Newer
Older
# @Author: Felix Kramer
# @Date: 2021-05-22T13:11:37+02:00
# @Email: kramer@mpi-cbg.de
# @Project: go-with-the-flow
# @Last modified by: Felix Kramer
# @License: MIT
import networkx as nx
import numpy as np
# construct a non-trivial, periodic 3d embedding
def init_graph_from_crystal(crystal_type,periods):
'default': networkx_simple,
'simple': networkx_simple,
'chain': networkx_chain,
'bcc': networkx_bcc,
'fcc': networkx_fcc,
'diamond': networkx_diamond,
'laves':networkx_laves,
'trigonal_stack': networkx_trigonal_stack,
'square': networkx_square,
'hexagonal':networkx_hexagonal,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
if crystal_type in choose_constructor_option:
crystal=choose_constructor_option[crystal_type](periods)
else :
print('Warning, crystal type unknown, set default: simple')
crystal=choose_constructor_option['default'](1)
return crystal.G
class networkx_crystal():
def __init__(self):
self.dict_cells={ }
self.G=nx.Graph()
self.lattice_constant=1
self.translation_length=1
# construct one of the following crystal topologies
def lattice_translation(self,t,T):
D=nx.Graph()
for n in T.nodes():
D.add_node(tuple(n+t),pos=T.nodes[n]['pos']+t)
return D
def periodic_cell_structure(self,cell,num_periods):
DL=nx.Graph()
if type(num_periods) is not int :
periods=[range(num_periods[0]),range(num_periods[1]),range(num_periods[2])]
else:
periods=[range(num_periods),range(num_periods),range(num_periods)]
for i in periods[0]:
for j in periods[1]:
for k in periods[2]:
TD=self.lattice_translation(self.translation_length*np.array([i,j,k]),cell)
DL.add_nodes_from(TD.nodes(data=True))
self.dict_cells[(i,j,k)]=list(TD.nodes())
list_n=np.array(list(DL.nodes()))
for i,n in enumerate(list_n[:-1]):
for m in list_n[(i+1):]:
dist=np.linalg.norm(DL.nodes[tuple(n)]['pos']-DL.nodes[tuple(m)]['pos'])
if dist==self.lattice_constant:
DL.add_edge(tuple(n),tuple(m),slope=(DL.nodes[tuple(n)]['pos'],DL.nodes[tuple(m)]['pos']))
dict_nodes={}
for idx_n,n in enumerate(DL.nodes()):
self.G.add_node(idx_n,pos=DL.nodes[n]['pos'])
dict_nodes.update({n:idx_n})
for idx_e,e in enumerate(DL.edges()):
self.G.add_edge(dict_nodes[e[0]],dict_nodes[e[1]],slope=(DL.nodes[e[0]]['pos'],DL.nodes[e[1]]['pos']))
self.dict_cubes={}
dict_aux={}
for i,k in enumerate(self.dict_cells.keys()):
dict_aux[i]=[ dict_nodes[n] for n in self.dict_cells[k] ]
for i,k in enumerate(dict_aux.keys()):
self.dict_cubes[k]=nx.Graph()
n_list=list(dict_aux[k])
for u in n_list[:-1]:
for v in n_list[1:]:
if self.G.has_edge(u,v):
self.dict_cubes[k].add_edge(u,v)
# 3D
class networkx_simple(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_simple,self).__init__()
self.lattice_constant=1.
self.translation_length=1.
self.simple_cubic_lattice(num_periods)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def simple_unit_cell(self):
D=nx.Graph()
for i in [0,1]:
for j in [0,1]:
for k in [0,1]:
D.add_node(tuple((i,j,k)),pos=np.array([i,j,k]))
return D
def simple_cubic_lattice(self,num_periods):
D=self.simple_unit_cell()
self.periodic_cell_structure(D,num_periods)
class networkx_chain(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_chain,self).__init__()
self.simple_chain(num_periods)
def simple_chain(self,num_periods):
#construct single box
for i in range(num_periods):
self.G.add_node(i, pos=np.array([i,0,0]))
for i in range(num_periods-1):
self.G.add_edge(i+1,i, slope=(self.G.nodes[i+1]['pos'],self.G.nodes[i]['pos']))
class networkx_bcc(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_bcc,self).__init__()
self.lattice_constant=np.sqrt(3.)/2.
