Newer
Older
rownames(filterByExpression(fpkmMat, ...))
}
filterByExpression <- function(fpkmMat, minFPKM=1, logMode=F){
if(logMode) fpkmMat<-log10(fpkmMat+1) ## add a pseudocount
geneMax <- apply(fpkmMat, 1, max)
guess_mart <- function(gene_id){
an_id <-gene_id[1]
if(str_detect(an_id, "ENSCAFG")){
return("cfamiliaris_gene_ensembl")
}else if(str_detect(an_id, "ENSMUSG")){
return("mmusculus_gene_ensembl")
}else if(str_detect(an_id, "ENSDARG")){
return("drerio_gene_ensembl")
}else if(str_detect(an_id, "ENSG")){
return("hsapiens_gene_ensembl")
}else{
stop(paste("could not guess mart from ", an_id))
}
}
#guess_mart("ENSCAFG00000000043")
retainExprGenes <- function(df, id_col="ensembl_gene_id", ...){
## allows to filter for expressed genes
exprGenes <- df %>% column2rownames(id_col) %>%
## see https://github.com/hadley/dplyr/issues/497
#iris %>% select(., which(sapply(., is.numeric))) %>% head
select(., which(sapply(., is.numeric))) %>%
filterByExpression(...) %>%
rownames()
# exprGenes %>% head %>% print
# df %>% filter_(id_col %in% exprGenes)
## see http://stackoverflow.com/questions/26492280/non-standard-evaluation-nse-in-dplyrs-filter-pulling-data-from-mysql
which_column <- get(id_col, df)
df %>% filter_(~ which_column %in% exprGenes)
}
getGeneInfo <- function(gene_ids){
martName <- guess_mart(gene_ids[1])
cacheFile <- paste0("geneInfo.",martName, ".RData")
if(!file.exists(cacheFile)){
require(biomaRt)
mousemart = useDataset(martName, mart=useMart("ensembl"))
geneInfo <- getBM(attributes=c('ensembl_gene_id', 'external_gene_name', 'description', 'gene_biotype'), mart=mousemart);
save(geneInfo, file=cacheFile)
unloadNamespace('biomaRt')
}else{
geneInfo <- local(get(load(cacheFile)))
}
return(geneInfo)
}
########################################################################################################################
### Hit list interscection utilities (see e.g Helin project for examples)
extractHits <- function(s1, s2, s1Overexpressed=T, degData=degs){
# note one of the two sets will always be empty; Example: s1="small_cyst"; s2="liver_polar_stage1"
forward <- subset(degData, sample_1==s1 & sample_2==s2 & sample_1_overex==s1Overexpressed)$ensembl_gene_id %>% ac()
reverse <- subset(degData, sample_1==s2 & sample_2==s1 & sample_1_overex==!s1Overexpressed)$ensembl_gene_id %>% ac()
return(c(forward, reverse))
}
## genes that are significantly higher expressed in sample1 compared to sample2
s1_gt_s2 <- function(s1, s2, ...) extractHits(s1, s2, s1Overexpressed=T, ...)
## genes that are significantly less expressed in sample1 compared to sample2
s1_lt_s2 <- function(s1, s2, ...) extractHits(s1, s2, s1Overexpressed=F, ...)
## undirected, just differentially expressed
s1_de_s2 <- function(s1, s2, ...) c(extractHits(s1, s2, s1Overexpressed=F, ...), extractHits(s1, s2, s1Overexpressed=T, ...))
## not differentially expressed
s1_eq_s2 <- function(s1, s2, gene_background=all_genes, ...){
c(extractHits(s1, s2, s1Overexpressed=F, ...), extractHits(s1, s2, s1Overexpressed=T, ...)) %>%
setdiff(all_genes, .)
}
## todo add helper to test for equality (s1 and s2 not differentially expressed)
## from marta:
#s1_eq_s2 <- function(s1, s2, degData=degs) subset(degData, sample_1==s1 & sample_2==s2 & sample_1_overex==F)$gene_id
#AeqBexpr <-subset(allDiff, sample_1=="aRG" & sample_2=="bRG") %>% filter(pmin(value_1, value_2)>1) %>% filter(!isHit)
#hitdata <- rbind(hitdata, data.frame(ensembl_gene_id=AeqBexpr$gene_id, set="aRG==bRG"))
## varargs: http://stackoverflow.com/questions/3057341/how-to-use-rs-ellipsis-feature-when-writing-your-own-function
rintersect <- function(...){
LDF <- list(...)
rintersect.list(LDF)
}
rintersect.list <- function(LDF){
rec_intersect <- LDF[[1]]
for (i in 2:length(LDF)) {
rec_intersect <- intersect(rec_intersect, LDF[[i]])
}
rec_intersect
}
########################################################################################################################
### enrichment analysis
## http://www.bioconductor.org/packages/release/bioc/vignettes/RDAVIDWebService/inst/doc/RDavidWS-vignette.pdf
## e.g. getClusterReport --> plot2D
DEF_DAVID_ONTOLOGIES=ontologies=c("GOTERM_CC_FAT", "GOTERM_MF_FAT", "GOTERM_BP_FAT", "PANTHER_PATHWAY", "PANTHER_FAMILY", "PANTHER_PATHWAY", "KEGG_PATHWAY", "REACTOME_PATHWAY")
davidAnnotationChart <- function( someGenes, ontologies=DEF_DAVID_ONTOLOGIES ){
require.auto(RDAVIDWebService) ## just works if installed on non-network-drive (e.g. /tmp/)
## expexted to have a column with gene_id
# echo("processing list with", length(someGenes), "genes")
# someGenes <- degs$ensembl_gene_id
if(length(someGenes)>1500){
someGenes <- sample(someGenes) %>% head(1500)
}
david<-DAVIDWebService$new(email="brandl@mpi-cbg.de")
# ## list all ontologies
# getAllAnnotationCategoryNames(david)
# getTimeOut(david)
setTimeOut(david, 80000) ## http://www.bioconductor.org/packages/release/bioc/vignettes/RDAVIDWebService/inst/doc/RDavidWS-vignette.pdf
result<-addList(david, someGenes, idType="ENSEMBL_GENE_ID", listName=paste0("list_", sample(10000)[1]), listType="Gene")
david %>% setAnnotationCategories(ontologies)
annoChart <-getFunctionalAnnotationChart(david)
# clusterReport <-getClusterReport(david)
unloadNamespace('RDAVIDWebService')
return(annoChart %>% subset(select=-Genes))
}