Newer
Older
/*
* CartDecomposition.hpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#ifndef CARTDECOMPOSITION_HPP
#define CARTDECOMPOSITION_HPP
#include "config.h"
#include "Decomposition.hpp"
#include <vector>
#include "global_const.hpp"
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "metis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam layout to use
* \tparam Memory Memory factory used to allocate memory
* \tparam Domain Structure that contain the information of your physical domain
* \tparam data type of structure that store the sub-domain decomposition can be an openfpm structure like
* vector, ...
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. At each sub-sub-domain is assigned an id that identify which processor is
* going to take care of that part of space (in general the space assigned to a processor is
* simply connected), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain with the id. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local sub-domain: all the sub-domain with id == local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
template<unsigned int dim, typename T, template<typename> class device_l=openfpm::device_cpu, typename Memory=HeapMemory, template<unsigned int, typename> class Domain=Box, template<typename, typename, typename, typename, unsigned int> class data_s = openfpm::vector>
// id of the processor in the nn_processor list (local processor id)
size_t id;
// Near processor sub-domains
typename openfpm::vector<::Box<dim,T>> bx;
};
struct Box_proc
{
// Intersection between the local sub-domain enlarged by the ghost and the contiguous processor
openfpm::vector<::Box<dim,T>> bx;
// Intersection between the contiguous processor sub-domain enlarged by the ghost with the
openfpm::vector<::Box<dim,T>> nbx;
// processor
size_t proc;
};
//! It contain a box definition and from witch sub-domain it come from
{
// Domain id
size_t sub;
Box_sub operator=(const Box<dim,T> & box)
{
::Box<dim,T>::operator=(box);
return *this;
}
struct Box_dom
{
// Intersection between the local sub-domain enlarged by the ghost and the contiguous processor
// sub-domains (External ghost)
// Intersection between the contiguous processor sub-domain enlarged by the ghost with the
// local sub-domain (Internal ghost)
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim,T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
typedef typename data_s<SpaceBox<dim,T>,device_l<SpaceBox<dim,T>>,Memory,openfpm::vector_grow_policy_default,openfpm::vect_isel<SpaceBox<dim,T>>::value >::access_key acc_key;
//! the margin of the sub-domain selected
SpaceBox<dim,T> sub_domain;
//! the set of all local sub-domain as vector
openfpm::vector<SpaceBox<dim,T>> sub_domains;
//! List of near processors
openfpm::vector<size_t> nn_processors;
//! for each sub-domain (first vector), contain the list (nested vector) of the neighborhood processors
//! and for each processor contain the boxes calculated from the intersection
//! of the sub-domains + ghost with the near-by processor sub-domain () and the other way around
//! \see calculateGhostBoxes
openfpm::vector< openfpm::vector< Box_proc > > box_nn_processor_int;
//! It store the same information of box_nn_processor_int organized by processor id
openfpm::vector< Box_dom > proc_int_box;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
// for each near-processor store the sub-domain of the near processor
std::unordered_map<size_t, N_box> nn_processor_subdomains;
//! it contain the internal ghosts of the local processor
openfpm::vector<Box_dom> loc_ghost_box;
//! Structure that contain for each sub-domain box the processor id
//! exist for efficient global communication
//! Structure that store the cartesian grid information
grid_sm<dim,void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim,T> cd;
//! rectangular domain to decompose
Domain<dim,T> domain;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
//! Cell-list that store the geometrical information about the intersection between the local sub-domain
//! and the near processor sub-domains
CellList<dim,T,FAST> geo_cell;
/*! \brief Create internally the decomposition
