Newer
Older
/*
* gargabe.hpp
*
* Created on: Jan 13, 2015
* Author: i-bird
*/
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#define GARGABE_HPP_
template <unsigned int j, unsigned int i, typename Graph> void optimize(size_t start_p, Graph & graph)
{
// We assume that Graph is the rapresentation of a cartesian graph
// this mean that the direction d is at the child d
// Create an Hyper-cube
HyperCube<dim> hyp;
// Get the number of wavefronts
size_t n_wf = hyp.getNumberOfElements_R(0);
// Get the number of intersecting wavefront
// Get the number of sub-dimensional common wavefront
// basically are a list of all the subdomain common to two or more
// Create n_wf wavefront queue
openfpm::vector<wavefront> v_w;
v.reserve(n_wf);
// direction of expansion
size_t domain_id = 0;
int exp_dir = 0;
bool can_expand = true;
// while is possible to expand
while (can_expand)
{
// for each direction of expansion expand the wavefront
for (int d = 0 ; d < n_wf ; d++)
{
// get the wavefront at direction d
openfpm::vector<size_t> & wf_d = v_w.get<wavefront::domains>(d);
// flag to indicate if the wavefront can expand
bool w_can_expand = true;
// for each subdomain
for (size_t sub = 0 ; sub < wf_d.size() ; sub++)
{
// check if the adjacent domain in direction d exist
// and is of the same id
// get the starting subdomain
size_t sub_w = wf_d.get<0>(sub);
// we get the processor id of the neighborhood sub-domain on direction d
size_t exp_p = graph.getChild(sub_w,d).get<j>();
// we check if it is the same processor id
if (exp_p != domain_id)
{
w_can_expand = false;
}
}
// if we can expand the wavefront expand it
if (w_can_expand == true)
{
// for each subdomain
for (size_t sub = 0 ; sub < wf_d.size() ; sub++)
{
// update the position of the wavefront
wf_d.get<0>(sub) = wf_d.get<0>(sub) + gh.stride(d);
}
// here we add sub-domains to all the other queues
// get the face of the hyper-cube
SubHyperCube<dim,dim-1> sub_hyp = hyp.getSubHyperCube(d);
std::vector<comb<dim>> q_comb = sub_hyp.getCombinations_R(dim-2);
}
}
}
// For each point in the Hyper-cube check if we can move the wave front
}
#ifndef PARALLEL_DECOMPOSITION
// CreateSubspaces();
#endif
#ifndef USE_METIS_GP
// Here we do not use METIS
// Distribute the divided domains
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the ID of this processing unit
// and push the subspace is taking this
// processing unit
for (size_t p_id = v_cl.getProcessUnitID(); p_id < Np ; p_id += Np)
id_sub.push_back(p_id);
#else
#endif
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/////////////// DEBUG /////////////////////
// get the decomposition
auto & dec = g_dist.getDecomposition();
Vcluster & v_cl = *global_v_cluster;
// check the consistency of the decomposition
val = dec.check_consistency();
BOOST_REQUIRE_EQUAL(val,true);
// for each local volume
// Get the number of local grid needed
size_t n_grid = dec.getNLocalHyperCube();
size_t vol = 0;
openfpm::vector<Box<2,size_t>> v_b;
// Allocate the grids
for (size_t i = 0 ; i < n_grid ; i++)
{
// Get the local hyper-cube
SpaceBox<2,float> sub = dec.getLocalHyperCube(i);
Box<2,size_t> g_box = g_dist.getCellDecomposer().convertDomainSpaceIntoGridUnits(sub);
v_b.add(g_box);
vol += g_box.getVolumeKey();
}
v_cl.reduce(vol);
v_cl.execute();
BOOST_REQUIRE_EQUAL(vol,k*k);
/////////////////////////////////////
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// 3D test
// g_dist.write("");
/* auto g_it = g_dist.getIteratorBulk();
auto g_it_halo = g_dist.getHalo();
// Let try to solve the poisson equation d2(u) = f with f = 1 and computation
// comunication overlap (100 Jacobi iteration)
for (int i = 0 ; i < 100 ; i++)
{
g_dist.ghost_get();
// Compute the bulk
jacobi_iteration(g_it);
g_dist.ghost_sync();
// Compute the halo
jacobi_iteration(g_it_halo);
}*/
BOOST_AUTO_TEST_CASE( grid_dist_id_poisson_test_use)
{
// grid size
/* size_t sz[2] = {1024,1024};
// Distributed grid with id decomposition
grid_dist_id<2, scalar<float>, CartDecomposition<2,size_t>> g_dist(sz);
