/* * eq_unit_test_3d.hpp * * Created on: Jan 4, 2016 * Author: i-bird */ #ifndef OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ #define OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ #include "Laplacian.hpp" #include "FiniteDifference/eq.hpp" #include "FiniteDifference/sum.hpp" #include "FiniteDifference/mul.hpp" #include "Grid/grid_dist_id.hpp" #include "data_type/scalar.hpp" #include "Decomposition/CartDecomposition.hpp" #include "Vector/Vector.hpp" #include "Solvers/umfpack_solver.hpp" #include "data_type/aggregate.hpp" BOOST_AUTO_TEST_SUITE( eq_test_suite_3d ) //! struct lid_nn_3d { // dimensionaly of the equation ( 3D problem ...) static const unsigned int dims = 3; // number of fields in the system static const unsigned int nvar = 4; // boundary at X and Y static const bool boundary[]; // type of space float, double, ... typedef float stype; // type of base grid typedef grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> b_grid; // type of SparseMatrix for the linear solver typedef SparseMatrix<double,int> SparseMatrix_type; // type of Vector for the linear solver typedef Vector<double> Vector_type; // Define the underline grid is staggered static const int grid_type = STAGGERED_GRID; }; const bool lid_nn_3d::boundary[] = {NON_PERIODIC,NON_PERIODIC,NON_PERIODIC}; // Constant Field struct eta { typedef void const_field; static float val() {return 1.0;} }; // Model the equations constexpr unsigned int v[] = {0,1,2}; constexpr unsigned int P = 3; constexpr unsigned int ic = 3; typedef Field<v[x],lid_nn_3d> v_x; typedef Field<v[y],lid_nn_3d> v_y; typedef Field<v[z],lid_nn_3d> v_z; typedef Field<P,lid_nn_3d> Prs; // Eq1 V_x typedef mul<eta,Lap<v_x,lid_nn_3d>,lid_nn_3d> eta_lap_vx; typedef D<x,Prs,lid_nn_3d> p_x; typedef minus<p_x,lid_nn_3d> m_p_x; typedef sum<eta_lap_vx,m_p_x,lid_nn_3d> vx_eq; // Eq2 V_y typedef mul<eta,Lap<v_y,lid_nn_3d>,lid_nn_3d> eta_lap_vy; typedef D<y,Prs,lid_nn_3d> p_y; typedef minus<p_y,lid_nn_3d> m_p_y; typedef sum<eta_lap_vy,m_p_y,lid_nn_3d> vy_eq; // Eq3 V_z typedef mul<eta,Lap<v_z,lid_nn_3d>,lid_nn_3d> eta_lap_vz; typedef D<z,Prs,lid_nn_3d> p_z; typedef minus<p_z,lid_nn_3d> m_p_z; typedef sum<eta_lap_vz,m_p_z,lid_nn_3d> vz_eq; // Eq4 Incompressibility typedef D<x,v_x,lid_nn_3d,FORWARD> dx_vx; typedef D<y,v_y,lid_nn_3d,FORWARD> dy_vy; typedef D<z,v_z,lid_nn_3d,FORWARD> dz_vz; typedef sum<dx_vx,dy_vy,dz_vz,lid_nn_3d> ic_eq; // Directional Avg typedef Avg<x,v_y,lid_nn_3d> avg_x_vy; typedef Avg<z,v_y,lid_nn_3d> avg_z_vy; typedef Avg<y,v_x,lid_nn_3d> avg_y_vx; typedef Avg<z,v_x,lid_nn_3d> avg_z_vx; typedef Avg<y,v_z,lid_nn_3d> avg_y_vz; typedef Avg<x,v_z,lid_nn_3d> avg_x_vz; // Directional Avg typedef Avg<x,v_y,lid_nn_3d,FORWARD> avg_x_vy_f; typedef Avg<z,v_y,lid_nn_3d,FORWARD> avg_z_vy_f; typedef Avg<y,v_x,lid_nn_3d,FORWARD> avg_y_vx_f; typedef Avg<z,v_x,lid_nn_3d,FORWARD> avg_z_vx_f; typedef Avg<y,v_z,lid_nn_3d,FORWARD> avg_y_vz_f; typedef Avg<x,v_z,lid_nn_3d,FORWARD> avg_x_vz_f; #define EQ_1 0 #define EQ_2 1 #define EQ_3 2 #define EQ_4 3 // Lid driven cavity, uncompressible fluid BOOST_AUTO_TEST_CASE(lid_driven_cavity) { // Domain Box<3,float> domain({0.0,0.0,0.0},{3.0,1.0,1.0}); // Ghost Ghost<3,float> g(0.01); long int sz[] = {32,16,16}; size_t szu[3]; szu[0] = (size_t)sz[0]; szu[1] = (size_t)sz[1]; szu[2] = (size_t)sz[2]; Padding<3> pd({1,1,1},{0,0,0}); // Initialize