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
void CreateDecomposition(Vcluster & v_cl)
{
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim,T> bs = domain.getBox();
for (unsigned int i = 0; i < dim ; i++)
{
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
// Here we use METIS
// Create a cartesian grid graph
CartesianGraphFactory<dim,Graph_CSR<nm_part_v,nm_part_e>> g_factory_part;
Graph_CSR<nm_part_v,nm_part_e> gp = g_factory_part.template construct<NO_EDGE,T,dim-1>(gr.getSize(),domain);
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the processor id
long int p_id = v_cl.getProcessUnitID();
// Convert the graph to metis
Metis<Graph_CSR<nm_part_v,nm_part_e>> met(gp,Np);
// fill the structure that store the processor id for each sub-domain
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_part_v,nm_part_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
d_o.template optimize<nm_part_v::sub_id,nm_part_v::id>(gp,p_id,loc_box,box_nn_processor);
// produce the list of the contiguous processor (nn_processors) and link nn_processor_subdomains to the
// processor list
for (size_t i = 0 ; i < box_nn_processor.size() ; i++)
{
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
nn_processors.add(box_nn_processor.get(i).get(j));
}
}
// make the list sorted and unique
std::sort(nn_processors.begin(), nn_processors.end());
auto last = std::unique(nn_processors.begin(), nn_processors.end());
nn_processors.erase(last, nn_processors.end());
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// produce the list of the contiguous processor (nn_processors) and link nn_processor_subdomains to the
// processor list
for (size_t i = 0 ; i < box_nn_processor.size() ; i++)
{
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// processor id near to this sub-domain
size_t proc_id = box_nn_processor.get(i).get(j);
size_t k = 0;
// search inside near processor list
for (k = 0 ; k < nn_processors.size() ; k++)
if (nn_processors.get(k) == proc_id) break;
nn_processor_subdomains[proc_id].id = k;
}
}
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,T> sub_d(loc_box.get(0));
sub_d.mul(spacing);
sub_d.expand(spacing);
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
bbox = sub_d;
}
for (size_t s = 1 ; s < loc_box.size() ; s++)
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
auto it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_part_v::id>(key);
++it;
}
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
// calculate the sub-divisions (0.5 for rounding error)
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i) + 0.5);
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
geo_cell.Initialize(domain,div,orig);
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*! \brief Create the external local ghost boxes
*
* \param ghost margin to enlarge
*
*/
void create_loc_ghost_ebox(Ghost<dim,T> & ghost)
{
loc_ghost_box.resize(sub_domains.size());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
// add a local ghost box
loc_ghost_box.add();
// intersect with the other local sub-domains
for (size_t j = 0 ; j < sub_domains.size() ; j++)
{
if (i == j)
continue;
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(j);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
::Box<dim,T> bi;
bool intersect = sub_with_ghost.Intersect(::SpaceBox<dim,T>(sub_domains.get(j)),bi);
if (intersect == true)
{
Box_sub b;
b.sub = j;
b = bi;
loc_ghost_box.get(i).ibx.add(b);
}
}
}
}
/*! \brief Create the internal local ghost boxes
*
* \param ghost margin to enlarge
*
*/
void create_loc_ghost_ibox(Ghost<dim,T> & ghost)
{
loc_ghost_box.resize(sub_domains.size());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(i);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
// add a local ghost box
loc_ghost_box.add();
// intersect with the others local sub-domains
for (size_t j = 0 ; j < sub_domains.size() ; j++)
{
if (i == j)
continue;
::Box<dim,T> bi;
bool intersect = sub_with_ghost.Intersect(::SpaceBox<dim,T>(sub_domains.get(j)),bi);
if (intersect == true)
{
Box_sub b;
b.sub = j;
b = bi;
loc_ghost_box.get(i).ibx.add(b);
}
}
}
}
/*! \brief Create the subspaces that decompose your domain
*
* Create the subspaces that decompose your domain