// Create the grid on memory
g_dist.Create();*/
/* auto g_it = g_dist.getIteratorBulk();
auto g_it_halo = g_dist.getHalo();
// Let try to solve the poisson equation d2(u) = f with f = 1 and computation
// comunication overlap (100 Jacobi iteration)
for (int i = 0 ; i < 100 ; i++)
{
g_dist.ghost_get();
// Compute the bulk
jacobi_iteration(g_it);
g_dist.ghost_sync();
// Compute the halo
jacobi_iteration(g_it_halo);
}*/
}
template<typename iterator> void jacobi_iteration(iterator g_it, grid_dist_id<2, float, scalar<float>, CartDecomposition<2,float>> & g_dist)
{
// scalar
typedef scalar<float> S;
// iterator
while(g_it.isNext())
{
// Jacobi update
auto pos = g_it.get();
g_dist.template get<S::ele>(pos) = (g_dist.template get<S::ele>(pos.move(0,1)) +
g_dist.template get<S::ele>(pos.move(0,-1)) +
g_dist.template get<S::ele>(pos.move(1,1)) +
g_dist.template get<S::ele>(pos.move(1,-1)) / 4.0);
++g_it;
}
}
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
=======
/*
* CartDecomposition.cpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#include "CartDecomposition.hpp"
/*! \brief The the bulk part of the data set, or the data that does not depend
* from the ghosts layers
*
* The the bulk part of the data set, or the data that does not depend from the
* ghosts layers
*
*/
/*template<typename T> T CartDecomposition<T>::getBulk(T data)
{
// for each element in data
for (size_t i = 0; i < data.size() ; i++)
{
if (localSpace.isInside())
}
}
template<typename T> T CartDecomposition<T>::getInternal()
{
}*/
/*! \brief Check if is border or bulk
*
* \param neighboorhood define the neighboorhood of all the points
* \return true if border, false if bulk
*
*/
bool borderOrBulk(neighborhood & nb)
{
device::grid<1,size_t> nbr = nb.next();
// check the neighborhood
// get neighborhood iterator
grid_key_dx_iterator<dim> iterator_nbr = nbr.getIterator();
while (iterator_nbr.hasNext())
{
grid_key_dx key_nbr = iterator_nbr.next();
// check if the neighboorhood is internal
if(subspace.isBound(data.template get<Point::x>(key_nbr)) == false)
{
// it is border
return true;
ret.bord.push_back(key);
break;
}
}
return false;
}
/*! \brief This function divide the data set into bulk, border, external and internal part
*
* \tparam dim dimensionality of the structure storing your data
* (example if they are in 3D grid, has to be 3)
* \tparam T type of object we are dividing
* \tparam device type of layout selected
* \param data 1-dimensional grid of point
* \param nb define the neighborhood of all the points
* \return a structure with the set of objects divided
*
*/
template<unsigned int dim, typename T, template<typename> class layout, typename Memory, template<unsigned int, typename> class Domain, template<typename, typename, typename> class data_s>
dataDiv<T> CartDecomposition<dim,T,layout>::divide(device::grid<1,Point<dim,T>> & data, neighborhood & nb)
{
//! allocate the 3 subset
dataDiv<T> ret;
ret.bord = new boost::shared_ptr<T>(new T());
ret.inte = new boost::shared_ptr<T>(new T());
ret.ext = new boost::shared_ptr<T>(new T());
//! get grid iterator
grid_key_dx_iterator<dim> iterator = data.getIterator();
//! we iterate trough all the set of objects
while (iterator.hasNext())
{
grid_key_dx<dim> key = iterator.next();
//! Check if the object is inside the subspace
if (subspace.isBound(data.template get<Point<3,T>::x>(key)))
{
//! Check if the neighborhood is inside the subspace
if (borderOrBulk(nb) == true)
{
// It is border
ret.bord.push_back(key);
}
else
{
// It is bulk
ret.bulk.push_back(key);
}
}
else
{
//! it is external
ret.ext.push_back(key);
}
}
}
>>>>>>> Jenkin script for taurus
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
/*! \brief Allocate a set of objects
*
* \tparam obj
* \param n number of object
*
* \return an object representing an array of objects
*
*/
/* template <typename obj> Vcluster_object_array<obj> allocate(size_t n)
{
// Vcluster object array
Vcluster_object_array<obj> vo;