the global VCluster init_global_v_cluster(&boost::unit_test::framework::master_test_suite().argc,&boost::unit_test::framework::master_test_suite().argv); // velocity in the grid is the property 0, pressure is the property 1 constexpr int velocity = 0; constexpr int pressure = 1; // Initialize openfpm grid_dist_id<3,float,aggregate<float[3],float>,CartDecomposition<3,float>> g_dist(szu,domain,g); // Distributed grid FDScheme<lid_nn_3d> fd(pd,domain,g_dist.getGridInfo(),g_dist.getDecomposition()); // start and end of the bulk fd.impose(ic_eq(),0.0, EQ_4, {0,0,0},{sz[0]-2,sz[1]-2,sz[2]-2},true); fd.impose(Prs(), 0.0, EQ_4, {0,0,0},{0,0,0}); fd.impose(vx_eq(),0.0, EQ_1, {1,0},{sz[0]-2,sz[1]-2,sz[2]-2}); fd.impose(vy_eq(),0.0, EQ_2, {0,1},{sz[0]-2,sz[1]-2,sz[2]-2}); fd.impose(vz_eq(),0.0, EQ_3, {0,0,1},{sz[0]-2,sz[1]-2,sz[2]-2}); // v_x // R L fd.impose(v_x(),0.0, EQ_1, {0,0,0}, {0,sz[1]-2,sz[2]-2}); fd.impose(v_x(),0.0, EQ_1, {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-2}); // T B fd.impose(avg_y_vx_f(),0.0, EQ_1, {0,-1,0}, {sz[0]-1,-1,sz[2]-2}); fd.impose(avg_y_vx(),0.0, EQ_1, {0,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-2}); // A F fd.impose(avg_z_vx_f(),0.0, EQ_1, {0,-1,-1}, {sz[0]-1,sz[1]-1,-1}); fd.impose(avg_z_vx(),0.0, EQ_1, {0,-1,sz[2]-1},{sz[0]-1,sz[1]-1,sz[2]-1}); // v_y // R L fd.impose(avg_x_vy_f(),0.0, EQ_2, {-1,0,0}, {-1,sz[1]-1,sz[2]-2}); fd.impose(avg_x_vy(),1.0, EQ_2, {sz[0]-1,0,0},{sz[0]-1,sz[1]-1,sz[2]-2}); // T B fd.impose(v_y(), 0.0, EQ_2, {0,0,0}, {sz[0]-2,0,sz[2]-2}); fd.impose(v_y(), 0.0, EQ_2, {0,sz[1]-1,0},{sz[0]-2,sz[1]-1,sz[2]-2}); // F A fd.impose(avg_z_vy(),0.0, EQ_2, {-1,0,sz[2]-1}, {sz[0]-1,sz[1]-1,sz[2]-1}); fd.impose(avg_z_vy_f(),0.0, EQ_2, {-1,0,-1}, {sz[0]-1,sz[1]-1,-1}); // v_z // R L fd.impose(avg_x_vz_f(),0.0, EQ_3, {-1,0,0}, {-1,sz[1]-2,sz[2]-1}); fd.impose(avg_x_vz(),1.0, EQ_3, {sz[0]-1,0,0},{sz[0]-1,sz[1]-2,sz[2]-1}); // T B fd.impose(avg_y_vz(),0.0, EQ_3, {-1,sz[1]-1,0},{sz[0]-1,sz[1]-1,sz[2]-1}); fd.impose(avg_y_vz_f(),0.0, EQ_3, {-1,-1,0}, {sz[0]-1,-1,sz[2]-1}); // F A fd.impose(v_z(),0.0, EQ_3, {0,0,0}, {sz[0]-2,sz[1]-2,0}); fd.impose(v_z(),0.0, EQ_3, {0,0,sz[2]-1},{sz[0]-2,sz[1]-2,sz[2]-1}); // Padding pressure // L R fd.impose(Prs(), 0.0, EQ_4, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1}); fd.impose(Prs(), 0.0, EQ_4, {sz[0]-1,-1,-1},{sz[0]-1,sz[1]-1,sz[2]-1}); // T B fd.impose(Prs(), 0.0, EQ_4, {0,sz[1]-1,-1}, {sz[0]-2,sz[1]-1,sz[2]-1}); fd.impose(Prs(), 0.0, EQ_4, {0,-1 ,-1}, {sz[0]-2,-1, sz[2]-1}); // F A fd.impose(Prs(), 0.0, EQ_4, {0,0,sz[2]-1}, {sz[0]-2,sz[1]-2,sz[2]-1}); fd.impose(Prs(), 0.0, EQ_4, {0,0,-1}, {sz[0]-2,sz[1]-2,-1}); // Impose v_x v_y v_z padding fd.impose(v_x(), 0.0, EQ_1, {-1,-1,-1},{-1,sz[1]-1,sz[2]-1}); fd.impose(v_y(), 0.0, EQ_2, {-1,-1,-1},{sz[0]-1,-1,sz[2]-1}); fd.impose(v_z(), 0.0, EQ_3, {-1,-1,-1},{sz[0]-1,sz[1]-1,-1}); auto x = umfpack_solver<double>::solve(fd.getA(),fd.getB()); // Bring the solution to grid x.copy<FDScheme<lid_nn_3d>,decltype(g_dist),velocity,pressure>(fd,{0,0},{sz[0]-1,sz[1]-1,sz[2]-1},g_dist); g_dist.write("lid_driven_cavity_3d"); // Check that match bool test = compare("lid_driven_cavity_3d_grid_0.vtk","lid_driven_cavity_3d_grid_0_test.vtk"); BOOST_REQUIRE_EQUAL(test,true); } BOOST_AUTO_TEST_SUITE_END() #endif /* OPENFPM_NUMERICS_SRC_FINITEDIFFERENCE_EQ_UNIT_TEST_3D_HPP_ */