-
Pietro Incardona authoredPietro Incardona authored
gargabe.hpp 27.59 KiB
/*
* gargabe.hpp
*
* Created on: Jan 13, 2015
* Author: i-bird
*/
#ifdef GARGABE_HPP_
#define GARGABE_HPP_
template <unsigned int j, unsigned int i, typename Graph> void optimize(size_t start_p, Graph & graph)
{
// We assume that Graph is the rapresentation of a cartesian graph
// this mean that the direction d is at the child d
// Create an Hyper-cube
HyperCube<dim> hyp;
// Get the number of wavefronts
size_t n_wf = hyp.getNumberOfElements_R(0);
// Get the number of intersecting wavefront
// Get the number of sub-dimensional common wavefront
// basically are a list of all the subdomain common to two or more
// Create n_wf wavefront queue
openfpm::vector<wavefront> v_w;
v.reserve(n_wf);
// direction of expansion
size_t domain_id = 0;
int exp_dir = 0;
bool can_expand = true;
// while is possible to expand
while (can_expand)
{
// for each direction of expansion expand the wavefront
for (int d = 0 ; d < n_wf ; d++)
{
// get the wavefront at direction d
openfpm::vector<size_t> & wf_d = v_w.get<wavefront::domains>(d);
// flag to indicate if the wavefront can expand
bool w_can_expand = true;
// for each subdomain
for (size_t sub = 0 ; sub < wf_d.size() ; sub++)
{
// check if the adjacent domain in direction d exist
// and is of the same id
// get the starting subdomain
size_t sub_w = wf_d.get<0>(sub);
// we get the processor id of the neighborhood sub-domain on direction d
size_t exp_p = graph.getChild(sub_w,d).get<j>();
// we check if it is the same processor id
if (exp_p != domain_id)
{
w_can_expand = false;
}
}
// if we can expand the wavefront expand it
if (w_can_expand == true)
{
// for each subdomain
for (size_t sub = 0 ; sub < wf_d.size() ; sub++)
{
// update the position of the wavefront
wf_d.get<0>(sub) = wf_d.get<0>(sub) + gh.stride(d);
}
// here we add sub-domains to all the other queues
// get the face of the hyper-cube
SubHyperCube<dim,dim-1> sub_hyp = hyp.getSubHyperCube(d);
std::vector<comb<dim>> q_comb = sub_hyp.getCombinations_R(dim-2);
}
}
}
// For each point in the Hyper-cube check if we can move the wave front
}
#ifndef PARALLEL_DECOMPOSITION
// CreateSubspaces();
#endif
#ifndef USE_METIS_GP
// Here we do not use METIS
// Distribute the divided domains
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Get the ID of this processing unit
// and push the subspace is taking this
// processing unit
for (size_t p_id = v_cl.getProcessUnitID(); p_id < Np ; p_id += Np)
id_sub.push_back(p_id);
#else
#endif
<<<<<<< HEAD
/////////////// DEBUG /////////////////////
// get the decomposition
auto & dec = g_dist.getDecomposition();
Vcluster & v_cl = *global_v_cluster;
// check the consistency of the decomposition
val = dec.check_consistency();
BOOST_REQUIRE_EQUAL(val,true);
// for each local volume
// Get the number of local grid needed
size_t n_grid = dec.getNLocalHyperCube();
size_t vol = 0;
openfpm::vector<Box<2,size_t>> v_b;
// Allocate the grids
for (size_t i = 0 ; i < n_grid ; i++)
{
// Get the local hyper-cube
SpaceBox<2,float> sub = dec.getLocalHyperCube(i);
Box<2,size_t> g_box = g_dist.getCellDecomposer().convertDomainSpaceIntoGridUnits(sub);
v_b.add(g_box);
vol += g_box.getVolumeKey();
}
v_cl.reduce(vol);
v_cl.execute();
BOOST_REQUIRE_EQUAL(vol,k*k);
/////////////////////////////////////
// 3D test
// g_dist.write("");
/* auto g_it = g_dist.getIteratorBulk();
auto g_it_halo = g_dist.getHalo();
// Let try to solve the poisson equation d2(u) = f with f = 1 and computation