*
*/
void CreateSubspaces()
{
// Create a grid where each point is a space
grid_sm<dim,void> g(div);
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
// create a grid_key_dx iterator
grid_key_dx_iterator<dim> gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext())
{
//! iterate through all subspaces
grid_key_dx<dim> key = gk_it.get();
//! Create a new subspace
SpaceBox<dim,T> tmp;
//! fill with the Margin of the box
for (int i = 0 ; i < dim ; i++)
{
tmp.setHigh(i,(key.get(i)+1)*spacing[i]);
tmp.setLow(i,key.get(i)*spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
/*! \brief Create the box_nn_processor_int (bx part) structure
*
* This structure store for each sub-domain of this processors enlarged by the ghost size the boxes that
* come from the intersection with the near processors sub-domains (External ghost box)
*
* \param ghost margins
*
* \note Are the G8_0 G9_0 G9_1 G5_0 boxes in calculateGhostBoxes
* \see calculateGhostBoxes
*
*/
void create_box_nn_processor_ext(Ghost<dim,T> & ghost)
{
box_nn_processor_int.resize(sub_domains.size());
proc_int_box.resize(getNNProcessors());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
SpaceBox<dim,T> sub_with_ghost = sub_domains.get(i);
// enlarge the sub-domain with the ghost
sub_with_ghost.enlarge(ghost);
// resize based on the number of adjacent processors
box_nn_processor_int.get(i).resize(box_nn_processor.get(i).size());
// For each processor adjacent to this sub-domain
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// Contiguous processor
size_t p_id = box_nn_processor.get(i).get(j);
// store the box in proc_int_box storing from which sub-domain they come from
Box_dom & proc_int_box_g = proc_int_box.get(ProctoID(p_id));
// get the set of sub-domains of the adjacent processor p_id
openfpm::vector< ::Box<dim,T> > & nn_processor_subdomains_g = nn_processor_subdomains[p_id].bx;
// near processor sub-domain intersections
openfpm::vector< ::Box<dim,T> > & box_nn_processor_int_gg = box_nn_processor_int.get(i).get(j).bx;
// for each near processor sub-domain intersect with the enlarged local sub-domain and store it
for (size_t b = 0 ; b < nn_processor_subdomains_g.size() ; b++)
bool intersect = sub_with_ghost.Intersect(::Box<dim,T>(nn_processor_subdomains_g.get(b)),bi);
if (intersect == true)
{
struct p_box pb;
pb.box = bi;
pb.proc = p_id;
pb.lc_proc = ProctoID(p_id);
//
// Updating
//
// vb_ext
// box_nn_processor_int
// proc_int_box
//
// They all store the same information but organized in different ways
// read the description of each for more information
//
box_nn_processor_int_gg.add(bi);
proc_int_box_g.ebx.add();
proc_int_box_g.ebx.last() = bi;
proc_int_box_g.ebx.last().sub = i;
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
}
}
}
}
}
/*! \brief Create the box_nn_processor_int (nbx part) structure, the geo_cell list and proc_int_box
*
* This structure store for each sub-domain of this processors the boxes that come from the intersection
* of the near processors sub-domains enlarged by the ghost size (Internal ghost box). These boxes
* fill a geometrical cell list. The proc_int_box store the same information ordered by near processors
*
* \param ghost margins
*
* \note Are the B8_0 B9_0 B9_1 B5_0 boxes in calculateGhostBoxes
* \see calculateGhostBoxes
*
*/
void create_box_nn_processor_int(Ghost<dim,T> & ghost)
{
box_nn_processor_int.resize(sub_domains.size());
proc_int_box.resize(getNNProcessors());
// For each sub-domain
for (size_t i = 0 ; i < sub_domains.size() ; i++)
{
// For each processor contiguous to this sub-domain
for (size_t j = 0 ; j < box_nn_processor.get(i).size() ; j++)
{
// Contiguous processor
size_t p_id = box_nn_processor.get(i).get(j);
// get the set of sub-domains of the contiguous processor p_id
openfpm::vector< ::Box<dim,T> > & nn_p_box = nn_processor_subdomains[p_id].bx;
// get the local processor id
size_t lc_proc = nn_processor_subdomains[p_id].id;
// For each near processor sub-domains enlarge and intersect with the local sub-domain and store the result
for (size_t k = 0 ; k < nn_p_box.size() ; k++)
{
// enlarge the near-processor sub-domain
::Box<dim,T> n_sub = nn_p_box.get(k);
// local sub-domain
