Newer
Older
/**
* BUDE CUDA kernel file
**/
#define CUDIFY_BOOST_CONTEXT_STACK_SIZE 32768
//#define SE_CLASS1
#include <float.h>
#include <stdio.h>
#include <sys/time.h>
#include "Vector/map_vector.hpp"
//#define USE_SHARED
constexpr int pos = 0;
constexpr int ind = 1;
constexpr int x = 0;
constexpr int y = 1;
constexpr int z = 2;
constexpr int hbtype = 0;
constexpr int radius = 1;
constexpr int hphb = 2;
constexpr int elsc = 3;
// Good for GPU
#define NUM_TD_PER_THREAD 4
#endif
typedef struct
{
float x, y, z;
int index;
} Atom;
typedef struct
{
int hbtype;
float radius;
float hphb;
float elsc;
} FFParams;
typedef struct
{
int natlig;
int natpro;
int ntypes;
int nposes;
char * deckDir;
int iterations;
} Params;
Params params;
typedef struct
{
// _lin = AOS
openfpm::vector_gpu_lin<aggregate<float[3],int>> d_protein;
// AOS
openfpm::vector_gpu_lin<aggregate<float[3],int>> d_ligand;
// AOS
openfpm::vector_gpu_lin<aggregate<int,float,float,float>> d_forcefield;
// SOA
openfpm::vector_gpu<aggregate<float>> d_results;
openfpm::vector_gpu<aggregate<float,float,float,float,float,float>> d_poses;
int deviceIndex;
int wgsize;
int posesPerWI;
} OpenFPM;
double getTimestamp()
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec + tv.tv_sec*1e6;
}
void printTimings(double start, double end, double poses_per_wi, openfpm::vector<double> & gflops_data)
{
double ms = ((end-start)/params.iterations)*1e-3;
// Compute FLOP/s
double runtime = ms*1e-3;
double ops_per_wi = 27*poses_per_wi
+ params.natlig*(3 + 18*poses_per_wi + params.natpro*(11 + 30*poses_per_wi))
+ poses_per_wi;
double total_ops = ops_per_wi * (params.nposes/poses_per_wi);
double flops = total_ops / runtime;
double gflops = flops / 1e9;
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
double interactions =
(double)params.nposes
* (double)params.natlig
* (double)params.natpro;
double interactions_per_sec = interactions / runtime;
// Print stats
printf("- Total time: %7.2lf ms\n", (end-start)*1e-3);
printf("- Average time: %7.2lf ms\n", ms);
printf("- Interactions/s: %7.2lf billion\n", (interactions_per_sec / 1e9));
printf("- GFLOP/s: %7.2lf\n", gflops);
}
// Numeric constants
#define ZERO 0.0f
#define QUARTER 0.25f
#define HALF 0.5f
#define ONE 1.0f
#define TWO 2.0f
#define FOUR 4.0f
#define CNSTNT 45.0f
#define HBTYPE_F 70
#define HBTYPE_E 69
// The data structure for one atom - 16 bytes
typedef struct
{
float x, y, z, w;
} Transform;
#define HARDNESS 38.0f
#define NPNPDIST 5.5f
#define NPPDIST 1.0f
__device__ inline void compute_transformation_matrix(const float transform_0,
const float transform_1,
const float transform_2,
const float transform_3,
const float transform_4,
const float transform_5,
Transform* transform)
{
const float sx = sin(transform_0);
const float cx = cos(transform_0);
const float sy = sin(transform_1);
const float cy = cos(transform_1);
const float sz = sin(transform_2);
const float cz = cos(transform_2);
transform[0].x = cy*cz;
transform[0].y = sx*sy*cz - cx*sz;
transform[0].z = cx*sy*cz + sx*sz;
transform[0].w = transform_3;
transform[1].x = cy*sz;
transform[1].y = sx*sy*sz + cx*cz;
transform[1].z = cx*sy*sz - sx*cz;
transform[1].w = transform_4;
transform[2].x = -sy;
transform[2].y = sx*cy;
transform[2].z = cx*cy;
transform[2].w = transform_5;
}
template<typename vector_atom, typename vector_ff, typename vector_tr, typename vector_out>
__global__ void fasten_main(const int natlig,
const int natpro,
const vector_atom protein_molecule,
const vector_atom ligand_molecule,
const vector_tr transforms,
vector_out etotals,
const vector_ff global_forcefield,
const int num_atom_types,
const int numTransforms)
{
// Get index of first TD
int ix = blockIdx.x*blockDim.x*NUM_TD_PER_THREAD + threadIdx.x;
// Have extra threads do the last member intead of return.