// comunication overlap (100 Jacobi iteration)
for (int i = 0 ; i < 100 ; i++)
{
g_dist.ghost_get();
// Compute the bulk
jacobi_iteration(g_it);
g_dist.ghost_sync();
// Compute the halo
jacobi_iteration(g_it_halo);
}*/
BOOST_AUTO_TEST_CASE( grid_dist_id_poisson_test_use)
{
// grid size
/* size_t sz[2] = {1024,1024};
// Distributed grid with id decomposition
grid_dist_id<2, scalar<float>, CartDecomposition<2,size_t>> g_dist(sz);
// Create the grid on memory
g_dist.Create();*/
/* auto g_it = g_dist.getIteratorBulk();
auto g_it_halo = g_dist.getHalo();
// Let try to solve the poisson equation d2(u) = f with f = 1 and computation
// comunication overlap (100 Jacobi iteration)
for (int i = 0 ; i < 100 ; i++)
{
g_dist.ghost_get();
// Compute the bulk
jacobi_iteration(g_it);
g_dist.ghost_sync();
// Compute the halo
jacobi_iteration(g_it_halo);
}*/
}
template<typename iterator> void jacobi_iteration(iterator g_it, grid_dist_id<2, float, scalar<float>, CartDecomposition<2,float>> & g_dist)
{
// scalar
typedef scalar<float> S;
// iterator
while(g_it.isNext())
{
// Jacobi update
auto pos = g_it.get();
g_dist.template get<S::ele>(pos) = (g_dist.template get<S::ele>(pos.move(0,1)) +
g_dist.template get<S::ele>(pos.move(0,-1)) +
g_dist.template get<S::ele>(pos.move(1,1)) +
g_dist.template get<S::ele>(pos.move(1,-1)) / 4.0);
++g_it;
}
}
=======
/*
* CartDecomposition.cpp
*
* Created on: Aug 15, 2014
* Author: Pietro Incardona
*/
#include "CartDecomposition.hpp"
/*! \brief The the bulk part of the data set, or the data that does not depend
* from the ghosts layers
*
* The the bulk part of the data set, or the data that does not depend from the
* ghosts layers
*
*/
/*template<typename T> T CartDecomposition<T>::getBulk(T data)
{
// for each element in data
for (size_t i = 0; i < data.size() ; i++)
{
if (localSpace.isInside())
}
}
template<typename T> T CartDecomposition<T>::getInternal()
{
}*/
/*! \brief Check if is border or bulk
*
* \param neighboorhood define the neighboorhood of all the points
* \return true if border, false if bulk
*
*/
bool borderOrBulk(neighborhood & nb)
{
device::grid<1,size_t> nbr = nb.next();
// check the neighborhood
// get neighborhood iterator
grid_key_dx_iterator<dim> iterator_nbr = nbr.getIterator();
while (iterator_nbr.hasNext())
{
grid_key_dx key_nbr = iterator_nbr.next();
// check if the neighboorhood is internal
if(subspace.isBound(data.template get<Point::x>(key_nbr)) == false)
{
// it is border
return true;
ret.bord.push_back(key);
break;
}
}
return false;
}
/*! \brief This function divide the data set into bulk, border, external and internal part
*
* \tparam dim dimensionality of the structure storing your data
* (example if they are in 3D grid, has to be 3)
* \tparam T type of object we are dividing
* \tparam device type of layout selected
* \param data 1-dimensional grid of point
* \param nb define the neighborhood of all the points
* \return a structure with the set of objects divided
*
*/
template<unsigned int dim, typename T, template<typename> class layout, typename Memory, template<unsigned int, typename> class Domain, template<typename, typename, typename> class data_s>
dataDiv<T> CartDecomposition<dim,T,layout>::divide(device::grid<1,Point<dim,T>> & data, neighborhood & nb)
{
//! allocate the 3 subset
dataDiv<T> ret;
ret.bord = new boost::shared_ptr<T>(new T());
ret.inte = new boost::shared_ptr<T>(new T());
ret.ext = new boost::shared_ptr<T>(new T());
//! get grid iterator
grid_key_dx_iterator<dim> iterator = data.getIterator();