self.translation_length=1.
self.simple_bcc_lattice( num_periods)
def bcc_unit_cell(self):
D=nx.Graph()
for i in [0,1]:
for j in [0,1]:
for k in [0,1]:
D.add_node(tuple((i,j,k)),pos=np.array([i,j,k]))
D.add_node(tuple((0.5,0.5,0.5)),pos=np.array([0.5,0.5,0.5]))
return D
def simple_bcc_lattice(self,n):
#construct single box
D=self.bcc_unit_cell()
self.periodic_cell_structure(D,n)
class networkx_fcc(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_fcc,self).__init__()
self.lattice_constant=np.sqrt(2.)/2.
self.translation_length=1.
self.simple_fcc_lattice( num_periods)
def fcc_unit_cell(self):
D=nx.Graph()
for i in [0,1]:
for j in [0,1]:
for k in [0,1]:
D.add_node(tuple((i,j,k)),pos=np.array([i,j,k]))
for i in [0.,1.]:
D.add_node(tuple((0.5,i,0.5)),pos=np.array([0.5,i,0.5]))
for i in [0.,1.]:
D.add_node(tuple((0.5,0.5,i)),pos=np.array([0.5,0.5,i]))
for i in [0.,1.]:
D.add_node(tuple((i,0.5,0.5)),pos=np.array([i,0.5,0.5]))
return D
def simple_fcc_lattice(self,n):
D=self.fcc_unit_cell()
self.periodic_cell_structure(D,n,lattice_constant,translation_length)
class networkx_diamond(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_diamond,self).__init__()
self.lattice_constant=np.sqrt(3.)/2.
self.translation_length=2.
self.diamond_lattice(num_periods)
def diamond_unit_cell(self):
D=nx.Graph()
T=[nx.Graph() for i in range(4)]
T[0].add_node((0,0,0),pos=np.array([0,0,0]))
T[0].add_node((1,1,0),pos=np.array([1,1,0]))
T[0].add_node((1,0,1),pos=np.array([1,0,1]))
T[0].add_node((0,1,1),pos=np.array([0,1,1]))
T[0].add_node((0.5,0.5,0.5),pos=np.array([0.5,0.5,0.5]))
translation=[np.array([1,1,0]),np.array([1,0,1]),np.array([0,1,1])]
for i,t in enumerate(translation):
for n in T[0].nodes():
T[i+1].add_node(tuple(n+t),pos=T[0].nodes[n]['pos']+t)
for t in T:
D.add_nodes_from(t.nodes(data=True))
return D
def diamond_lattice(self,num_periods):
D=self.diamond_unit_cell()
self.periodic_cell_structure(D,num_periods)
class networkx_laves(networkx_crystal,object):
def __init__(self, num_periods):
super(networkx_laves,self).__init__()
self.lattice_constant=2.
self.laves_lattice(num_periods)
def laves_lattice(self,num_periods):
#construct single box
counter=0
G_aux=nx.Graph()
# periods=range(-num_periods,num_periods)
# periods=range(num_periods)
if type(num_periods) is not int :
periods=[range(num_periods[0]),range(num_periods[1]),range(num_periods[2])]
else:
periods=[range(num_periods),range(num_periods),range(num_periods)]
fundamental_points=[[0,0,0],[1,1,0],[1,2,1],[0,3,1],[2,2,2],[3,3,2],[3,0,3],[2,1,3]]
for l,fp in enumerate(fundamental_points):
for i in periods[0]:
for j in periods[1]:
for k in periods[2]:
pos_n=np.add(fp,[4.*i,4.*j,4.*k])
G_aux.add_node(tuple(pos_n),pos=pos_n)
list_nodes=list(G_aux.nodes())
self.G=nx.Graph()
H=nx.Graph()
points_G=[G_aux.nodes[n]['pos'] for i,n in enumerate(G_aux.nodes()) ]
for i,n in enumerate(G_aux.nodes()) :
H.add_node(n,pos=G_aux.nodes[n]['pos'])
for i,n in enumerate(list_nodes[:-1]):
for j,m in enumerate(list_nodes[(i+1):]):
v=np.subtract(n,m)
dist=np.dot(v,v)
if dist==self.lattice_constant:
H.add_edge(n,m,slope=(G_aux.nodes[n]['pos'],G_aux.nodes[m]['pos']))
dict_nodes={}