// A return would disable use of barriers, so not using return is better
ix = ix < numTransforms ? ix : numTransforms - NUM_TD_PER_THREAD;
#ifdef USE_SHARED
__shared__ FFParams forcefield[100];
if(ix < num_atom_types)
{
forcefield[ix].hbtype = global_forcefield.template get<hbtype>(ix);
forcefield[ix].radius = global_forcefield.template get<radius>(ix);
forcefield[ix].hphb = global_forcefield.template get<hphb>(ix);
forcefield[ix].elsc = global_forcefield.template get<elsc>(ix);
}
#else
#endif
// Compute transformation matrix to private memory
float etot[NUM_TD_PER_THREAD];
Transform transform[NUM_TD_PER_THREAD][3];
const int lsz = blockDim.x;
#pragma omp simd
for (int i = 0; i < NUM_TD_PER_THREAD; i++)
{
int index = ix + i*lsz;
compute_transformation_matrix(
transforms.template get<0>(index),
transforms.template get<1>(index),
transforms.template get<2>(index),
transforms.template get<3>(index),
transforms.template get<4>(index),
transforms.template get<5>(index),
transform[i]);
etot[i] = ZERO;
}
#ifdef USE_SHARED
__syncthreads();
#endif
// Loop over ligand atoms
int il = 0;
do
{
// Load ligand atom data
const Atom l_atom = {ligand_molecule.template get<pos>(il)[x],
ligand_molecule.template get<pos>(il)[y],
ligand_molecule.template get<pos>(il)[z],
ligand_molecule.template get<ind>(il)};
const FFParams l_params = {global_forcefield.template get<hbtype>(l_atom.index),
global_forcefield.template get<radius>(l_atom.index),
global_forcefield.template get<hphb>(l_atom.index),
global_forcefield.template get<elsc>(l_atom.index)};
const bool lhphb_ltz = l_params.hphb<ZERO;
const bool lhphb_gtz = l_params.hphb>ZERO;
float lpos_x[NUM_TD_PER_THREAD];
float lpos_y[NUM_TD_PER_THREAD];
float lpos_z[NUM_TD_PER_THREAD];
const float4 linitpos = make_float4(l_atom.x,l_atom.y,l_atom.z,ONE);
#pragma omp simd
for (int i = 0; i < NUM_TD_PER_THREAD; i++)
{
// Transform ligand atom
lpos_x[i] = transform[i][0].w + linitpos.x*transform[i][0].x +
linitpos.y*transform[i][0].y + linitpos.z*transform[i][0].z;
lpos_y[i] = transform[i][1].w + linitpos.x*transform[i][1].x +
linitpos.y*transform[i][1].y + linitpos.z*transform[i][1].z;
lpos_z[i] = transform[i][2].w + linitpos.x*transform[i][2].x +
linitpos.y*transform[i][2].y + linitpos.z*transform[i][2].z;
}
// Loop over protein atoms
int ip = 0;
do
{
// Load protein atom data
const Atom p_atom = {protein_molecule.template get<pos>(ip)[x],
protein_molecule.template get<pos>(ip)[y],
protein_molecule.template get<pos>(ip)[z],
protein_molecule.template get<ind>(ip)};
const FFParams p_params = {global_forcefield.template get<hbtype>(p_atom.index),
global_forcefield.template get<radius>(p_atom.index),
global_forcefield.template get<hphb>(p_atom.index),
global_forcefield.template get<elsc>(p_atom.index)};
const float radij = p_params.radius + l_params.radius;
const float r_radij = 1.0f/radij;
const float elcdst = (p_params.hbtype==HBTYPE_F && l_params.hbtype==HBTYPE_F) ? FOUR : TWO;
const float elcdst1 = (p_params.hbtype==HBTYPE_F && l_params.hbtype==HBTYPE_F) ? QUARTER : HALF;
const bool type_E = ((p_params.hbtype==HBTYPE_E || l_params.hbtype==HBTYPE_E));
const bool phphb_ltz = p_params.hphb<ZERO;
const bool phphb_gtz = p_params.hphb>ZERO;
const bool phphb_nz = p_params.hphb!=ZERO;
const float p_hphb = p_params.hphb * (phphb_ltz && lhphb_gtz ? -ONE : ONE);
const float l_hphb = l_params.hphb * (phphb_gtz && lhphb_ltz ? -ONE : ONE);