//! we iterate trough all the set of objects
while (iterator.hasNext())
{
grid_key_dx<dim> key = iterator.next();
//! Check if the object is inside the subspace
if (subspace.isBound(data.template get<Point<3,T>::x>(key)))
{
//! Check if the neighborhood is inside the subspace
if (borderOrBulk(nb) == true)
{
// It is border
ret.bord.push_back(key);
}
else
{
// It is bulk
ret.bulk.push_back(key);
}
}
else
{
//! it is external
ret.ext.push_back(key);
}
}
}
>>>>>>> Jenkin script for taurus
/*! \brief Allocate a set of objects
*
* \tparam obj
* \param n number of object
*
* \return an object representing an array of objects
*
*/
/* template <typename obj> Vcluster_object_array<obj> allocate(size_t n)
{
// Vcluster object array
Vcluster_object_array<obj> vo;
// resize the array
vo.resize(n);
// Create the object on memory and return a Vcluster_object_array
return vo;
}*/
/*template<typename T>
class Vcluster_object_array : public VObject
{
std::vector<T> objects;
public:*/
/*! \brief Constructor of object array
*
*/
/* Vcluster_object_array()
{
}*/
/*! \brief Return the size of the objects array
*
* \return the size of the array
*
*/
/* size_t size() const
{
return objects.size();
}*/
/*! \brief Return the element i
*
* \return a reference to the object i
*
*/
/* T & get(unsigned int i)
{
return objects[i];
}*/
/*! \brief Return the element i
*
* \return a reference to the object i
*
*/
/* const T & get(unsigned int i) const
{
return objects[i];
}*/
/*! \brief Check if this Object is an array
*
* \return true, it is an array
*
*/
/* bool isArray()
{
return true;
}*/
/*! \brief Destroy the object
*
*/
/* virtual void destroy()
{
// Destroy the objects
objects.clear();
}*/
/*! \brief Get the size of the memory needed to pack the object
*
* \return the size of the message to pack the object
*
*/
/* size_t packObjectSize()
{
size_t message = 0;
// Destroy each objects
for (size_t i = 0 ; i < objects.size() ; i++)
{
message += objects[i].packObjectSize();
}
return message;
}*/
/*! \brief Get the size of the memory needed to pack the object
*
* \param Memory where to write the packed object
*
* \return the size of the message to pack the object
*
*/
/* size_t packObject(void * mem)
{
// Pointer is zero
size_t ptr = 0;
unsigned char * m = (unsigned char *)mem;
// pack each object
for (size_t i = 0 ; i < objects.size() ; i++)
{
ptr += objects[i].packObject(&m[ptr]);
}
#ifdef DEBUG
if (ptr != packObjectSize())
{
std::cerr << "Error " << __FILE__ << " " << __LINE__ << " the pack object size does not match the message" << "\n";
}
#endif
return ptr;
}*/
/*! \brief Calculate the size to pack an object in the array
*
* \param array object index
*
*/
/* size_t packObjectInArraySize(size_t i)
{
return objects[i].packObjectSize();
}*/
/*! \brief pack the object in the array (the message produced can be used to move one)
* object from one processor to another
*
* \param i index of the object to pack
* \param p Memory of the packed object message
*
*/
/* size_t packObjectInArray(size_t i, void * p)
{
return objects[i].packObject(p);
}*/
/*! \brief Destroy an object from the array
*
* \param i object to destroy
*
*/
/* void destroy(size_t i)
{
objects.erase(objects.begin() + i);
}*/
/*! \brief Return the object j in the array
*
* \param j element j
*
*/
/* T & operator[](size_t j)
{
return objects[j];
}*/
/*! \brief Return the object j in the array
*
* \param j element j
*
*/
/* const T & operator[](size_t j) const
{
return objects[j];
}*/
/*! \brief Resize the array
*
* \param size
*
*/
/* void resize(size_t n)