for idx_n,n in enumerate(H.nodes()):
self.G.add_node(idx_n,pos=H.nodes[n]['pos'])
dict_nodes.update({n:idx_n})
for idx_e,e in enumerate(H.edges()):
self.G.add_edge(dict_nodes[e[0]],dict_nodes[e[1]],slope=(H.nodes[e[0]]['pos'],H.nodes[e[1]]['pos']))
class networkx_trigonal_stack(networkx_crystal,object):
def __init__(self, tiling_factor):
super(networkx_trigonal_stack,self).__init__()
self.triangulated_hexagon_stack(tiling_factor)
#define crosslinking procedure between the generated single-layers
def crosslink_stacks(self):
for i,n in enumerate(self.G.nodes()):
self.G.nodes[n]['label']=i
if self.stacks > 1 :
labels_n = nx.get_node_attributes(self.G,'label')
sorted_label_n_list=sorted(labels_n ,key=labels_n.__getitem__)
# for n in nx.nodes(self.G):
for n in sorted_label_n_list:
if n[2]!=self.stacks-1:
p1=self.G.nodes[(n[0],n[1],n[2])]['pos']
p2=self.G.nodes[(n[0],n[1],n[2]+1)]['pos']
self.G.add_edge((n[0],n[1],n[2]),(n[0],n[1],n[2]+1),slope=(p1,p2))
# auxillary function, construct triangulated hex grid upper and lower wings
def construct_spine_stack(self,z,n):
self.spine = 2*(n-1)
# self.spine=2*n
self.G.add_node((0,0,z),pos=(0.,0.,z))
# for m in range(self.spine-1):
for m in range(self.spine):
self.G.add_node((m+1,0,z),pos=((m+1),0.,z))
self.G.add_edge((m,0,z),(m+1,0,z),slope=(self.G.nodes[(m,0,z)]['pos'],self.G.nodes[(m+1,0,z)]['pos']))
def construct_wing_stack(self,z,a,n):
for m in range(n-1):
#m-th floor
floor_m_nodes=self.spine-(m+1)
# for m in range(n):
# #m-th floor
# floor_m_nodes=self.spine-(m+2)
self.G.add_node((0,a*(m+1),z),pos=((m+1)/2.,a*(np.sqrt(3.)/2.)*(m+1),z))
self.G.add_edge((0,a*(m+1),z),(0,a*m,z),slope=(self.G.nodes[(0,a*(m+1),z)]['pos'],self.G.nodes[(0,a*m,z)]['pos']))
self.G.add_edge((0,a*(m+1),z),(1,a*m,z),slope=(self.G.nodes[(0,a*(m+1),z)]['pos'],self.G.nodes[(1,a*m,z)]['pos']))
for p in range(floor_m_nodes):
#add 3-junctions
self.G.add_node((p+1,a*(m+1),z),pos=(((p+1)+(m+1)/2.),a*(np.sqrt(3.)/2.)*(m+1),z))
self.G.add_edge((p+1,a*(m+1),z),(p+1,a*m,z),slope=(self.G.nodes[(p+1,a*(m+1),z)]['pos'],self.G.nodes[(p+1,a*m,z)]['pos']))
self.G.add_edge((p+1,a*(m+1),z),(p+2,a*m,z),slope=(self.G.nodes[(p+1,a*(m+1),z)]['pos'],self.G.nodes[(p+2,a*m,z)]['pos']))
self.G.add_edge((p+1,a*(m+1),z),(p,a*(m+1),z),slope=(self.G.nodes[(p+1,a*(m+1),z)]['pos'],self.G.nodes[(p,a*(m+1),z)]['pos']))
#construct full triangulated hex grids as skeleton of a stacked structure
def triangulated_hexagon_stack(self,stack,n):
self.stacks=stack
for z in range(self.stacks):
#construct spine for different levels of lobule
self.construct_spine_stack(z,n)
#construct lower/upper halfspace
self.construct_wing_stack( z,-1, n)
self.construct_wing_stack( z, 1, n)
self.crosslink_stacks()
# 2D
class networkx_square(networkx_crystal,object):
def __init__(self, tiling_factor):
super(networkx_square,self).__init__()
self.square_grid( tiling_factor)
if type(num_periods) is not int :
a=[range(0,num_periods[0]+1),range(0,num_periods[1]+1)]
else:
a=[range(0,num_periods+1),range(0,num_periods+1)]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
self.G.add_node((x,y),pos=(x,y,0))
list_n=list(self.G.nodes())
dict_d={}
threshold=1.
