlpWub9c0ivqF7I9R9IcSZo1a1YX1T072e6oPCJGojnAIM36J31z5HUzAm90dtY7MxExLyL6I6K/r6+vi+qenSKiox9gNNA3x1Y3Ab5c0szK/e0kPdhdcwAA7eomwP9P0k62X2B7Q0mHSLq0N80CALTS8Rx4RDxj+1hJP5U0SdKZEbGkZy0DADTVzYeYiogfS/pxj9oCABgG/hITAApFgANAoQhwACgUAQ4AhfJoXlhve0DSfaNW4cS3taRVY90IoAH6Zm9tHxHr/SXkqAY4esv2oojoH+t2APXom6ODKRQAKBQBDgCFIsDLNm+sGwAMgb45CpgDB4BCMQIHgEIR4ABQKAK8QLbPtL3S9q1j3RagyvZM21fZXmp7ie0PjnWbJjLmwAtk+3WS1kmaHxEvGev2ADW2t5G0TUQstj1N0g2SDoyI28a4aRMSI/ACRcTVkh4d63YA9SJiRUQszrfXSlqq9P25GAEEOIARYXu2pN0lXT+2LZm4CHAAPWd7qqSLJZ0QEWvGuj0TFQEOoKdsT1EK73MjYsFYt2ciI8AB9IxtSzpD0tKI+OJYt2eiI8ALZPt8Sb+QtLPt5baPHus2AdlrJB0maS/bN+WfN491oyYqLiMEgEIxAgeAQhHgAFAoAhwACkWAA0ChCHAAKBQBDgCFIsABoFD/Dw3SBE6HotbVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "def uniform_random_box_plots(num_random_numbers):\n", + " x = random.uniform(low=0, high=10, size=num_random_numbers)\n", + " y = random.uniform(low=0, high=10, size=num_random_numbers)\n", + "\n", + " data = [x, y]\n", + "\n", + " fig1, ax1 = plt.subplots()\n", + " ax1.set_title('Box Plot of ' + str(num_random_numbers) + ' normal distributed random numbers')\n", + " ax1.boxplot(data)\n", + " plt.show()\n", + "\n", + "for i in [1, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000]:\n", + " uniform_random_box_plots(i)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Students grades" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAWNUlEQVR4nO3de5hkdX3n8feHm8hNwBmuA3RUomI2gjuiLrvIqvGCGtAY1AWWiHFMvASfdeMS1izjalyyUWPWVZ8d5WZE0AgIBk1EvACbDTggKoJGxVEGBmYQEVCjAb/7xzmtRU/10DPTVcX07/16nnr6XH/ne6q7P3Xqd06dSlUhSWrHVpMuQJI0Xga/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH7NSZJK8phNXHdVkmfNMu/fJfnmsGWTnJLkg5tW8YPWNNXv0zb9+KeTnDBPbc+6T/PU/teTHDFf7Y1Lkt9LcuWk6xBsM+kCNDpJVgF7AvcDPwY+Bby+qu6dZF2DquoK4LGzzHv79HCSKeC7wLZVdd8I6njeXJZLUsCBVfXtDbQ16z5trCRnAaur6s0D7T9hPtpWuzziX/heWFU7AU8Cngy8eeYC00e92nytPJet7OdCZfA3oqpuAT4N/Ab8suvmtUm+BXyrn/aqJN9OcmeSi5PsM6OZI5PclOSOJH+RZKt+vUcn+VySH/Tzzkmy64x1n5zkhiQ/THJmku37dY9IsnpYzUmWJ/lwP3p5//OuJPcmeXpf578aWH6PJD9NsnhIW1sneUdf303A82fM/0KS3++HH5Pki0l+1C//0X76dA1f6Wt46XT9Sf5LktuAM2fZp9n2f73uj+lutSTLgGOBN/Xb+2Q/f7A77GFJ3p3k1v7x7iQPG3xuk7wxydoka5K8Ythz3S//a0kuT3JPks8mee/08z/QNfbKJN8HPtdP/5skt/XP1eVJnjDQ3iP7v6O7k1wNPHrG9h6X5NL+9/jNJMcMzDuyf77uSXJLkv88W93aeAZ/I5LsBxwJfHlg8tHAU4CDkjwD+B/AMcDewPeA82Y08yJgKd27h6OAE6eb79fdB3g8sB+wfMa6xwLPofvn/3WGvPN4EIf3P3etqp2q6ot9fccNLPNy4LNVtW7I+q8CXgAc0u/DSzawrbcCnwF2A5YA7wGoqukantjX8NF+fC9gd+AAYNksbW70/lfVCuAc4H/223vhkMX+K/BU4GDgicChM9reC3gEsC/wSuC9SXabZZMfAa4GHkn3+zt+yDJPp/sdP6cf/zRwILAHcG1f77T3Av9M9/d0Ir/6eyHJjsCl/Tb3oPvdvW/gheN04NVVtTPdwcrnZqlZm6KqfCzQB7AKuBe4iy7I3wc8vJ9XwDMGlj2dLmCmx3cC/gWYGlj+uQPzXwNcNst2jwa+PKOOPxgYPxL4Tj98BF0f9uCyz+qHlwMf7oen+hq2GVj2KcDNwFb9+ErgmFlq+tyMGp492B7wBeD3++EPASuAJUPaKeAxA+NHAD8Htp8xbeY+zbb/vwdcOds2gLOAtw35vU4/R98BjhyY9xxg1UAdP53xnK0Fnjpkv/YH7gN2GJj24SHP/6M28Pe2a7/MI4Ct+7+fxw3Mf/v0vgIvBa6Ysf7/AU7th78PvBrYZdL/Rwvx4RH/wnd0Ve1aVQdU1Wuq6qcD824eGN6H7sUBgOpOAP+A7khx2PLf69eZ7mI5r39LfjddYCyaUcfQdTdHVV1Fd9L66UkeBzwGuHiWxfcZUsNs3kT3LubqdFfQnLiBZQHWVdU/P8gy877/vQf83oa0/YN64Mnwn9C9qA9r586q+snAtJuHLPfLaX332WlJvtP/3lf1sxYBi+kuHpntOT8AeEqSu6YfdO+K9urn/w7dC+T3+m63pw2pRZvI4G/b4K1Zb6X7ZwR++Vb8kcAtA8vsNzC8f78OdN08BfxmVe1C1/2SGduabd1NqXXQ2f32jgc+voEAXjOkhuEbqrqtql5VVfvQHXW+Lxu+lHUut7idbf9/DOwwPSPJXjzQg7X9gN8bm/bcQvf87J5kh4Fp+w1ZbrCe/0DX5fcsuqP8qX56gHV07yBme85vBr7YH5RMP3aqqj8EqKovVdVRdN1AnwA+tgn7pFkY/Jr2EeAVSQ7uTw6+HbiqqlYNLPPHSXbrzxecBEz3ce9M36WUZF/gj4e0/9okS5LsDpwysO5crQN+ATxqxvS/pjv3cBxdF81sPgb8UV/DbsDJsy2Y5HeTLOlHf0gXdvf347cPqWEuZtv/rwBP6J/37Vn/3MiDbe9c4M1JFidZBPw3undcG6WqvkfXVbY8yXb9EfawcwqDdgZ+RvfOcAe6v5np9u4HLujb2yHJQcDg5yT+Fvj1JMcn2bZ/PDnJ4/vtH5vkEVX1L8Dd/Or51zww+AVAVV0G/ClwPt3R36OBl81Y7CLgGuA64BK68wIAb6E74fujfvoFQzbxEboTpjf1j7dtZH0/Af4M+L9918BT++mr6U4qFnDFBpr4APD3dEF77Sw1TnsycFWSe+m6jk6qqu/285YDZ/c1HDNbA0MM3f+q+ifgvwOfpbu6auYHnE6nO/l+V5JPDGn3bXSB/VXga/2+bdRzO+BY4Gl0Qf42uhenn21g+Q/Rdd/cAtwA/OOM+a+j61a6je5cxZnTM6rqHrrzLC+je4dyG/DnwMP6RY4HVvVdSH/AA0/iazOlP5EibbGSnAHcWgMfctLmS3cZ6zeq6tRJ16L5ZfBri5buE73XAYcMHJVrEyR5MnAn3Sekn03Xt/60qvryBlfUFseuHm2xkrwVuB74C0N/XuxFd1nrvcD/Av7Q0F+YPOKXpMZ4xC9JjdkibrS0aNGimpqamnQZkrRFueaaa+6oqvXuXbVFBP/U1BQrV66cdBmStEVJMvQT6nb1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSY7aIT+5q4Zk6+ZJJlzAvVp32/EmXIG00j/glqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGjCz4k+yX5PNJbkzy9SQn9dOXJ7klyXX948hR1SBJWt8ob9J2H/DGqro2yc7ANUku7ef9ZVW9Y4TbliTNYmTBX1VrgDX98D1JbgT2HdX2JElzM5Y+/iRTwCHAVf2k1yX5apIzkuw2yzrLkqxMsnLdunXjKFOSmjDy4E+yE3A+8Iaquht4P/Bo4GC6dwTvHLZeVa2oqqVVtXTx4sWjLlOSmjHS4E+yLV3on1NVFwBU1e1VdX9V/QL4AHDoKGuQJD3QKK/qCXA6cGNVvWtg+t4Di70IuH5UNUiS1jfKq3oOA44Hvpbkun7aKcDLkxwMFLAKePUIa5AkzTDKq3quBDJk1qdGtU1J0oPzk7uS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0ZWfAn2S/J55PcmOTrSU7qp++e5NIk3+p/7jaqGiRJ6xvlEf99wBur6vHAU4HXJjkIOBm4rKoOBC7rxyVJYzKy4K+qNVV1bT98D3AjsC9wFHB2v9jZwNGjqkGStL6x9PEnmQIOAa4C9qyqNdC9OAB7zLLOsiQrk6xct27dOMqUpCaMPPiT7AScD7yhqu6e63pVtaKqllbV0sWLF4+uQElqzEiDP8m2dKF/TlVd0E++Pcne/fy9gbWjrEGS9ECjvKonwOnAjVX1roFZFwMn9MMnABeNqgZJ0vq2GWHbhwHHA19Lcl0/7RTgNOBjSV4JfB/43RHWIEmaYWTBX1VXApll9jNHtV1J0ob5yV1JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1Zk7Bn+SyuUyTJD30bbOhmUm2B3YAFiXZDUg/axdgnxHXJkkagQc74n81cA3wuP7n9OMi4L0bWjHJGUnWJrl+YNryJLckua5/HLl55UuSNtYGj/ir6q+Av0ry+qp6z0a2fRbwv4EPzZj+l1X1jo1sS5I0TzYY/NOq6j1J/g0wNbhOVc0M9cF1Lk8ytZn1SZLm2ZyCP8lfA48GrgPu7ycX6x/Nz8XrkvxHYCXwxqr64SzbXAYsA9h///03YTOSpGHmFPzAUuCgqqrN3N77gbfSvWi8FXgncOKwBatqBbACYOnSpZu7XUlSb67X8V8P7LW5G6uq26vq/qr6BfAB4NDNbVOStHHmesS/CLghydXAz6YnVtVvb8zGkuxdVWv60RfRvaBIksZorsG/fGMbTnIucATdZwBWA6cCRyQ5mK6rZxXd5aKSpDGa61U9X9zYhqvq5UMmn76x7UiS5tdcr+q5h+4oHWA7YFvgx1W1y6gKkySNxlyP+HceHE9yNJ6YlZg6+ZJJlzBvVp32/EmXoDHZpLtzVtUngGfMcy2SpDGYa1fPiwdGt6K7rt9r6yVpCzTXq3peODB8H90VOUfNezWSpJGbax//K0ZdiCRpPOb6RSxLklzY32b59iTnJ1ky6uIkSfNvrid3zwQupvvylX2BT/bTJElbmLkG/+KqOrOq7usfZwGLR1iXJGlE5hr8dyQ5LsnW/eM44AejLEySNBpzDf4TgWOA24A1wEsAT/hK0hZorpdzvhU4YfpLU5LsDryDWe6lL0l66JrrEf9vDn5TVlXdCRwympIkSaM01+DfKslu0yP9Ef9c3y1Ikh5C5hre7wT+IcnH6W7VcAzwZyOrSpI0MnP95O6HkqykuzFbgBdX1Q0jrUySNBJz7q7pg96wl6Qt3CbdllmStOUy+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMaMLPiTnJFkbZLrB6btnuTSJN/qf+62oTYkSfNvlEf8ZwHPnTHtZOCyqjoQuKwflySN0ciCv6ouB+6cMfko4Ox++Gzg6FFtX5I03Li/PnHPqloDUFVrkuwx24JJlgHLAPbff/8xlffQNnXyJZMuQdIC8JA9uVtVK6pqaVUtXbx48aTLkaQFY9zBf3uSvQH6n2vHvH1Jat64g/9i4IR++ATgojFvX5KaN8rLOc8F/h/w2CSrk7wSOA34rSTfAn6rH5ckjdHITu5W1ctnmfXMUW1TkvTgHrIndyVJo2HwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaM7Jv4HqomDr5kkmXIEkPKR7xS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjZnIvXqSrALuAe4H7quqpZOoQ5JaNMmbtP37qrpjgtuXpCbZ1SNJjZlU8BfwmSTXJFk2bIEky5KsTLJy3bp1Yy5PkhauSQX/YVX1JOB5wGuTHD5zgapaUVVLq2rp4sWLx1+hJC1QEwn+qrq1/7kWuBA4dBJ1SFKLxh78SXZMsvP0MPBs4Ppx1yFJrZrEVT17Ahcmmd7+R6rq7yZQhyQ1aezBX1U3AU8c93YlSR0v55Skxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGTOKrFyU9BE2dfMmkS5g3q057/qRLeEjziF+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjZlI8Cd5bpJvJvl2kpMnUYMktWrswZ9ka+C9wPOAg4CXJzlo3HVIUqsmccR/KPDtqrqpqn4OnAccNYE6JKlJk7gf/77AzQPjq4GnzFwoyTJgWT96b5JvbuL2FgF3bOK6Wyr3uQ3u8yzy52OoZHw25/d8wLCJkwj+DJlW602oWgGs2OyNJSuraunmtrMlcZ/b4D63YRT7PImuntXAfgPjS4BbJ1CHJDVpEsH/JeDAJL+WZDvgZcDFE6hDkpo09q6eqrovyeuAvwe2Bs6oqq+PcJOb3V20BXKf2+A+t2He9zlV63WvS5IWMD+5K0mNMfglqTELNviTnJFkbZLrJ13LuCTZL8nnk9yY5OtJTpp0TaOUZPskVyf5Sr+/b5l0TeOSZOskX07yt5OuZRySrErytSTXJVk56XrGIcmuST6e5Bv9//TT5q3thdrHn+Rw4F7gQ1X1G5OuZxyS7A3sXVXXJtkZuAY4uqpumHBpI5EkwI5VdW+SbYErgZOq6h8nXNrIJflPwFJgl6p6waTrGbUkq4ClVdXMB9aSnA1cUVUf7K+A3KGq7pqPthfsEX9VXQ7cOek6xqmq1lTVtf3wPcCNdJ+UXpCqc28/um3/WJhHMgOSLAGeD3xw0rVoNJLsAhwOnA5QVT+fr9CHBRz8rUsyBRwCXDXZSkar7/K4DlgLXFpVC3p/e+8G3gT8YtKFjFEBn0lyTX87l4XuUcA64My+S++DSXacr8YN/gUoyU7A+cAbquruSdczSlV1f1UdTPcJ8EOTLOhuvSQvANZW1TWTrmXMDquqJ9Hd1fe1fVfuQrYN8CTg/VV1CPBjYN5uYW/wLzB9X/f5wDlVdcGk6xmX/m3wF4DnTriUUTsM+O2+z/s84BlJPjzZkkavqm7tf64FLqS7y+9CthpYPfAO9uN0LwTzwuBfQPqTnacDN1bVuyZdz6glWZxk13744cCzgG9MtqrRqqo/qaolVTVFd7uTz1XVcRMua6SS7NhfrEDf3fFsYEFfrVdVtwE3J3lsP+mZwLxdpDGJu3OORZJzgSOARUlWA6dW1emTrWrkDgOOB77W93sDnFJVn5pgTaO0N3B2/+U+WwEfq6omLm9szJ7Ahd1xDdsAH6mqv5tsSWPxeuCc/oqem4BXzFfDC/ZyTknScHb1