::SpaceBox<dim,T> l_sub = sub_domains.get(i);
// Create a margin of ghost size around the near processor sub-domain
n_sub.enlarge(ghost);
// Intersect with the local sub-domain
p_box b_int;
bool intersect = n_sub.Intersect(l_sub,b_int.box);
// store if it intersect
if (intersect == true)
{
// the box fill with the processor id
b_int.proc = p_id;
// fill the local processor id
b_int.lc_proc = lc_proc;
//
// Updating
//
// vb_int
// box_nn_processor_int
// proc_int_box
//
// They all store the same information but organized in different ways
// read the description of each for more information
//
// add the box to the near processor sub-domain intersections
openfpm::vector< ::Box<dim,T> > & p_box_int = box_nn_processor_int.get(i).get(j).nbx;
p_box_int.add(b_int.box);
vb_int.add(b_int);
// store the box in proc_int_box storing from which sub-domain they come from
Box_dom & pr_box_int = proc_int_box.get(ProctoID(p_id));
sb.sub = i;
pr_box_int.ibx.add(sb);
// update the geo_cell list
// get the boxes this box span
const grid_key_dx<dim> p1 = geo_cell.getCellGrid(b_int.box.getP1());
const grid_key_dx<dim> p2 = geo_cell.getCellGrid(b_int.box.getP2());
// Get the grid and the sub-iterator
auto & gi = geo_cell.getGrid();
grid_key_dx_iterator_sub<dim> g_sub(gi,p1,p2);
// add the box-id to the cell list
while (g_sub.isNext())
{
auto key = g_sub.get();
geo_cell.addCell(gi.LinId(key),vb_int.size()-1);
++g_sub;
}
}
}
}
}
}
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// Receive counter
size_t recv_cnt;
/*! \brief Message allocation
*
* \param message size required to receive from i
* \param total message size to receive from all the processors
* \param the total number of processor want to communicate with you
* \param i processor id
* \param ri request id (it is an id that goes from 0 to total_p, and is unique
* every time message_alloc is called)
* \param ptr a pointer to the vector_dist structure
*
* \return the pointer where to store the message
*
*/
static void * message_alloc(size_t msg_i ,size_t total_msg, size_t total_p, size_t i, size_t ri, void * ptr)
{
// cast the pointer
CartDecomposition<dim,T,device_l,Memory,Domain,data_s> * cd = static_cast< CartDecomposition<dim,T,device_l,Memory,Domain,data_s> *>(ptr);
// Resize the memory
cd->nn_processor_subdomains[i].bx.resize(msg_i / sizeof(::Box<dim,T>) );
return cd->nn_processor_subdomains[i].bx.getPointer();
public:
/*! \brief Cartesian decomposition copy constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(CartDecomposition<dim,T,device_l,Memory,Domain,data_s> && cd)
:sub_domain(cd.sub_domain),gr(cd.gr),cd(cd.cd),domain(cd.domain),v_cl(cd.v_cl)
// Reset the box to zero
bbox.zero();
//! the set of all local sub-domain as vector
sub_domains.swap(cd.sub_domains);
for (size_t i = 0 ; i < dim ; i++)
{
//! Box Spacing
this->spacing[i] = spacing[i];
}
}
/*! \brief Cartesian decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
CartDecomposition(Vcluster & v_cl)
{
// Reset the box to zero
bbox.zero();
}
/*! \brief Cartesian decomposition constructor, it divide the space in boxes
*
* \param dec is a vector that store how to divide on each dimension
* \param domain is the domain to divide
* \param v_cl are information of the cluster runtime machine
*
*/
CartDecomposition(std::vector<size_t> dec, Domain<dim,T> domain, Vcluster & v_cl)
:gr(dec),cd(domain,dec,0),domain(domain),v_cl(v_cl)
CreateDecomposition(v_cl);
}
//! Cartesian decomposition destructor
~CartDecomposition()
{}
// It store all the boxes of the near processors in a linear array
struct p_box
{
//! Box that identify the intersection of the ghost of the near processor with the
//! processor sub-domain
::Box<dim,T> box;
//! local processor id
size_t lc_proc;
//! processor id
size_t proc;
/*! \brief Check if two p_box are the same
*
* \param pb box to check
*
*/
bool operator==(const p_box & pb)
{
return pb.lc_proc == lc_proc;
}
};
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id
{
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id
{
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id
{
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box & p, size_t b_id)
{
return p.lc_proc;
}
};