for idx_n,n in enumerate(list_n[:-1]):
for m in list_n[idx_n+1:]:
dict_d[(n,m)]=np.linalg.norm(np.array(self.G.nodes[n]['pos'])-np.array(self.G.nodes[m]['pos']))
for nm in dict_d:
if dict_d[nm] <= threshold:
self.G.add_edge(*nm,slope=[self.G.nodes[nm[0]]['pos'],self.G.nodes[nm[1]]['pos']])
class networkx_trigonal_planar(networkx_crystal,object):
def __init__(self, tiling_factor):
super(networkx_trigonal_planar,self).__init__()
self.triangulated_hexagon_lattice(tiling_factor)
#I) construct and define one-layer hex
# auxillary function, construct triangulated hex grid upper and lower wings
def construct_wing(self,a,n):
for m in range(n-1):
#m-th floor
floor_m_nodes = self.spine - (m+1)
self.G.add_node((0,a*(m+1)),pos=np.array([(m+1)/2.,a*(np.sqrt(3.)/2.)*(m+1)]))
self.G.add_edge((0,a*(m+1)),(0,a*m),slope=(self.G.nodes[(0,a*(m+1))]['pos'],self.G.nodes[(0,a*m)]['pos']))
self.G.add_edge((0,a*(m+1)),(1,a*m),slope=(self.G.nodes[(0,a*(m+1))]['pos'],self.G.nodes[(1,a*m)]['pos']))
for p in range(floor_m_nodes):
#add 3-junctions
self.G.add_node((p+1,a*(m+1)),pos=np.array([((p+1)+(m+1)/2.),a*(np.sqrt(3.)/2.)*(m+1)]))
self.G.add_edge((p+1,a*(m+1)),(p+1,a*m),slope=(self.G.nodes[(p+1,a*(m+1))]['pos'],self.G.nodes[(p+1,a*m)]['pos']))
self.G.add_edge((p+1,a*(m+1)),(p+2,a*m),slope=(self.G.nodes[(p+1,a*(m+1))]['pos'],self.G.nodes[(p+2,a*m)]['pos']))
self.G.add_edge((p+1,a*(m+1)),(p,a*(m+1)),slope=(self.G.nodes[(p+1,a*(m+1))]['pos'],self.G.nodes[(p,a*(m+1))]['pos']))
#construct full triangulated hex grid as skeleton
def triangulated_hexagon_lattice(self,n):
#construct spine
self.spine = 2*(n-1)
self.G.add_node((0,0),pos=np.array([0.,0.]), label=self.count_n())
for m in range(self.spine):
self.G.add_node((m+1,0),pos=np.array([(m+1)*self.l,0.]),label=self.count_n())
self.G.add_edge((m,0),(m+1,0),slope=(self.G.nodes[(m,0)]['pos'],self.G.nodes[(m+1,0)]['pos']))
#construct lower/upper halfspace
self.construct_wing(-1,n)
self.construct_wing( 1,n)
class networkx_hexagonal(networkx_crystal,object):
def __init__(self,tiling_factor,periodic=False):
super(networkx_hexagonal,self).__init__()
self.hexagonal_grid(tiling_factor,periodic)
def hexagonal_grid(self, *args):
tiling_factor,periodic_bool=args
m=2*tiling_factor+1
n=2*tiling_factor
self.G=nx.hexagonal_lattice_graph(m, n, periodic=periodic_bool, with_positions=True)
for n in self.G.nodes():
self.G.nodes[n]['pos']=np.array(self.G.nodes[n]['pos'])
for e in self.G.edges():
self.G.edges[e]['slope']=[self.G.nodes[e[0]]['pos'],self.G.nodes[e[1]]['pos']]