diff --git a/09_Scientific_Data_Analysis_Python/exercises/box_plot.py b/09_Scientific_Data_Analysis_Python/exercises/box_plot.py new file mode 100644 index 0000000000000000000000000000000000000000..eefd0c784f8105ddbe45b1892bb7c8f2744c4b75 --- /dev/null +++ b/09_Scientific_Data_Analysis_Python/exercises/box_plot.py @@ -0,0 +1,14 @@ +import matplotlib.pyplot as plt + +# data +mutant = [1, 3, 2, 1, 5, 7, 3, 5] +control = [6, 7, 1, 8, 3, 7, 8, 6] + +# draw a box plot +data = [mutant, control] + +fig1, ax1 = plt.subplots() +ax1.set_title('Basic Plot') +ax1.boxplot(data) + +plt.show() \ No newline at end of file diff --git a/09_Scientific_Data_Analysis_Python/exercises/stats_for_loop.py b/09_Scientific_Data_Analysis_Python/exercises/stats_for_loop.py new file mode 100644 index 0000000000000000000000000000000000000000..fd176e1d59f392319b73c0d2d3df276ab8d1e718 --- /dev/null +++ b/09_Scientific_Data_Analysis_Python/exercises/stats_for_loop.py @@ -0,0 +1,23 @@ +measurements = [1, 7, 3, 4, 0, 5, 4, 2, 8, 7] + +# determine sum of all measurements +sum = 0 + +for number in measurements: + sum = sum + number + +# determine mean of all measurements +number_of_measurements = len(measurements) +mean = sum / number_of_measurements + +print("Mean: " + str(mean)) + +# go through measurements again and calculate standard deviation +squared_sum = 0 +for number in measurements: + squared_sum += pow(number - mean, 2) / number_of_measurements + +from math import sqrt +standard_deviation = sqrt(squared_sum) + +print("Standard deviation: " + str(standard_deviation)) \ No newline at end of file diff --git a/09_Scientific_Data_Analysis_Python/exercises/stats_numpy.py b/09_Scientific_Data_Analysis_Python/exercises/stats_numpy.py new file mode 100644 index 0000000000000000000000000000000000000000..53db3ee62795821130f95d9c2824b4f9d775a98d --- /dev/null +++ b/09_Scientific_Data_Analysis_Python/exercises/stats_numpy.py @@ -0,0 +1,19 @@ +measurements = [1, 7, 3, 4, 0, 5, 4, 2, 8, 7] + +import numpy as np + + +minimum = np.min(measurements) +print("Mean: " + str(minimum)) + +maximum = np.max(measurements) +print("Mean: " + str(maximum)) + +mean = np.mean(measurements) +print("Median: " + str(mean)) + +median = np.median(measurements) +print("Mean: " + str(median)) + +standard_deviation = np.std(measurements) +print("Standard deviation: " + str(standard_deviation)) \ No newline at end of file