Newer
Older
# @Author: Felix Kramer <kramer>
# @Date: 2021-05-08T20:35:25+02:00
# @Email: kramer@mpi-cbg.de
# @Project: go-with-the-flow
# @Last modified by: Felix Kramer
# @License: MIT
import random as rd
import networkx as nx
import numpy as np
import sys
import pandas as pd
import kirchhoff.init_crystal as init_crystal
import kirchhoff.init_random as init_random
def initialize_flow_circuit_from_networkx(input_graph):
kirchhoff_graph=flow_circuit()
kirchhoff_graph.default_init(input_graph)
return kirchhoff_graph
def initialize_flow_circuit_from_crystal(crystal_type='default',periods=1):
kirchhoff_graph=flow_circuit()
input_graph=init_crystal.init_graph_from_crystal(crystal_type,periods)
kirchhoff_graph.default_init(input_graph)
return kirchhoff_graph
def initialize_flow_circuit_from_random(random_type='default',periods=10,sidelength=1):
kirchhoff_graph=flow_circuit()
input_graph=init_random.init_graph_from_random(random_type,periods,sidelength)
kirchhoff_graph.default_init(input_graph)
return kirchhoff_graph
def setup_default_flow_circuit(dict_pars):
kirchhoff_graph=initialize_flow_circuit_from_networkx(dict_pars['plexus'])
kirchhoff_graph.set_source_landscape()
kirchhoff_graph.set_plexus_landscape()
return kirchhoff_graph
# class flow_circuit(kirchhoff_init.circuit,object):
class flow_circuit(circuit,object):
def __init__(self):
super(flow_circuit,self).__init__()
self.source_mode={
'default':self.init_source_default,
'root_geometric':self.init_source_root_central_geometric,
'root_short':self.init_source_root_short,
'root_long':self.init_source_root_long,
'dipole_border':self.init_source_dipole_border,
'dipole_point':self.init_source_dipole_point,
'root_multi':self.init_source_root_multi,
'custom':self.init_source_custom
}
self.plexus_mode={
'default':self.init_plexus_default,
'custom':self.init_plexus_custom,
}
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# set a certain set of boundary conditions for the given networks
def set_source_landscape(self,mode='default',**kwargs):
# optional keywords
if 'num_sources' in kwargs:
self.graph['num_sources']= kwargs['num_sources']
elif 'sources' in kwargs:
self.custom= kwargs['sources']
# else:
# print('Warning: Not recognizing certain keywords')
# call init sources
if mode in self.source_mode.keys():
self.source_mode[mode]()
else :
sys.exit('Whooops, Error: Define Input/output-flows for the network.')
self.graph['graph_mode']=mode
self.test_source_consistency()
def set_potential_landscape(self,mode):
# todo
return 0
# different init source functions
def init_source_custom(self):
if len(self.custom.keys())==len(self.list_graph_nodes):
for j,node in enumerate(self.list_graph_nodes):
s=self.custom[node]*self.scales['flow']
self.G.nodes[node]['source']=s
self.nodes['source'][j]=s
else:
print('Warning, custom source values ill defined, setting default!')
self.init_source_default()
def init_source_default(self):
centrality=nx.betweenness_centrality(self.G)
centrality_sorted=sorted(centrality,key=centrality.__getitem__)
self.set_root_leaves_relationship(centrality_sorted[-1])
def init_source_root_central_geometric(self):
pos=self.get_pos()
X=np.mean(list(pos.values()),axis=0)
dist={}
for n in self.list_graph_nodes:
dist[n]=np.linalg.norm(np.subtract(X,pos[n]))
sorted_dist=sorted(dist,key=dist.__getitem__)
self.set_root_leaves_relationship(sorted_dist[0])
def init_source_root_short(self):
# check whether geometric layout has been set
pos=self.get_pos()
# check for root closests to coordinate origin
dist={}
for n,p in pos.items():
dist[n]=np.linalg.norm(p)
sorted_dist=sorted(dist,key=dist.__getitem__)
self.set_root_leaves_relationship(sorted_dist[0])
def init_source_root_long(self):
# check whether geometric layout has been set
pos=self.get_pos()
# check for root closests to coordinate origin
dist={}
for n,p in pos.items():
dist[n]=np.linalg.norm(p)
sorted_dist=sorted(dist,key=dist.__getitem__,reverse=True)