const float distdslv = (phphb_ltz ? (lhphb_ltz ? NPNPDIST : NPPDIST) : (lhphb_ltz ? NPPDIST : -FLT_MAX) );
float r_distdslv = 1.0f/distdslv;
const float chrg_init = l_params.elsc * p_params.elsc;
const float dslv_init = p_hphb + l_hphb;
#pragma omp simd
for (int i = 0; i < NUM_TD_PER_THREAD; i++)
{
// Calculate distance between atoms
const float x = lpos_x[i] - p_atom.x;
const float y = lpos_y[i] - p_atom.y;
const float z = lpos_z[i] - p_atom.z;
const float distij = sqrtf(x*x + y*y + z*z);
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// Calculate the sum of the sphere radii
const float distbb = distij - radij;
const bool zone1 = (distbb < ZERO);
// Calculate steric energy
etot[i] += (ONE - (distij*r_radij)) * (zone1 ? 2*HARDNESS : ZERO);
// Calculate formal and dipole charge interactions
float chrg_e = chrg_init * ((zone1 ? 1 : (ONE - distbb*elcdst1))
* (distbb<elcdst ? 1 : ZERO));
const float neg_chrg_e = -fabs(chrg_e);
chrg_e = type_E ? neg_chrg_e : chrg_e;
etot[i] += chrg_e*CNSTNT;
// Calculate the two cases for Nonpolar-Polar repulsive interactions
const float coeff = (ONE - (distbb *r_distdslv));
float dslv_e = dslv_init * ((distbb<distdslv && phphb_nz) ? 1 : ZERO);
dslv_e *= (zone1 ? 1 : coeff);
etot[i] += dslv_e;
}
}
while (++ip < natpro); // loop over protein atoms
}
while (++il < natlig); // loop over ligand atoms
// Write results
const int td_base = blockIdx.x*blockDim.x*NUM_TD_PER_THREAD + threadIdx.x;
if (td_base < numTransforms)
{
#pragma omp simd
for (int i = 0; i < NUM_TD_PER_THREAD; i++)
{
etotals.template get<0>(td_base+i*blockDim.x) = etot[i]*HALF;
}
}
} //end of fasten_main
void runCUDA(OpenFPM & _openfpm)
{
_openfpm.d_protein.hostToDevice<pos,ind>();
_openfpm.d_ligand.hostToDevice<pos,ind>();
_openfpm.d_forcefield.hostToDevice<hbtype,radius,hphb,elsc>();
_openfpm.d_results.resize(params.nposes);
_openfpm.d_poses.template hostToDevice<0,1,2,3,4,5>();
size_t global = ceil(params.nposes/(double)_openfpm.posesPerWI);
global = ceil(global/(double)_openfpm.wgsize);
size_t local = _openfpm.wgsize;
size_t shared = params.ntypes * sizeof(FFParams);
cudaDeviceSynchronize();
double start = getTimestamp();
for(int ii = 0; ii < params.iterations; ++ii)
{
CUDA_LAUNCH_DIM3(fasten_main,global, local,
params.natlig,
params.natpro,
_openfpm.d_protein.toKernel(),
_openfpm.d_ligand.toKernel(),
_openfpm.d_poses.toKernel(),
_openfpm.d_results.toKernel(),
_openfpm.d_forcefield.toKernel(),
params.ntypes,
params.nposes);
}
cudaDeviceSynchronize();
double end = getTimestamp();
_openfpm.d_results.deviceToHost<0>();
printTimings(start, end, _openfpm.posesPerWI, _openfpm.gflops_data);
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
}
#define MAX_PLATFORMS 8
#define MAX_DEVICES 32
#define MAX_INFO_STRING 256
#define DATA_DIR "bm1"
#define FILE_LIGAND "/ligand.in"
#define FILE_PROTEIN "/protein.in"
#define FILE_FORCEFIELD "/forcefield.in"
#define FILE_POSES "/poses.in"
#define FILE_REF_ENERGIES "/ref_energies.out"
#define REF_NPOSES 65536
// Energy evaluation parameters
#define CNSTNT 45.0f
#define HBTYPE_F 70
#define HBTYPE_E 69
#define HARDNESS 38.0f
#define NPNPDIST 5.5f
#define NPPDIST 1.0f
void printTimings(double start, double end, double poses_per_wi);
void checkError(int err, const char *op);
FILE* openFile(const char *parent, const char *child,
const char* mode, long *length)
{
char name[strlen(parent) + strlen(child) + 1];
strcpy(name, parent);
strcat(name, child);
FILE *file = NULL;
if (!(file = fopen(name, mode)))