/*! /brief Given a point it return the set of boxes in which the point fall
*
* \param p Point to check
* \return An iterator with the id's of the internal boxes in which the point fall
*
*/
auto getInternalIDBoxes(Point<dim,T> & p) -> decltype(geo_cell.getIterator(geo_cell.getCell(p)))
{
return geo_cell.getIterator(geo_cell.getCell(p));
}
#define UNIQUE 1
#define MULTIPLE 2
/*! \brief Given a position it return if the position belong to any neighborhood processor ghost
* \tparam id type of if to get box_id processor_id lc_processor_id
* \param opt intersection boxes of the same processor can overlap, so in general the function
* can produce more entry with the same processor, the UNIQUE option eliminate double entries
* (UNIQUE) is for particle data (MULTIPLE) is for grid data [default MULTIPLE]
*
* \param return the processor ids
*
*/
template <typename id> inline const openfpm::vector<size_t> ghost_processorID(Point<dim,T> & p, const int opt = MULTIPLE)
// Check with geo-cell if a particle is inside one Cell containing boxes
auto cell_it = geo_cell.getIterator(geo_cell.getCell(p));
// For each element in the cell, check if the point is inside the box
// if it is, store the processor id
while (cell_it.isNext())
{
size_t bid = cell_it.get();
if (vb_int.get(bid).box.isInside(p) == true)
{
ids.add(id::id(vb_int.get(bid),bid));
// Make the id unique
if (opt == UNIQUE)
ids.unique();
return ids;
}
/*! \brief Given a position it return if the position belong to any neighborhood processor ghost
* \tparam id type of if to get box_id processor_id lc_processor_id
* \param p Particle position
*
* \param return the processor ids
*
*/
template<typename id, typename Mem> inline const openfpm::vector<size_t> ghost_processorID(const encapc<1,Point<dim,T>,Mem> & p, const int opt = MULTIPLE)
{
ids.clear();
// Check with geo-cell if a particle is inside one Cell containing boxes
auto cell_it = geo_cell.getIterator(geo_cell.getCell(p));
// For each element in the cell, check if the point is inside the box
// if it is, store the processor id
while (cell_it.isNext())
{
size_t bid = cell_it.get();
if (vb_int.get(bid).box.isInside(p) == true)
{
ids.add(id::id(vb_int.get(bid),bid));
// Make the id unique
if (opt == UNIQUE)
ids.unique();
// External ghost boxes for this processor, indicated with G8_0 G9_0 ...
openfpm::vector<p_box> vb_ext;
// Internal ghost boxes for this processor domain, indicated with B8_0 B9_0 ..... in the figure
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
*
* Example: Processor 10 calculate
* B8_0 B9_0 B9_1 and B5_0
*
*
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| | |
| | |
++--------------+---+---------------------------+----+ Processor 9 |
| | | B8_0 | | Subdomain 0 |
| +------------------------------------+ |
| | | | | |
| | | XXXXXXXXXXXXX XX |B9_0| |
| | B | X Processor 10 X | | |
| Processor 5 | 5 | X Sub-domain 0 X | | |
| Subdomain 0 | _ | X X +----------------------------------------+
| | 0 | XXXXXXXXXXXXXXXX | | |
| | | | | |
| | | | | Processor 9 |
| | | |B9_1| Subdomain 1 |
| | | | | |
| | | | | |
| | | | | |
+--------------+---+---------------------------+----+ |
| |
+-----------------------------------+
and also
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| +---------------------------------------------+ |
| | G8_0 | | |
++--------------+------------------------------------+ | Processor 9 |
| | | | | Subdomain 0 |
| | | |G9_0| |
| | | | | |
| | | XXXXXXXXXXXXX XX | | |
| | | X Processor 10 X | | |
| Processor|5 | X Sub-domain 0 X | | |
| Subdomain|0 | X X +-----------------------------------+
| | | XXXXXXXXXXXXXXXX | | |
| | G | | | |
| | 5 | | | Processor 9 |
| | | | | | Subdomain 1 |
| | 0 | |G9_1| |
| | | | | |
| | | | | |
+--------------+------------------------------------+ | |
| | | |
+----------------------------------------+----+------------------------------+
*
*
*
* \param ghost margins for each dimensions (p1 negative part) (p2 positive part)
*
^ p2[1]
|
|
+----+----+
| |
| |
p1[0]<-----+ +----> p2[0]
| |
| |
+----+----+
|
v p1[1]
*
*
*/
void calculateGhostBoxes(Ghost<dim,T> & ghost)
{
#ifdef DEBUG
// the ghost margins are assumed to be smaller
// than one sub-domain