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXRqC/m+SiSdchDWPwS3OUZMF+7kVt8Q9Z6iX5U+BY4GbgDrrbWr8A+Ae6D8ddnOSfgDcD2wE/AI6tqtuTPBI4F1gMXA1koN3jgD/q17kKeE1V3T+u/ZJm8ohfApIsBX6H7o6mL6a71/20Xavq6VX1Trp7/j+1v3HWeXR3yQQ4Fbiyn34xsH/f7uOBl9LdZOxg4H66FxdpYjzilzr/Frioqn4KkOSTA/M+OjC8BPho/6U32wHf7acfTveCQVVdkuSH/fRnAv8a+FJ/y4GH091CWpoYg1/qZAPzfjww/B7gXVV1cZIjgOUD84bd/yTA2VX1J5tdoTRP7OqROlcCL+y/x3cnum+4GuYRwC398AkD0y+n78JJ8jxgt376ZcBLkuzRz9s9yQHzXby0MQx+CaiqL9H1zX8FuABYCfxoyKLLgb9JcgXdCeBpbwEOT3It3W2Dv9+3ewPdyeDPJPkqcCndXUWlifHunFIvyU79F7fvQHcEv2z6O4ylhcQ+fulXViQ5CNierl/e0NeC5BG/JDXGPn5JaozBL0mNMfglqTEGvyQ1xuCXpMb8f7j/CoZEM5hDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from numpy import random\n", + "import matplotlib.pyplot as plt\n", + "\n", + "student_count = 60\n", + "grades = random.normal(loc=3, scale=1, size=student_count)\n", + "\n", + "fig1, ax1 = plt.subplots()\n", + "ax1.set_title('Probability distribution grades')\n", + "ax1.set_xlabel(\"grade\");\n", + "ax1.set_ylabel(\"count\");\n", + "ax1.hist(grades, range=(1,6), bins=6)\n", + "plt.show()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAZiUlEQVR4nO3de5hddX3v8ffHBFRALppYlASDiFVsvWBALa1S6wUQD1g9iOL9QlFRfM5plXq0YrUebI8+thbLyeEi1gtaRY0SxQvHWz1qEgQVFI0RzHApEeUqFYLf88dagzs7eyaTyawZmfV+Pc88s9dav/3b37Unmc+s31rrt1NVSJL6625zXYAkaW4ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgbZZkkryoGk+9/IkT5pg258kuWxU2yRvSHL69Creak3L2n1a2C5/NskLZ6jvCfdphvq/JMkhM9XfbEnyoiRfn+s61Fg41wVodiS5HPg94A7gFmAV8Oqqunku6xpUVV8Dfn+CbW8ff5xkGfBTYIeq2tRBHYdNpV2SAvarqnWT9DXhPm2rJO8DxqrqjQP9P2wm+la/eUTQL0+vql2AA4ADgTcONxj/q1jbry/vZV/2cz4zCHqoqq4EPgv8Adw51POqJD8Gftyue3mSdUl+kWRlkvsPdXN4kvVJfp7kH5LcrX3evkkuSHJdu+2DSXYfeu6BSS5N8sskZyW5R/vcQ5KMjao5yclJPtAufrX9fn2Sm5M8oa3zDwfa3zfJrUkWj+hrQZL/1da3Hnja0PYvJ3lZ+/hBSb6S5Ia2/Ufa9eM1XNzW8Ozx+pO8Psk1wFkT7NNE+7/FcMn4MFyS44Bjgde1r/fpdvvg8Nndk7w7yVXt17uT3H3wvU3y35Ncm+TqJC8e9V637fdJ8tUkNyX5YpJTx9//gaG0lyb5GXBBu/7fklzTvldfTfKwgf7u0/47ujHJt4F9h17vIUm+0P4cL0ty9MC2w9v366YkVyb5y4nq1vQYBD2UZClwOPCdgdVHAY8B9k/yROB/AkcD9wOuAM4Z6uYZwHKao4sjgZeMd98+9/7AQ4GlwMlDzz0WeCrNL4MHM+LIZCse337fvap2qaqvtPU9b6DNc4AvVtXGEc9/OXAE8Kh2H541yWu9Ffg8sAewBHgPQFWN1/CItoaPtMt7AvcGHgAcN0Gf27z/VbUC+CDw9+3rPX1Es/8BPBZ4JPAI4KChvvcEdgP2Al4KnJpkjwle8kPAt4H70Pz8nj+izRNofsZPbZc/C+wH3Be4sK133KnAf9L8e3oJv/33QpKdgS+0r3lfmp/deweC5AzgL6rqXjR/vFwwQc2arqryqwdfwOXAzcD1NL/Y3wvcs91WwBMH2p5B8wtnfHkX4HZg2UD7Qwe2vxL40gSvexTwnaE6jh9YPhz4Sfv4EJox8MG2T2ofnwx8oH28rK1h4UDbxwAbgLu1y2uAoyeo6YKhGp4y2B/wZeBl7eP3AyuAJSP6KeBBA8uHALcB9xhaN7xPE+3/i4CvT/QawPuAt434uY6/Rz8BDh/Y9lTg8oE6bh16z64FHjtiv/YGNgE7Daz7wIj3/4GT/HvbvW2zG7Cg/ffzkIHtbx/fV+DZwNeGnv+/gTe3j38G/AWw61z/P5qvXx4R9MtRVbV7VT2gql5ZVbcObNsw8Pj+NGEBQDUnlK+j+UtyVPsr2ueMD8mc0x7C30jzC2TRUB0jn7s9qupbNCfBn5DkIcCDgJUTNL//iBom8jqao5xvp7lC5yWTtAXYWFX/uZU2M77/rc1+biP6vq42P7n+K5qQH9XPL6rqVwPrNoxod+e6drjtlCQ/aX/ul7ebFgGLaS5Mmeg9fwDwmCTXj3/RHDXt2W5/Jk1gXtEO0z1uRC3aDgaBxg1OQ3sVzX9O4M5D9/sAVw60WTrweO/2OdAMCxXw8KralWa4JkOvNdFzp1ProLPb13s+8LFJfiFfPaKG0S9UdU1Vvbyq7k/zV+l7M/mls1OZznei/b8F2Gl8Q5I92dzW+t7s58b03lto3p97J9lpYN3SEe0G63kuzRDhk2iOApa16wNspDnCmOg93wB8pf0jZfxrl6p6BUBVra6qI2mGjT4JfHQa+6RJGAQa5UPAi5M8sj3Z+HbgW1V1+UCbv0qyR3u+4URgfIz8XrRDUEn2Av5qRP+vSrIkyb2BNww8d6o2Ar8BHji0/l9pzl08j2ZIZyIfBV7T1rAHcNJEDZP81yRL2sVf0vzyu6Nd/o8RNUzFRPt/MfCw9n2/B1ueW9na630YeGOSxUkWAX9Dc0S2TarqCpqhtZOT7Nj+BT7qnMSgewG/pjly3Inm38x4f3cA57b97ZRkf2DwPo3PAA9O8vwkO7RfByZ5aPv6xybZrapuB27kt++/ZohBoC1U1ZeANwEfp/nrcF/gmKFmnwLWAhcB59GcVwB4C80J5Bva9eeOeIkP0ZyAXd9+vW0b6/sV8HfAv7dDCY9t14/RnKQs4GuTdPF/gPNpfvFeOEGN4w4EvpXkZpqhphOr6qfttpOBs9sajp6ogxFG7n9V/Qj4W+CLNFdvDd9wdQbNyfzrk3xyRL9vo/kF/l3ge+2+bdN7O+BY4HE0v9jfRhNWv56k/ftphnuuBC4Fvjm0/QSaYahraM51nDW+oapuojlPcwzNEcw1wDuAu7dNng9c3g45Hc/mFwVoBqQ9GSPNC0nOBK6qgZuutP3SXDb7w6p681zXoplnEGjeSHPH8UXAowb+atc0JDkQ+AXNHdxPoRmbf1xVfWfSJ+ouyaEhzQtJ3gp8H/gHQ2BG7ElzGe3NwD8BrzAE5i+PCCSp5zwikKSe63SyqCSHAv9Ic2fh6VV1yog2hwDvBnYAfl5VT5isz0WLFtWyZctmvlhJmsfWrl3786raYu4t6DAIkiygmV/kycAYsDrJyqq6dKDN7jRTHRxaVT9Lct+t9bts2TLWrFnTVdmSNC8lmfAO+i6Hhg4C1lXV+qq6jWZSsCOH2jwXOLeqfgZQVdd2WI8kaYQug2AvNp9bZIzN56qBZubFPdJM+7s2yQtGdZTkuCRrkqzZuHHUZJKSpOnqMgiG55eBLedKWQg8mmY++KcCb0ry4C2eVLWiqpZX1fLFi0cOcUmSpqnLk8VjbD7J1BK2nABrjOYE8S3ALWk+7OMRwI86rEuSNKDLI4LVwH7tJx3tSDOPyPC0wJ8C/iTJwnamw8cAP+iwJknSkM6OCKpqU5ITaCb3WgCcWVWXJDm+3X5aVf0gyedoJsn6Dc0lpt/vqiZJ0pbucncWL1++vLx8VJK2TZK1VbV81DbvLJaknjMIJKnnOp1iQt1ZdtJ5c13CjLn8lKfNdQlSr3lEIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9VynQZDk0CSXJVmX5KQR2w9JckOSi9qvv+myHknSlhZ21XGSBcCpwJOBMWB1kpVVdelQ069V1RFd1SFJmlyXRwQHAeuqan1V3QacAxzZ4etJkqahyyDYC9gwsDzWrhv2uCQXJ/lskoeN6ijJcUnWJFmzcePGLmqVpN7qMggyYl0NLV8IPKCqHgG8B/jkqI6qakVVLa+q5YsXL57hMiWp37oMgjFg6cDyEuCqwQZVdWNV3dw+XgXskGRRhzVJkoZ0GQSrgf2S7JNkR+AYYOVggyR7Jkn7+KC2nus6rEmSNKSzq4aqalOSE4DzgQXAmVV1SZLj2+2nAc8CXpFkE3ArcExVDQ8fSZI61FkQwJ3DPauG1p028PifgX/usgZJ0uS8s1iSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqec6DYIkhya5LMm6JCdN0u7AJHckeVaX9UiSttRZECRZAJwKHAbsDzwnyf4TtHsHcH5XtUiSJtblEcFBwLqqWl9VtwHnAEeOaPdq4OPAtR3WIkmaQJdBsBewYWB5rF13pyR7Ac8ATpusoyTHJVmTZM3GjRtnvFBJ6rMugyAj1tXQ8ruB11fVHZN1VFUrqmp5VS1fvHjxjBUoSYKFHfY9BiwdWF4CXDXUZjlwThKARcDhSTZV1Sc7rEuSNKDLIFgN7JdkH+BK4BjguYMNqmqf8cdJ3gd8xhCQpNnVWRBU1aYkJ9BcDbQAOLOqLklyfLt90vMCkqTZ0eURAVW1Clg1tG5kAFTVi7qsRZI0mncWS1LPGQSS1HMGgST1nEEgST3X6cliaSqWnXTeXJcwYy4/5WlzXYK0zTwikKSeMwgkqecMAknquUnPEST5HltOFHenqnr4jFckSZpVWztZfET7/VXt939tvx8L/KqTiiRJs2rSIKiqKwCSHFxVBw9sOinJvwN/22VxkqTuTfUcwc5J/nh8IckfATt3U5IkaTZN9T6ClwJnJtmtXb4eeEk3JUmSZtOUgqCq1gKPSLIrkKq6oduyJEmzZUpDQ0l2S/Iu4ALgS0neOXB0IEm6C5vqOYIzgZuAo9uvG4GzuipKkjR7pnqOYN+qeubA8luSXNRFQZKk2TXVI4Jbh64aOhi4tZuSJEmzaapHBK8Azm7PCwT4BfDCzqqSJM2aqV41dBG/vWqIqrqx06okSbNmOlcNXeBVQ5I0f3jVkCT1nFcNSVLPedWQJPXcVI8IjgfeP3TV0Iu6KkqSNHumetXQxXjVkCTNS1MKgiR3B54JLAMWJgGgqib9PIIkhwL/CCwATq+qU4a2Hwm8FfgNsAl4bVV9fdt2QZK0PaY6NPQp4AZgLfDrqTwhyQLgVODJwBiwOsnKqrp0oNmXgJVVVUkeDnwUeMhUi5ckbb+pBsGSqjp0G/s+CFhXVesBkpwDHAncGQRVdfNA+52Z5PORJUndmOpVQ99I8ofb2PdewIaB5bF23WaSPCPJD4Hz8MNuJGnWTXpEkOR7NH+lLwRenGQ9zdBQgKqqh0/29BHrtviLv6o+AXwiyeNpzhc8aUQdxwHHAey9996TlSxJ2kZbGxo6Yjv6HgOWDiwvAa6aqHFVfTXJvkkWVdXPh7atAFYALF++3OEjSZpBWwuCX1bVjUnuPY2+VwP7JdkHuBI4BnjuYIMkDwJ+0p4sPgDYEbhuGq8lSZqmrQXBh2iOCtbSDOsMDvcU8MCJnlhVm5KcAJxPc/nomVV1SZLj2+2n0VyS+oIkt9PcqfzsqvIvfkmaRZMGQVUd0X7fZzqdV9UqYNXQutMGHr8DeMd0+pYkzYytnSw+YLLtVXXhzJYjSZptWxsaeuck2wp44gzWIkmaA1sbGvrT2SpEkjQ3pvoJZTsleWOSFe3yfkm259JSSdLviKneWXwWcBvwR+3yGPC2TiqSJM2qqQbBvlX198DtAFV1K6PvHJYk3cVMNQhuS3JP2ikikuzLFGchlST9bpvq7KNvBj4HLE3yQeBg/IQySZoXphoEa4E/Bx5LMyR0InCvroqSJM2eqQ4NfRq4varOq6rPAIvbdZKku7ipBsHbgU8n2TnJo4GPAc/rrixJ0myZ6ofXn5dkB+ALNENCR1XVjzutTJI0K7Y219B72PzDZHYF1gOvTkJVvabL4iRJ3dvaEcGaoeW1XRUiSZobW5tr6OzZKkSSNDe2NjT00ao6euCzizezlc8sliTdBWxtaOjE9rsTzEnSPLW1oaGr2+9XzE45kqTZtrWhoZsYMSREc3dxVdWunVQlSZo1WzsicBoJSZrnpnpnsSRpnjIIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeq5ToMgyaFJLkuyLslJI7Yfm+S77dc3kjyiy3okSVvqLAiSLABOBQ4D9geek2T/oWY/BZ7QTl73VmBFV/VIkkbr8ojgIGBdVa2vqtuAc4AjBxtU1Teq6pft4jeBJR3WI0kaocsg2AvYMLA81q6byEuBz47akOS4JGuSrNm4ceMMlihJ6jIIMmLdqAnsSPKnNEHw+lHbq2pFVS2vquWLFy+ewRIlSVP68PppGgOWDiwvAa4abpTk4cDpwGFVdV2H9UiSRujyiGA1sF+SfZLsCBwDrBxskGRv4Fzg+VX1ow5rkSRNoLMjgqralOQE4HxgAXBmVV2S5Ph2+2nA3wD3Ad6bBGBTVS3vqiZJ0pa6HBqiqlYBq4bWnTbw+GXAy7qsQZI0Oe8slqSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ4zCCSp5wwCSeo5g0CSes4gkKSeMwgkqecMAknqOYNAknrOIJCknjMIJKnnDAJJ6jmDQJJ6ziCQpJ5bONcFzKZlJ5031yVonpsv/8YuP+Vpc12CZpFHBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HOdBkGSQ5NclmRdkpNGbH9Ikv+X5NdJ/rLLWiRJo3V2+WiSBcCpwJOBMWB1kpVVdelAs18ArwGO6qoOSdLkujwiOAhYV1Xrq+o24BzgyMEGVXVtVa0Gbu+wDknSJLoMgr2ADQPLY+26bZbkuCRrkqzZuHHjjBQnSWp0GQQZsa6m01FVraiq5VW1fPHixdtZliRpUJdBMAYsHVheAlzV4etJkqahyyBYDeyXZJ8kOwLHACs7fD1J0jR0dtVQVW1KcgJwPrAAOLOqLklyfLv9tCR7AmuAXYHfJHktsH9V3dhVXZKkzXU6+2hVrQJWDa07beDxNTRDRpKkOeKdxZLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPWcQSFLPGQSS1HMGgST1nEEgST1nEEhSzxkEktRzBoEk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSBJPddpECQ5NMllSdYlOWnE9iT5p3b7d5Mc0GU9kqQtdRYESRYApwKHAfsDz0my/1Czw4D92q/jgH/pqh5J0mhdHhEcBKyrqvVVdRtwDnDkUJsjgfdX45vA7knu12FNkqQhCzvsey9gw8DyGPCYKbTZC7h6sFGS42iOGABuTnLZNGtaBPx8ms+9q3Kf+2FG9znvmKmeOuXPeds8YKINXQZBRqyrabShqlYAK7a7oGRNVS3f3n7uStznfnCf+6Grfe5yaGgMWDqwvAS4ahptJEkd6jIIVgP7JdknyY7AMcDKoTYrgRe0Vw89Frihqq4e7kiS1J3OhoaqalOSE4DzgQXAmVV1SZLj2+2nAauAw4F1wK+AF3dVT2u7h5fugtznfnCf+6GTfU7VFkPykqQe8c5iSeo5g0CSeq4XQZDkzCTXJvn+XNcyW5IsTfJ/k/wgySVJTpzrmrqW5B5Jvp3k4naf3zLXNc2GJAuSfCfJZ+a6ltmS5PIk30tyUZI1c11P15LsnuRjSX7Y/p9+3Iz234dzBEkeD9xMcxfzH8x1PbOhvUP7flV1YZJ7AWuBo6rq0jkurTNJAuxcVTcn2QH4OnBie9f6vJXkvwHLgV2r6oi5rmc2JLkcWF5VvbihLMnZwNeq6vT2Ksydqur6meq/F0cEVfVV4BdzXcdsqqqrq+rC9vFNwA9o7tqet9qpSm5uF3dov+b1XzpJlgBPA06f61rUjSS7Ao8HzgCoqttmMgSgJ0HQd0mWAY8CvjW3lXSvHSa5CLgW+EJVzfd9fjfwOuA3c13ILCvg80nWtlPQzGcPBDYCZ7VDgKcn2XkmX8AgmOeS7AJ8HHhtVd041/V0raruqKpH0tylflCSeTsUmOQI4NqqWjvXtcyBg6vqAJoZjF/VDv/OVwuBA4B/qapHAbcAW0zrvz0MgnmsHSf/OPDBqjp3ruuZTe2h85eBQ+e4lC4dDPyXdrz8HOCJST4wtyXNjqq6qv1+LfAJmtmO56sxYGzg6PZjNMEwYwyCeao9cXoG8IOqetdc1zMbkixOsnv7+J7Ak4Afzm1V3amqv66qJVW1jGYKlwuq6nlzXFbnkuzcXgBBO0TyFGDeXhFYVdcAG5L8frvqz4AZveijy9lHf2ck+TBwCLAoyRjw5qo6Y26r6tzBwPOB77Vj5gBvqKpVc1hT1+4HnN1+KNLdgI9WVW8uqeyR3wM+0fytw0LgQ1X1ubktqXOvBj7YXjG0nhmejqcXl49Kkibm0JAk9ZxBIEk9ZxBIUs8ZBJLUcwaBJPWcQSDNgna2zEVzXYc0ikEgTVOSXtyHo/nPf8jSBJK8CTgW2AD8nGYq7yOAb9DcsLcyyY+ANwI7AtcBx1bVfyS5D/BhYDHwbSAD/T4PeE37nG8Br6yqO2Zrv6RhHhFIIyRZDjyTZtbWP6eZ73/c7lX1hKp6J81nHjy2nQzsHJqZQAHeDHy9Xb8S2Lvt96HAs2kmTXskcAdN2EhzxiMCabQ/Bj5VVbcCJPn0wLaPDDxeAnyk/SCgHYGftusfTxMgVNV5SX7Zrv8z4NHA6naKhHvSTJktzRmDQBotk2y7ZeDxe4B3VdXKJIcAJw9sGzV/S4Czq+qvt7tCaYY4NCSN9nXg6e3nIO9C8ylgo+wGXNk+fuHA+q/SDvkkOQzYo13/JeBZSe7bbrt3kgfMdPHStjAIpBGqajXN2P7FwLnAGuCGEU1PBv4tyddoTiiPewvw+CQX0kyT/LO230tpTi5/Psl3gS/QzJoqzRlnH5UmkGSXqro5yU40f+EfN/450NJ84jkCaWIrkuwP3INmXN8Q0LzkEYEk9ZznCCSp5wwCSeo5g0CSes4gkKSeMwgkqef+P0PyhRwKOpDCAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "student_count = 60\n", + "grades = random.normal(loc=2.5, scale=0.8, size=student_count)\n", + "\n", + "fig1, ax1 = plt.subplots()\n", + "ax1.set_title('Probability distribution grades')\n", + "ax1.set_xlabel(\"grade\");\n", + "ax1.set_ylabel(\"likelihood\");\n", + "ax1.hist(grades, range=(1,6), bins=6, density=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdXklEQVR4nO3de5QdZZ3u8e9DMCIBBEkrmkSDkhHREc0JFxceEEeRgBocHQQRR1AjCl6Wx9HoeMGB44EzjkudhWZyEMULBkbBiRIFvAGOo6YjCAZFY4ymjZjmJkQdIfCcP+ptrexUp3d3unonneez1l676r3U/tXupH9db1W9JdtERER02qXXAURExPYpCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEjBtJlnTAGPuulfScYer+p6Rbm9pKeqekC8cW8YgxzS77tGtZ/4qkvx+nbQ+7T+O0/VWSnjVe25sokl4p6du9jiMqu/Y6gOgtSWuBRwEPAL8HlgNvsL2xl3HV2b4eeOIwde8fWpY0G/gF8BDbm1qIY3437SQZmGN79Va2New+jZakTwIDtt9V2/6Tx2PbsXPLEUQAvMD2HsBc4BDgXZ0Nhv6Kjm23s3yXO8t+TmZJEPFntn8NfAV4Cvx5yOhMST8DflbKXiNptaQ7JS2T9JiOzRwnaY2k2yX9s6RdSr8nSPqGpDtK3Wcl7d3R9xBJt0i6S9InJO1W+j5L0kBTzJLOlvSZsnpdeb9b0kZJR5U4/7rW/pGS/iipr2FbUyR9oMS3Bji+o/5bkl5dlg+QdK2k35X2l5byoRh+WGJ46VD8kt4u6TbgE8Ps03D7v8Wwy9BwnqSFwCnA28rnfanU14fhHirpQ5LWl9eHJD20/t1K+l+SNkj6jaTTmr7r0n5/SddJulfS1yRdMPT914bkXiXpV8A3Svm/S7qtfFfXSXpybXv7ln9H90j6PvCEjs87UNI15ed4q6QTa3XHle/rXkm/lvTW4eKOsUmCiD+TNAs4DrihVnwCcBhwkKRnA/8HOBF4NPBLYGnHZl4EzKM6GlkAnD60+dL3McCTgFnA2R19TwGeR/VL4q9oOJIZwZHlfW/be9i+tsT38lqbk4Gv2R5s6P8a4PnA08s+vGQrn3UOcDWwDzAT+FcA20MxHFxiuLSs7wc8AngcsHCYbY56/20vAT4L/N/yeS9oaPaPwOHA04CDgUM7tr0f8HBgBvAq4AJJ+wzzkZcA3wf2pfr5ndrQ5iiqn/HzyvpXgDnAI4EflHiHXAD8N9W/p9P5y78XJE0Drimf+Uiqn91Hawnm48Brbe9J9UfNN4aJOcbKdl478QtYC2wE7qb6hf9R4GGlzsCza20/TvWLaGh9D+B+YHat/bG1+tcDXx/mc08AbuiI44za+nHAz8vys6jG2Ottn1OWzwY+U5Znlxh2rbU9DFgH7FLW+4ETh4npGx0xHFPfHvAt4NVl+VPAEmBmw3YMHFBbfxZwH7BbR1nnPg23/68Evj3cZwCfBM5t+LkOfUc/B46r1T0PWFuL448d39kG4PCG/XossAnYvVb2mYbv//Fb+fe2d2nzcGBK+fdzYK3+/UP7CrwUuL6j/78B7y3LvwJeC+zV6/9Hk/WVI4gAOMH23rYfZ/v1tv9Yq1tXW34MVRIBwNWJ7Duo/vJsav/L0mdoaGdpGQq4h+oXy/SOOBr7bgvb36M6+X6UpAOBA4BlwzR/TEMMw3kb1VHR91VdMXT6VtoCDNr+7xHajPv+F5v93Bq2fYc3P6n/B6rk37SdO23/oVa2rqHdn8vKsN15kn5efu5rS9V0oI/qQpnhvvPHAYdJunvoRXWUtV+pfzFVIv1lGe57RkMssQ2SIGIk9el+11P9pwX+PASwL/DrWptZteXHlj5QDS8ZeKrtvaiGfdTxWcP1HUusdReXzzsV+PxWflH/piGG5g+yb7P9GtuPofor9qPa+iW+3UybPNz+/x7YfahC0n5sbqRtb/ZzY2zfLVTfzyMk7V4rm9XQrh7Py6iGGp9DddQwu5QLGKQ6IhnuO18HXFv+eBl67WH7dQC2V9heQDX89EXgsjHsU2xFEkSMxiXAaZKeVk5yvh/4nu21tTb/IGmfcj7jTcDQGPyelKEsSTOAf2jY/pmSZkp6BPDOWt9uDQIPAo/vKP801bmRl1MNDQ3nMuCNJYZ9gEXDNZT0d5JmltW7qH4pPlDWf9sQQzeG2/8fAk8u3/tubHnuZqTP+xzwLkl9kqYD76E6ghsV27+kGqI7W9LU8hd70zmPuj2BP1Edae5O9W9maHsPAJeX7e0u6SCgfp/Jl4G/knSqpIeU1yGSnlQ+/xRJD7d9P3APf/n+Y5wkQUTXbH8deDfwBaq/Jp8AnNTR7D+AlcCNwJVU5y0A3kd14vp3pfzyho+4hOrE75ryOneU8f0B+N/Af5YhicNL+QDVyVED129lE/8PuIrqF/IPholxyCHA9yRtpBqyepPtX5S6s4GLSwwnDreBBo37b/unwD8BX6O6mqzzRrKPU11EcLekLzZs91yqX+w3ATeXfRvVd1tzCvAMql/451IlsT9tpf2nqIaNfg3cAny3o/4squGs26jOpXxiqML2vVTngU6iOuK5DTgfeGhpciqwtgxdncHmFyPEOFA52RMxqUm6CFjv2s1kse1UXd77E9vv7XUsMf6SIGLSU3WH9Y3A02t/5ccYSDoEuJPqjvVjqMb+n2H7hq12jB1ShphiUpN0DvAj4J+THMbFflSX+24EPgK8Lslh8soRRERENMoRRERENJpUk2lNnz7ds2fP7nUYERE7jJUrV95ue4u5yWCSJYjZs2fT39/f6zAiInYYkoadMSBDTBER0SgJIiIiGrWaICQdW+ZwXy1pa9MWHCLpAUkvGW3fiIhoR2sJQtIUqrne5wMHASeXuVaa2p1PNcXBqPpGRER72jyCOBRYbXuN7fuoHtyyoKHdG6jm9tkwhr4REdGSNhPEDDaf532AzZ8bQJnV80XA4tH2rW1joaR+Sf2Dg00PCYuIiLFoM0F0zvUPW85b/yHg7WXa39H2rQrtJbbn2Z7X19d4KW9ERIxBm/dBDLD5g0BmsuVDSuYBSyVB9YSp4yRt6rJvRES0qM0EsQKYI2l/qrngT6J6utSf2d5/aFnSJ4Ev2/6ipF1H6hsREe1qLUHY3iTpLKqrk6YAF9leJemMUt953mHEvm3FGtun2Yuu7HUI42btecf3OoSIUWt1qg3by4HlHWWNicH2K0fqGxEREyd3UkdERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKNWE4SkYyXdKmm1pEUN9Qsk3STpRkn9kp5Zq1sr6eahujbjjIiILbX2yFFJU4ALgOcCA8AKScts31Jr9nVgmW1LeipwGXBgrf5o27e3FWNERAyvzSOIQ4HVttfYvg9YCiyoN7C90bbL6jTARETEdqHNBDEDWFdbHyhlm5H0Ikk/Aa4ETq9VGbha0kpJC4f7EEkLy/BU/+Dg4DiFHhERbSYINZRtcYRg+wrbBwInAOfUqo6wPReYD5wp6cimD7G9xPY82/P6+vrGI+6IiKDdBDEAzKqtzwTWD9fY9nXAEyRNL+vry/sG4AqqIauIiJggbSaIFcAcSftLmgqcBCyrN5B0gCSV5bnAVOAOSdMk7VnKpwHHAD9qMdaIiOjQ2lVMtjdJOgu4CpgCXGR7laQzSv1i4MXAKyTdD/wReGm5oulRwBUld+wKXGL7q23FGhERW2otQQDYXg4s7yhbXFs+Hzi/od8a4OA2Y4uIiK3LndQREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGrT4wKHpj9qIrex1CREwCrR5BSDpW0q2SVkta1FC/QNJNkm6U1C/pmd32jYiIdrWWICRNAS4A5gMHASdLOqij2deBg20/DTgduHAUfSMiokVtHkEcCqy2vcb2fcBSYEG9ge2Ntl1WpwHutm9ERLSrzQQxA1hXWx8oZZuR9CJJPwGupDqK6LpvRES0p80EoYYyb1FgX2H7QOAE4JzR9AWQtLCcv+gfHBwcc7AREbG5NhPEADCrtj4TWD9cY9vXAU+QNH00fW0vsT3P9ry+vr5tjzoiIoB2E8QKYI6k/SVNBU4CltUbSDpAksryXGAqcEc3fSMiol2t3Qdhe5Oks4CrgCnARbZXSTqj1C8GXgy8QtL9wB+Bl5aT1o1924o1IiK21OqNcraXA8s7yhbXls8Hzu+2b0RETJxMtREREY2SICIiolESRERENEqCiIiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBEREY2SICIiolGeSR0xASbTc8LXnnd8r0OICZIjiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIhq1miAkHSvpVkmrJS1qqD9F0k3l9R1JB9fq1kq6WdKNkvrbjDMiIrbU2o1ykqYAFwDPBQaAFZKW2b6l1uwXwFG275I0H1gCHFarP9r27W3FGBERw+vqCELSFyQdL2k0RxyHAqttr7F9H7AUWFBvYPs7tu8qq98FZo5i+xER0aJuf+F/DHgZ8DNJ50k6sIs+M4B1tfWBUjacVwFfqa0buFrSSkkLh+skaaGkfkn9g4ODXYQVERHd6CpB2P6a7VOAucBa4JpyzuA0SQ8ZppuaNtXYUDqaKkG8vVZ8hO25wHzgTElHDhPbEtvzbM/r6+vrZnciIqILXQ8ZSdoXeCXwauAG4MNUCeOaYboMALNq6zOB9Q3bfSpwIbDA9h1D5bbXl/cNwBVUQ1YRETFBuj0HcTlwPbA78ALbL7R9qe03AHsM020FMEfS/pKmAicByzq2+1jgcuBU2z+tlU+TtOfQMnAM8KPR7VpERGyLbq9iutD28nqBpIfa/pPteU0dbG+SdBZwFTAFuMj2KklnlPrFwHuAfYGPSgLYVLb3KOCKUrYrcIntr45+9yIiYqy6TRDnAss7yv6LaohpWCWpLO8oW1xbfjXVkFVnvzXAwZ3lERExcbaaICTtR3Xl0cMkPZ2/nHjei2q4KSIiJqmRjiCeR3VieibwwVr5vcA7W4opIiK2A1tNELYvBi6W9GLbX5igmCIiYjsw0hDTy21/Bpgt6S2d9bY/2NAtIiImgZGGmKaV9+EuZY2IiElqpCGmfyvv75uYcCIiYnsx0hDTR7ZWb/uN4xtORERsL0YaYlo5IVFERMR2p5urmCIiYic00hDTh2y/WdKXaJiJ1fYLW4ssIiJ6aqQhpk+X9w+0HUhERGxfRhpiWlnery0zsh5IdSRxa3lKXERETFJdTdYn6XhgMfBzqvmY9pf0Wttf2XrPiIjYUXU7m+u/AEfbXg0g6QnAlWz+iNCIiJhEun2i3Iah5FCsATa0EE9ERGwnRrqK6W/L4ipJy4HLqM5B/B3VE+MiImKSGmmI6QW15d8CR5XlQWCfViKKiIjtwkhXMZ22LRuXdCzwYapHjl5o+7yO+lOAt5fVjcDrbP+wm74REdGubq9i2g14FfBkYLehctunb6XPFOAC4LnAALBC0jLbt9Sa/QI4yvZdkuYDS4DDuuwbEREt6vYk9aeB/aieMHct1RPm7h2hz6HAattryj0TS4EF9Qa2v2P7rrL63bLdrvpGRES7uk0QB9h+N/D7Mj/T8cBfj9BnBrCutj5QyobzKv5y2WzXfSUtlNQvqX9wcHCEkCIiolvdJoj7y/vdkp4CPByYPUIfNZRtMZ8TgKSjqRLE0PmIrvvaXmJ7nu15fX19I4QUERHd6vZGuSWS9gHeDSyjesLcu0foMwDMqq3PBNZ3NpL0VOBCYL7tO0bTNyIi2tNVgrB9YVm8Fnh8l9teAcyRtD/wa+Ak4GX1BpIeC1wOnGr7p6PpGxER7er2KqZ9gbOBI6iGeq4Hzqn9xb8F25sknQVcRXWp6kW2V0k6o9QvBt4D7At8VBLApjJc1Nh3jPsYERFj0O0Q01LgOuDFZf0U4FLgOVvrZHs5sLyjbHFt+dXAq7vtGxERE6fbBPEI2+fU1s+VdEIbAUVExPah26uYvinpJEm7lNeJVLO5RkTEJDXSZH33Up1zEPAW4DOlaheqqTHe22p0ERHRMyPNxbTnRAUSERHbl27PQSDphcCRZfVbtr/cTkgREbE96OochKTzgDcBt5TXm0pZRERMUt0eQRwHPM32gwCSLgZuABa1FVhERPRWt1cxAexdW374eAcSERHbl26PIN4P3CDpm1RXNB0JvKO1qCIioudGTBCSdgEeBA4HDqFKEG+3fVvLsUVERA+NmCBsPyjpLNuXUc3kGhERO4Fuz0FcI+mtkmZJesTQq9XIIiKip7o9B3E61R3Vr+8o73bq74iI2MF0myAOokoOz+Qv030v3mqPiIjYoXWbIC4G7gE+UtZPLmUnthFURET0XrcJ4om2D66tf1PSD9sIKCIitg/dnqS+QdLhQyuSDgP+s52QIiJie9DtEcRhwCsk/aqsPxb4saSbAdt+aivRRUREz3SbII4dy8YlHQt8mOq50hfaPq+j/kDgE8Bc4B9tf6BWtxa4F3iA8qzqscQQERFj01WCsP3L0W5Y0hTgAuC5wACwQtIy27fUmt0JvBEY7vGlR9u+fbSfHRER2240k/WN1qHAattrbN8HLAUW1BvY3mB7BXB/i3FERMQYtJkgZgDrausDpaxbBq6WtFLSwuEaSVooqV9S/+Dg4BhDjYiITm0mCDWUeRT9j7A9F5gPnCnpyKZGtpfYnmd7Xl9f31jijIiIBm0miAFgVm19JrC+286215f3DcAVVENWERExQdpMECuAOZL2lzQVOIkuZ4OVNE3SnkPLwDHAj1qLNCIittDtZa6jZnuTpLOAq6guc73I9ipJZ5T6xZL2A/qBvYAHJb2Zat6n6cAVkoZivMT2V9uKNSIittRaggCwvRxY3lG2uLZ8G9XQU6d7gIMbyiMiYoK0OcQUERE7sCSIiIholAQRERGNkiAiIqJREkRERDRKgoiIiEatXua6I5m96MpehxARsV3JEURERDRKgoiIiEZJEBER0SgJIiIiGiVBREREoySIiIholAQRERGNkiAiIqJREkRERDRKgoiIiEatJghJx0q6VdJqSYsa6g+U9F+S/iTpraPpGxER7WotQUiaAlwAzKd6zvTJkg7qaHYn8EbgA2PoGxERLWrzCOJQYLXtNbbvA5YCC+oNbG+wvQK4f7R9IyKiXW0miBnAutr6QCkb176SFkrql9Q/ODg4pkAjImJLbSYINZR5vPvaXmJ7nu15fX19XQcXERFb12aCGABm1dZnAusnoG9ERIyDNhPECmCOpP0lTQVOApZNQN+IiBgHrT1RzvYmSWcBVwFTgItsr5J0RqlfLGk/oB/YC3hQ0puBg2zf09S3rVgjImJLrT5y1PZyYHlH2eLa8m1Uw0dd9Y2IiImTO6kjIqJREkRERDRqdYgpIiaf2Yuu7HUI42Ltecf3OoTtXo4gIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKMkiIiIaJQEERERjZIgIiKiURJEREQ0SoKIiIhGSRAREdEoCSIiIholQURERKNWE4SkYyXdKmm1pEUN9ZL0kVJ/k6S5tbq1km6WdKOk/jbjjIiILbX2PAhJU4ALgOcCA8AKScts31JrNh+YU16HAR8r70OOtn17WzFGRMTw2jyCOBRYbXuN7fuApcCCjjYLgE+58l1gb0mPbjGmiIjoUpsJYgawrrY+UMq6bWPgakkrJS0c7kMkLZTUL6l/cHBwHMKOiAhoN0GoocyjaHOE7blUw1BnSjqy6UNsL7E9z/a8vr6+sUcbERGbaTNBDACzauszgfXdtrE99L4BuIJqyCoiIiZImwliBTBH0v6SpgInAcs62iwDXlGuZjoc+J3t30iaJmlPAEnTgGOAH7UYa0REdGjtKibbmySdBVwFTAEusr1K0hmlfjGwHDgOWA38ATitdH8UcIWkoRgvsf3VtmKNiIgttZYgAGwvp0oC9bLFtWUDZzb0WwMc3GZsERGxdbmTOiIiGiVBREREoySIiIholAQRERGNkiAiIqJREkRERDRKgoiIiEZJEBER0SgJIiIiGiVBREREoySIiIholAQRERGNWp2sLyJiezV70ZW9DmHcrD3v+Fa2myOIiIholAQRERGNkiAiIqJREkRERDRKgoiIiEatJghJx0q6VdJqSYsa6iXpI6X+Jklzu+0bERHtai1BSJoCXADMBw4CTpZ0UEez+cCc8loIfGwUfSMiokVtHkEcCqy2vcb2fcBSYEFHmwXAp1z5LrC3pEd32TciIlrU5o1yM4B1tfUB4LAu2szosi8AkhZSHX0AbJR06xjjnQ7cPsa+O6rs8+S3s+0v7IT7rPO3aZ8fN1xFmwlCDWXusk03fatCewmwZHShbUlSv+1527qdHUn2efLb2fYXss/jqc0EMQDMqq3PBNZ32WZqF30jIqJFbZ6DWAHMkbS/pKnAScCyjjbLgFeUq5kOB35n+zdd9o2IiBa1dgRhe5Oks4CrgCnARbZXSTqj1C8GlgPHAauBPwCnba1vW7EW2zxMtQPKPk9+O9v+QvZ53MhuHNqPiIidXO6kjoiIRkkQERHRaKdPEJIukrRB0o96HctEkDRL0jcl/VjSKklv6nVMbZO0m6TvS/ph2ef39TqmiSJpiqQbJH2517FMBElrJd0s6UZJ/b2OZyJI2lvS5yX9pPy/fsa4bXtnPwch6UhgI9Ud3U/pdTxtK3eqP9r2DyTtCawETrB9S49Da40kAdNsb5T0EODbwJvK3fuTmqS3APOAvWw/v9fxtE3SWmCe7Z3mRjlJFwPX276wXPW5u+27x2PbO/0RhO3rgDt7HcdEsf0b2z8oy/cCP6a6c33SKlO5bCyrDymvSf+XkaSZwPHAhb2OJdohaS/gSODjALbvG6/kAEkQOzVJs4GnA9/rbSTtK0MtNwIbgGtsT/p9Bj4EvA14sNeBTCADV0taWabhmeweDwwCnyhDiRdKmjZeG0+C2ElJ2gP4AvBm2/f0Op622X7A9tOo7so/VNKkHk6U9Hxgg+2VvY5lgh1hey7VTNBnliHkyWxXYC7wMdtPB34PjNvjEZIgdkJlHP4LwGdtX97reCZSOfz+FnBsj0Np2xHAC8uY/FLg2ZI+09uQ2md7fXnfAFxBNTP0ZDYADNSOiD9PlTDGRRLETqacsP048GPbH+x1PBNBUp+kvcvyw4DnAD/pbVTtsv0O2zNtz6aaquYbtl/e47BaJWlaufCCMsxyDDCpr060fRuwTtITS9HfAON2wUmbk/XtECR9DngWMF3SAPBe2x/vbVStOgI4Fbi5jMkDvNP28h7G1LZHAxeXB1HtAlxme6e47HMn8yjgiupvIHYFLrH91d6GNCHeAHy2XMG0hjJl0XjY6S9zjYiIZhliioiIRkkQERHRKAkiIiIaJUFERESjJIiIiGiUBBHRQ2X20em9jiOiSRJExDiTtNPfXxSTQ/4hR4ySpHcDpwDrgNuppkx/PvAdqhsRl0n6KfAuYCpwB3CK7d9K2hf4HNAHfB9QbbsvB95Y+nwPeL3tByZqvyI65QgiYhQkzQNeTDUL7t9SPWthyN62j7L9L1TPnDi8TKC2lGpWVYD3At8u5cuAx5btPgl4KdVkc08DHqBKQhE9kyOIiNF5JvAftv8IIOlLtbpLa8szgUvLA5qmAr8o5UdSJRZsXynprlL+N8D/AFaUqSIeRjU1eUTPJEFEjI62Uvf72vK/Ah+0vUzSs4Cza3VN89sIuNj2O7Y5wohxkiGmiNH5NvCC8pzrPaie2Nbk4cCvy/Lf18qvowwdSZoP7FPKvw68RNIjS90jJD1uvIOPGI0kiIhRsL2C6tzBD4HLgX7gdw1Nzwb+XdL1VCeyh7wPOFLSD6imo/5V2e4tVCe1r5Z0E3AN1Sy0ET2T2VwjRknSHrY3Stqd6ohg4dBzviMmk5yDiBi9JZIOAnajOm+Q5BCTUo4gIiKiUc5BREREoySIiIholAQRERGNkiAiIqJREkRERDT6/z3ppz2Uckp2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "student_count = 10000\n", + "grades = random.normal(loc=3, scale=1, size=student_count)\n", + "\n", + "fig1, ax1 = plt.subplots()\n", + "ax1.set_title('Probability distribution grades')\n", + "ax1.set_xlabel(\"grade\");\n", + "ax1.set_ylabel(\"probability\");\n", + "ax1.hist(grades, range=(1,6), bins=6, density=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/11_Hypothesis_testing/docstrings_example.py b/11_Hypothesis_testing/docstrings_example.py new file mode 100644 index 0000000000000000000000000000000000000000..d94f7368bf2281c5210f33562862d4be7ebe0dce --- /dev/null +++ b/11_Hypothesis_testing/docstrings_example.py @@ -0,0 +1,67 @@ +from skimage.io import imread +from skimage import filters +from skimage import measure + + +def analyse_image(filename, gaussian_blur_sigma, threshold=None): + """ + This function analyses an image by blurring it and applying a threshold. + + Parameters + ---------- + filename + Image file to open and analyse + + gaussian_blur_sigma + Sigma of a Gaussian blur filter kernel to be + applied to the image before thresholding + + threshold + Optional, the grey-value threshold to + differentiate foreground and background + + Returns + ------- + count + Number of objects in the image + + """ + + # load image + image = imread(filename); + + # Gaussian blur + gaussian_blurred_image = filters.gaussian(image, 5) + + # thresholding + if threshold is None: + threshold = filters.threshold_otsu(gaussian_blurred_image) + thresholded_image = gaussian_blurred_image >= threshold + + # run connected components analysis + label_image = measure.label(thresholded_image) + + # analyse objects + table = measure.regionprops_table(label_image) + + return len(table["label"]) + + +analyse_image("blobs.tif", 2) + + + + + + + + + + + + + + + + + diff --git a/11_Hypothesis_testing/math_library.py b/11_Hypothesis_testing/math_library.py new file mode 100644 index 0000000000000000000000000000000000000000..11de9ba3eec6d8a373e6f41ec6cc1e47b3befd00 --- /dev/null +++ b/11_Hypothesis_testing/math_library.py @@ -0,0 +1,5 @@ +def add(a, b): + return a + b; + +def subtract(a, b): + return a - b; \ No newline at end of file diff --git a/11_Hypothesis_testing/my_statistics_functions.py b/11_Hypothesis_testing/my_statistics_functions.py new file mode 100644 index 0000000000000000000000000000000000000000..7049eabd39c3a7c5b3bc514eb4dc7d8943b5aa50 --- /dev/null +++ b/11_Hypothesis_testing/my_statistics_functions.py @@ -0,0 +1,16 @@ +import matplotlib.pyplot as plt + +def draw_curation_time_histogram(data, description): + fig, ax = plt.subplots() + ax.hist(data, bins=10) + ax.set_title('Curation time of ' + str(len(data)) + ' ' + description) + ax.set_ylabel("count") + ax.set_xlabel("Curation time / days") + plt.show() + + +test_data = [1,1, 3,3, 5,6,7, 9,9] + +draw_curation_time_histogram(test_data, "examples") + + diff --git a/11_Hypothesis_testing/patients.py b/11_Hypothesis_testing/patients.py new file mode 100644 index 0000000000000000000000000000000000000000..18a8c5815cbef6f0d32b4da1c95dfca3981dd5d7 --- /dev/null +++ b/11_Hypothesis_testing/patients.py @@ -0,0 +1,12 @@ + +from numpy import random + +def placebo_group(number_of_patients): + # generate random numbers following a normal distribution + x = random.normal(loc=7, scale=2, size=number_of_patients) + return x + +def treatment_group(number_of_patients): + # generate random numbers following a normal distribution + x = random.normal(loc=7, scale=2, size=number_of_patients) + return x diff --git a/11_Hypothesis_testing/tomatoes.py b/11_Hypothesis_testing/tomatoes.py new file mode 100644 index 0000000000000000000000000000000000000000..e9768fddbf17ea5949ea525aa3760afe9ef96aaf --- /dev/null +++ b/11_Hypothesis_testing/tomatoes.py @@ -0,0 +1,7 @@ + +from numpy import random + +def ripen(number_of_tomatoes): + # generate random numbers following a normal distribution + x = random.normal(loc=24.5, scale=2, size=number_of_tomatoes) + return x \ No newline at end of file