{
fprintf(stderr, "Failed to open '%s'\n", name);
exit(1);
}
if(length){
fseek(file, 0, SEEK_END);
*length = ftell(file);
rewind(file);
}
return file;
}
int parseInt(const char *str)
{
char *next;
int value = strtoul(str, &next, 10);
return strlen(next) ? -1 : value;
}
void loadParameters(int argc, char *argv[], OpenFPM & _openfpm)
{
// Defaults
params.deckDir = DATA_DIR;
params.iterations = 8;
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
_openfpm.posesPerWI = NUM_TD_PER_THREAD;
int nposes = 65536;
for (int i = 1; i < argc; i++)
{
if (!strcmp(argv[i], "--device") || !strcmp(argv[i], "-d"))
{
if (++i >= argc || (_openfpm.deviceIndex = parseInt(argv[i])) < 0)
{
printf("Invalid device index\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--iterations") || !strcmp(argv[i], "-i"))
{
if (++i >= argc || (params.iterations = parseInt(argv[i])) < 0)
{
printf("Invalid number of iterations\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--numposes") || !strcmp(argv[i], "-n"))
{
if (++i >= argc || (nposes = parseInt(argv[i])) < 0)
{
printf("Invalid number of poses\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--posesperwi") || !strcmp(argv[i], "-p"))
{
if (++i >= argc || (_openfpm.posesPerWI = parseInt(argv[i])) < 0)
{
printf("Invalid poses-per-workitem value\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--wgsize") || !strcmp(argv[i], "-w"))
{
if (++i >= argc || (_openfpm.wgsize = parseInt(argv[i])) < 0)
{
printf("Invalid work-group size\n");
exit(1);
}
}
else if (!strcmp(argv[i], "--deck"))
{
if (++i >= argc)
{
printf("Invalid deck\n");
exit(1);
}
params.deckDir = argv[i];
}
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
{
printf("\n");
printf("Usage: ./bude [OPTIONS]\n\n");
printf("Options:\n");
printf(" -h --help Print this message\n");
printf(" --list List available devices\n");
printf(" --device INDEX Select device at INDEX\n");
printf(" -i --iterations I Repeat kernel I times\n");
printf(" -n --numposes N Compute results for N poses\n");
printf(" -p --poserperwi PPWI Compute PPWI poses per work-item\n");
printf(" -w --wgsize WGSIZE Run with work-group size WGSIZE\n");
printf(" --deck DECK Use the DECK directory as input deck\n");
printf("\n");
exit(0);
}
else
{
printf("Unrecognized argument '%s' (try '--help')\n", argv[i]);
exit(1);
}
}
FILE *file = NULL;
long length;
file = openFile(params.deckDir, FILE_LIGAND, "rb", &length);
params.natlig = length / sizeof(Atom);
_openfpm.d_ligand.resize(params.natlig);
for (int i = 0 ; i < _openfpm.d_ligand.size() ; i++)
{
fread(&_openfpm.d_ligand.template get<pos>(i)[0],sizeof(float),1,file);
fread(&_openfpm.d_ligand.template get<pos>(i)[1],sizeof(float),1,file);
fread(&_openfpm.d_ligand.template get<pos>(i)[2],sizeof(float),1,file);
fread(&_openfpm.d_ligand.template get<ind>(i),sizeof(int),1,file);
}
fclose(file);
file = openFile(params.deckDir, FILE_PROTEIN, "rb", &length);
params.natpro = length / sizeof(Atom);
_openfpm.d_protein.resize(params.natpro);
for (int i = 0 ; i < _openfpm.d_protein.size() ; i++)
{
fread(&_openfpm.d_protein.template get<pos>(i)[0],sizeof(float),1,file);
fread(&_openfpm.d_protein.template get<pos>(i)[1],sizeof(float),1,file);
fread(&_openfpm.d_protein.template get<pos>(i)[2],sizeof(float),1,file);
fread(&_openfpm.d_protein.template get<ind>(i),sizeof(int),1,file);
}
fclose(file);
file = openFile(params.deckDir, FILE_FORCEFIELD, "rb", &length);
params.ntypes = length / sizeof(FFParams);