// resize the array
vo.resize(n);
// Create the object on memory and return a Vcluster_object_array
return vo;
}*/
/*template<typename T>
class Vcluster_object_array : public VObject
{
std::vector<T> objects;
public:*/
/*! \brief Constructor of object array
*
*/
/* Vcluster_object_array()
{
}*/
/*! \brief Return the size of the objects array
*
* \return the size of the array
*
*/
/* size_t size() const
{
return objects.size();
}*/
/*! \brief Return the element i
*
* \return a reference to the object i
*
*/
/* T & get(unsigned int i)
{
return objects[i];
}*/
/*! \brief Return the element i
*
* \return a reference to the object i
*
*/
/* const T & get(unsigned int i) const
{
return objects[i];
}*/
/*! \brief Check if this Object is an array
*
* \return true, it is an array
*
*/
/* bool isArray()
{
return true;
}*/
/*! \brief Destroy the object
*
*/
/* virtual void destroy()
{
// Destroy the objects
objects.clear();
}*/
/*! \brief Get the size of the memory needed to pack the object
*
* \return the size of the message to pack the object
*
*/
/* size_t packObjectSize()
{
size_t message = 0;
// Destroy each objects
for (size_t i = 0 ; i < objects.size() ; i++)
{
message += objects[i].packObjectSize();
}
return message;
}*/
/*! \brief Get the size of the memory needed to pack the object
*
* \param Memory where to write the packed object
*
* \return the size of the message to pack the object
*
*/
/* size_t packObject(void * mem)
{
// Pointer is zero
size_t ptr = 0;
unsigned char * m = (unsigned char *)mem;
// pack each object
for (size_t i = 0 ; i < objects.size() ; i++)
{
ptr += objects[i].packObject(&m[ptr]);
}
#ifdef DEBUG
if (ptr != packObjectSize())
{
std::cerr << "Error " << __FILE__ << " " << __LINE__ << " the pack object size does not match the message" << "\n";
}
#endif
return ptr;
}*/
/*! \brief Calculate the size to pack an object in the array
*
* \param array object index
*
*/
/* size_t packObjectInArraySize(size_t i)
{
return objects[i].packObjectSize();
}*/
/*! \brief pack the object in the array (the message produced can be used to move one)
* object from one processor to another
*
* \param i index of the object to pack
* \param p Memory of the packed object message
*
*/
/* size_t packObjectInArray(size_t i, void * p)
{
return objects[i].packObject(p);
}*/
/*! \brief Destroy an object from the array
*
* \param i object to destroy
*
*/
/* void destroy(size_t i)
{
objects.erase(objects.begin() + i);
}*/
/*! \brief Return the object j in the array
*
* \param j element j
*
*/
/* T & operator[](size_t j)
{
return objects[j];
}*/
/*! \brief Return the object j in the array
*
* \param j element j
*
*/
/* const T & operator[](size_t j) const
{
return objects[j];
}*/
/*! \brief Resize the array
*
* \param size
*
*/
/* void resize(size_t n)
{
objects.resize(n);
}
};*/
/*! \brief VObject
*
* Any object produced by the Virtual cluster (MUST) inherit this class
*
*/
/*class VObject
{
public:
// Check if this Object is an array
virtual bool isArray() = 0;
// destroy the object
virtual void destroy() = 0;
// get the size of the memory needed to pack the object
virtual size_t packObjectSize() = 0;
// pack the object
virtual size_t packObject(void *) = 0;
// get the size of the memory needed to pack the object in the array
virtual size_t packObjectInArraySize(size_t i) = 0;
// pack the object in the array (the message produced can be used to move one)
// object from one processor to another
virtual size_t packObjectInArray(size_t i, void * p) = 0;
// destroy an element from the array
virtual void destroy(size_t n) = 0;
};*/
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
/*! \brief Impose an operator
*
* This function impose an operator on a particular grid region to produce the system
*
* Ax = b
*
* ## Stokes equation, lid driven cavity with one splipping wall
*
* \param op Operator to impose (A term)
* \param num right hand side of the term (b term)
* \param id Equation id in the system that we are imposing