self.set_root_leaves_relationship(sorted_dist[0])
def init_source_dipole_border(self):
pos=self.get_pos()
dist={}
for n,p in pos.items():
dist[n]=np.linalg.norm(p)
vals=list(dist.values())
max_x=np.amax(vals)
min_x=np.amin(vals)
max_idx=[]
min_idx=[]
for k,v in dist.items():
if v == max_x:
max_idx.append(k)
elif v == min_x:
min_idx.append(k)
self.set_poles_relationship(max_idx,min_idx)
def init_source_dipole_point(self):
pos=self.get_pos()
dist={}
for j,n in enumerate(self.list_graph_nodes[:-2]):
for i,m in enumerate(self.list_graph_nodes[j+1:]):
path=nx.shortest_path(self.G,source=n,target=m)
dist[(n,m)]=len(path)
max_len=np.amax(list(dist.values()))
push=[]
for key in dist.keys():
if dist[key]==max_len:
push.append(key)
idx=np.random.choice(range(len(push)))
source,sink=push[idx]
self.set_poles_relationship([source],[sink])
def init_source_root_multi(self):
idx=np.random.choice( self.list_graph_nodes,size=self.graph['num_sources'] )
self.nodes_source=[self.G.number_of_nodes()/self.graph['num_sources']-1,-1]
for j,n in enumerate(self.list_graph_nodes):
if n in idx:
self.set_source_attributes(j,n,0)
else:
self.set_source_attributes(j,n,1)
# auxillary function for the block above
def set_root_leaves_relationship(self,root):
self.nodes_source=[self.G.number_of_nodes()-1,-1]
for j,n in enumerate(self.list_graph_nodes):
if n==root:
idx=0
else:
idx=1
self.set_source_attributes(j,n,idx)
def set_poles_relationship(self,sources,sinks):
self.nodes_source=[1,-1,0]
for j,n in enumerate(self.list_graph_nodes):
self.set_source_attributes(j,n,2)
for i,s in enumerate(sources):
for j,n in enumerate(self.list_graph_nodes):
if n==s:
self.set_source_attributes(j,s,0)
for i,s in enumerate(sinks):
for j,n in enumerate(self.list_graph_nodes):
if n==s:
self.set_source_attributes(j,s,1)
def set_source_attributes(self,j,node,idx):
self.G.nodes[node]['source']=self.nodes_source[idx]*self.scales['flow']
self.nodes['source'][j]=self.nodes_source[idx]*self.scales['flow']
# different init potetnial functions
def set_terminals_potentials(self,p0):
idx_potential=[]
idx_sources=[]
for j,n in enumerate(nx.nodes(self.G)):
if self.G.nodes[n]['source']>0:
self.G.nodes[n]['potential']=1
self.V[j]=p0
idx_potential.append(j)
elif self.G.nodes[n]['source']<0:
self.G.nodes[n]['potential']=0.
self.V[j]=0.
idx_potential.append(j)
else:
self.G.nodes[n]['source']=0.
self.J[j]=0.
idx_sources.append(j)
self.G.graph['sources']=idx_sources
self.G.graph['potentials']=idx_potential
# different init plexus functions
def set_plexus_landscape(self,mode='default',**kwargs):
# optional keywords
if 'plexus' in kwargs:
self.custom= kwargs['plexus']
# call init sources
if mode in self.plexus_mode.keys():
self.plexus_mode[mode]()
else :
sys.exit('Whooops, Error: Define proper conductancies for the network.')
self.graph['plexus_mode']=mode
self.test_conductance_consistency()
def init_plexus_default(self):
# find magnitude of flows and set scale of for conductancies
d=np.amax(self.nodes['source']) * 0.5
m=self.G.number_of_edges()
self.edges['conductivity']=np.multiply(d,np.add(np.ones(m),np.random.rand(m)))
def init_plexus_custom(self):
if len(self.custom.keys())==len(self.list_graph_edges):
# find magnitude of flows and set scale of for conductancies
for j,edge in enumerate(self.list_graph_edges):
c=self.custom[edge]*self.scales['conductance']
self.G.edges[edge]['conductivity']=c
self.edges['conductivity'][j]=c
else:
print('Warning, custom conductance values ill defined, setting default !')
# output
def get_nodes_data(self):
dn=pd.DataFrame(self.nodes['source'])
return dn
def get_edges_data(self):
de=pd.DataFrame(self.edges[['conductivity','flow_rate']])
de['weight']=np.power(self.edges['conductivity'].to_numpy(),0.25)*self.draw_weight_scaling
return de
def plot_circuit(self):
E=self.get_edges_data()
V=self.get_nodes_data()
fig=dx.plot_networkx( self.G, edge_list=self.list_graph_edges, node_list=self.list_graph_nodes, edge_data=E, node_data=V )
return fig