_openfpm.d_forcefield.resize(params.ntypes);
for (int i = 0 ; i < _openfpm.d_forcefield.size() ; i++)
{
fread(&_openfpm.d_forcefield.template get<hbtype>(i),sizeof(int),1,file);
fread(&_openfpm.d_forcefield.template get<radius>(i),sizeof(float),1,file);
fread(&_openfpm.d_forcefield.template get<hphb>(i),sizeof(float),1,file);
fread(&_openfpm.d_forcefield.template get<elsc>(i),sizeof(float),1,file);
}
fclose(file);
file = openFile(params.deckDir, FILE_POSES, "rb", &length);
_openfpm.d_poses.resize(nposes);
long available = length / 6 / sizeof(float);
params.nposes = 0;
while (params.nposes < nposes)
{
long fetch = nposes - params.nposes;
if (fetch > available)
fetch = available;
fseek(file, 0*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<0>(params.nposes+k),sizeof(float),1,file);}
fseek(file, 1*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<1>(params.nposes+k),sizeof(float),1,file);}
fseek(file, 2*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<2>(params.nposes+k),sizeof(float),1,file);}
fseek(file, 3*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<3>(params.nposes+k),sizeof(float),1,file);}
fseek(file, 4*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<4>(params.nposes+k),sizeof(float),1,file);}
fseek(file, 5*available*sizeof(float), SEEK_SET);
for (int k = 0 ; k < fetch ; k++)
{fread(&_openfpm.d_poses.template get<5>(params.nposes+k),sizeof(float),1,file);}
rewind(file);
params.nposes += fetch;
}
fclose(file);
}
#include <fenv.h>
#include <xmmintrin.h>
#include <pmmintrin.h>
int main(int argc, char *argv[])
{
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
init_wrappers();
OpenFPM _openfpm;
loadParameters(argc, argv, _openfpm);
printf("\n");
printf("Poses : %d\n", params.nposes);
printf("Iterations: %d\n", params.iterations);
printf("Ligands : %d\n", params.natlig);
printf("Proteins : %d\n", params.natpro);
printf("Deck : %s\n", params.deckDir);
float *resultsRef = (float *)malloc(params.nposes*sizeof(float));
// We run the benchmark 30 times to get mean and variace
for (int i = 0 ; i < 30 ; i++)
{
// calculate mean and variance
double mean;
double dev;
standard_deviation(_openfpm.gflops_data,mean,dev);
printf("\n\n\nMean %f ~ %f GFlops/s \n\n\n",mean,dev);
FILE* perf_out = openFile("./","performance_out", "w", NULL);
char out[256];
sprintf(out,"%f %f",mean,dev);
fwrite(out,1,strlen(out),perf_out);
fclose(perf_out);
// Load reference results from file
FILE* ref_energies = openFile(params.deckDir, FILE_REF_ENERGIES, "r", NULL);
size_t n_ref_poses = params.nposes;
if (params.nposes > REF_NPOSES) {
printf("Only validating the first %d poses.\n", REF_NPOSES);
n_ref_poses = REF_NPOSES;
}
for (size_t i = 0; i < n_ref_poses; i++)
fscanf(ref_energies, "%f", &resultsRef[i]);
float maxdiff = -100.0f;
printf("\n Reference CUDA (diff)\n");
for (int i = 0; i < n_ref_poses; i++)
{
if (fabs(resultsRef[i]) < 1.f && fabs(_openfpm.d_results.template get<0>(i)) < 1.f) continue;
float diff = fabs(resultsRef[i] - _openfpm.d_results.template get<0>(i)) / _openfpm.d_results.template get<0>(i);
if (diff > maxdiff) {
maxdiff = diff;
// printf ("Maxdiff: %.2f (%.3f vs %.3f)\n", maxdiff, resultsRef[i], resultsCUDA[i]);
if (i < 8)
printf("%7.2f vs %7.2f (%5.2f%%)\n", resultsRef[i], _openfpm.d_results.template get<0>(i), 100*diff);
printf("\nLargest difference was %.3f%%\n\n", maxdiff*100);
free(resultsRef);
#else
int main(int argc, char *argv[])
{
}
#endif