* \param it_d iterator that define where you want to impose
*
*/
template<typename T> void impose(const T & op , typename Sys_eqs::stype num ,long int id ,grid_dist_iterator_sub<Sys_eqs::dims,typename g_map_type::d_grid> it_d, bool skip_first = false)
{
//////////////////////// DEBUG /////////////////
SparseMatrix<double,int> Al;
Al.load("debug_matrix_single_processor");
// Construct the map 3 processors 1 processors
std::unordered_map<size_t,size_t> map_row;
auto it2 = g_map.getDomainGhostIterator();
auto ginfo = g_map.getGridInfoVoid();
while (it2.isNext())
{
auto key = it2.get();
auto key_g = g_map.getGKey(key);
key_g += pd.getKP1();
// To linearize must be positive
bool is_negative = false;
for (size_t i = 0 ; i < Sys_eqs::dims ; i++)
{
if (key_g.get(i) < 0)
is_negative = true;
}
if (is_negative == true)
{
++it2;
continue;
}
// Carefull g map is extended, so the original (0,0) is shifted in g_map by
if (g_map.template get<0>(key) == 7)
{
int debug = 0;
debug++;
}
map_row[g_map.template get<0>(key)] = ginfo.LinId(key_g);
++it2;
}
////////////////////////////////////////////////
Vcluster & v_cl = *global_v_cluster;
openfpm::vector<triplet> & trpl = A.getMatrixTriplets();
auto it = it_d;
grid_sm<Sys_eqs::dims,void> gs = g_map.getGridInfoVoid();
std::unordered_map<long int,float> cols;
// resize b if needed
b.resize(Sys_eqs::nvar * g_map.size());
bool is_first = skip_first;
// iterate all the grid points
while (it.isNext())
{
if (is_first == true && v_cl.getProcessUnitID() == 0)
{
++it;
is_first = false;
continue;
}
else
is_first = false;
// get the position
auto key = it.get();
// Calculate the non-zero colums
T::value(g_map,key,gs,spacing,cols,1.0);
//////////// DEBUG //////////////////
auto g_calc_pos = g_map.getGKey(key);
g_calc_pos += pd.getKP1();
/////////////////////////////////////
// create the triplet
for ( auto it = cols.begin(); it != cols.end(); ++it )
{
trpl.add();
trpl.last().row() = g_map.template get<0>(key)*Sys_eqs::nvar + id;
trpl.last().col() = it->first;
trpl.last().value() = it->second;
///////////// DEBUG ///////////////////////
auto ginfo = g_map.getGridInfoVoid();
size_t r = (trpl.last().row() / Sys_eqs::nvar);
size_t r_rest = (trpl.last().row() % Sys_eqs::nvar);
size_t c = (trpl.last().col() / Sys_eqs::nvar);
size_t c_rest = (trpl.last().col() % Sys_eqs::nvar);
double val = trpl.last().value();
// Transform
size_t rf = map_row[r] * 3 + r_rest;
size_t cf = map_row[c] * 3 + c_rest;
auto position_row = ginfo.InvLinId(rf / 3);
auto position_col = ginfo.InvLinId(cf / 3);
double valf = Al.getValue(rf,cf);
if (val != valf)
{
int debug = 0;
debug++;
}
///////////////////////////////////////////
// std::cout << "(" << trpl.last().row() << "," << trpl.last().col() << "," << trpl.last().value() << ")" << "\n";
}
b(g_map.template get<0>(key)*Sys_eqs::nvar + id) = num;
cols.clear();
// std::cout << "\n";
// if SE_CLASS1 is defined check the position
#ifdef SE_CLASS1
// T::position(key,gs,s_pos);
#endif
++row;
++row_b;
++it;
}
}
typename Sys_eqs::SparseMatrix_type A;
/*! \brief produce the Matrix
*
* \return the Sparse matrix produced
*
*/
typename Sys_eqs::SparseMatrix_type & getA()
{
#ifdef SE_CLASS1
consistency();
#endif
A.resize(g_map.size()*Sys_eqs::nvar,g_map.size()*Sys_eqs::nvar);
///////////////// DEBUG SAVE //////////////////
// A.save("debug_matrix_single_processor");
////////////////////////////////////////////////
return A;
}
typename Sys_eqs::SparseMatrix_type A;
/*! \brief produce the Matrix
*
* \return the Sparse matrix produced
*
*/
typename Sys_eqs::SparseMatrix_type & getA()
{
#ifdef SE_CLASS1
consistency();
#endif
A.resize(g_map.size()*Sys_eqs::nvar,g_map.size()*Sys_eqs::nvar);
///////////////// DEBUG SAVE //////////////////
// A.save("debug_matrix_single_processor");
////////////////////////////////////////////////
return A;
}
/*! \brief produce the B vector
*
* \return the vector produced
*
*/
typename Sys_eqs::Vector_type & getB()
{
#ifdef SE_CLASS1
consistency();
#endif
// size of the matrix
// B.resize(g_map.size()*Sys_eqs::nvar);
// copy the vector
// for (size_t i = 0; i < row_b; i++)
// B.insert(i,b.get(i));
return b;
}
};
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*! \brief Given an external ghost box, I have an internal ghost box with the same id this function link them
*
*
*/
void link_ebox_with_ibox()
{
/*
#ifdef SE_CLASS1
// No box must be unlinked
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
for (size_t j = 0 ; j < proc_int_box.get(i).ibx.size() ; j++)
proc_int_box.get(i).ibx.get(j).link = -1;
for (size_t j = 0 ; j < proc_int_box.get(i).ebx.size() ; j++)
proc_int_box.get(i).ebx.get(j).link= -1;
}
#endif
// Get the number of near processors
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
std::unordered_map<size_t,std::pair<size_t,size_t>> from_id_to_ibox;
std::unordered_map<size_t,std::pair<size_t,size_t>> from_id_to_ebox;
for (size_t j = 0 ; j < getProcessorNIGhost(i) ; j++)
{
std::pair<size_t,size_t> & ele = from_id_to_ibox[getProcessorIGhostId(i,j)];
ele.first = i;
ele.second = j;
}
for (size_t j = 0 ; j < getProcessorNEGhost(i) ; j++)
{
std::pair<size_t,size_t> & ele = from_id_to_ebox[getProcessorEGhostId(i,j)];
ele.first = i;
ele.second = j;
}
// iterate across all the ibox
for ( auto it = from_id_to_ibox.begin(); it != from_id_to_ibox.end(); ++it )
{
auto ite = from_id_to_ebox.find(it->first);
if(ite == from_id_to_ebox.end())
std::cerr << __FILE__ << ":" << __LINE__ << " error exist an internal ghost box that does not have an external ghost box" << std::endl;
if (ite->first != it->first)
std::cerr << __FILE__ << ":" << __LINE__ << " error exist an internal ghost box with inconsistent information about its origin" << std::endl;
proc_int_box.get(i).ibx.get(it->second.second).link = ite->second.second;
proc_int_box.get(i).ebx.get(ite->second.second).link = it->second.second;
}
}
#ifdef SE_CLASS1
// No box must be unlinked
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
for (size_t j = 0 ; j < proc_int_box.get(i).ibx.size() ; j++)
{
if (proc_int_box.get(i).ibx.get(j).link == -1)
std::cerr << __FILE__ << ":" << __LINE__ << " error detected unlinked internal ghost box" << std::endl;
}
for (size_t j = 0 ; j < proc_int_box.get(i).ebx.size() ; j++)
{
if (proc_int_box.get(i).ibx.get(j).link == -1)
std::cerr << __FILE__ << ":" << __LINE__ << " error detected unlinked external ghost box" << std::endl;
}
}
#endif*/
/* for (size_t i = 0 ; i < this->getNNProcessors() ; i++)
{
for (size_t j = 0 ; j < this->getProcessorNIGhost(i) ; j++)
{
size_t id_i = this->getProcessorIGhostId(i,j);
long int link = this->getProcessorIGhostLink(i,j);
if (link == -1)
return false;
size_t id_e = this->getProcessorEGhostId(i,link);
if (id_i != id_e)
return false;
}
}*/
}
/////////////////////////////// Fixing IG BOX not clear if it is really needed /////////////////
/*! \brief Fix the destination box based on the source box
*
* in case of periodic grids external ghost box and internal ghost box can miss-match
* in size if the external ghost box is outside the domain, or more practically
* if internal and external ghost boxes are linked by periodicity.
* The two boxes has been calculated in two different way and round-off problem can happen
* In this call we fix such problem maching the received ghost box to the external ghost box
*
* \param bs source box
* \param dom_i domain from where the source box has been created
* \param bd destination box
* \param cmb sector of the destination box
*
*/
inline bool fix_box_ig(Box<dim,size_t> & bs, Box<dim,long int> & dom_i, const Box<dim,size_t> & bd, comb<dim> & cmb)
{
// Each dimension must match
for (size_t k = 0 ; k < dim ; k++)
{
size_t iw = bs.getHigh(k) - bs.getLow(k);
size_t ew = bd.getHigh(k) - bd.getLow(k);
if (iw != ew)
{
std::cout << "Fixing internal external" << std::endl;
Box<dim,size_t> & bst = bs;
if (cmb.c[k] == -1)
bst.setHigh(k,bd.getHigh(k) - (iw - ew));
else if (cmb.c[k] == 1)
bst.setLow(k,bs.getLow(k) + (iw - ew));
else
return false;