{
objects.resize(n);
}
};*/
/*! \brief VObject
*
* Any object produced by the Virtual cluster (MUST) inherit this class
*
*/
/*class VObject
{
public:
// Check if this Object is an array
virtual bool isArray() = 0;
// destroy the object
virtual void destroy() = 0;
// get the size of the memory needed to pack the object
virtual size_t packObjectSize() = 0;
// pack the object
virtual size_t packObject(void *) = 0;
// get the size of the memory needed to pack the object in the array
virtual size_t packObjectInArraySize(size_t i) = 0;
// pack the object in the array (the message produced can be used to move one)
// object from one processor to another
virtual size_t packObjectInArray(size_t i, void * p) = 0;
// destroy an element from the array
virtual void destroy(size_t n) = 0;
};*/
/*! \brief Impose an operator
*
* This function impose an operator on a particular grid region to produce the system
*
* Ax = b
*
* ## Stokes equation, lid driven cavity with one splipping wall
*
* \param op Operator to impose (A term)
* \param num right hand side of the term (b term)
* \param id Equation id in the system that we are imposing
* \param it_d iterator that define where you want to impose
*
*/
template<typename T> void impose(const T & op , typename Sys_eqs::stype num ,long int id ,grid_dist_iterator_sub<Sys_eqs::dims,typename g_map_type::d_grid> it_d, bool skip_first = false)
{
//////////////////////// DEBUG /////////////////
SparseMatrix<double,int> Al;
Al.load("debug_matrix_single_processor");
// Construct the map 3 processors 1 processors
std::unordered_map<size_t,size_t> map_row;
auto it2 = g_map.getDomainGhostIterator();
auto ginfo = g_map.getGridInfoVoid();
while (it2.isNext())
{
auto key = it2.get();
auto key_g = g_map.getGKey(key);
key_g += pd.getKP1();
// To linearize must be positive
bool is_negative = false;
for (size_t i = 0 ; i < Sys_eqs::dims ; i++)
{
if (key_g.get(i) < 0)
is_negative = true;
}
if (is_negative == true)
{
++it2;
continue;
}
// Carefull g map is extended, so the original (0,0) is shifted in g_map by
if (g_map.template get<0>(key) == 7)
{
int debug = 0;
debug++;
}
map_row[g_map.template get<0>(key)] = ginfo.LinId(key_g);
++it2;
}
////////////////////////////////////////////////
Vcluster & v_cl = *global_v_cluster;
openfpm::vector<triplet> & trpl = A.getMatrixTriplets();
auto it = it_d;
grid_sm<Sys_eqs::dims,void> gs = g_map.getGridInfoVoid();
std::unordered_map<long int,float> cols;
// resize b if needed
b.resize(Sys_eqs::nvar * g_map.size());
bool is_first = skip_first;
// iterate all the grid points
while (it.isNext())
{
if (is_first == true && v_cl.getProcessUnitID() == 0)
{
++it;
is_first = false;
continue;
}
else
is_first = false;
// get the position
auto key = it.get();
// Calculate the non-zero colums
T::value(g_map,key,gs,spacing,cols,1.0);
//////////// DEBUG //////////////////
auto g_calc_pos = g_map.getGKey(key);
g_calc_pos += pd.getKP1();
/////////////////////////////////////
// create the triplet
for ( auto it = cols.begin(); it != cols.end(); ++it )
{
trpl.add();
trpl.last().row() = g_map.template get<0>(key)*Sys_eqs::nvar + id;
trpl.last().col() = it->first;
trpl.last().value() = it->second;
///////////// DEBUG ///////////////////////
auto ginfo = g_map.getGridInfoVoid();
size_t r = (trpl.last().row() / Sys_eqs::nvar);
size_t r_rest = (trpl.last().row() % Sys_eqs::nvar);
size_t c = (trpl.last().col() / Sys_eqs::nvar);
size_t c_rest = (trpl.last().col() % Sys_eqs::nvar);
double val = trpl.last().value();
// Transform
size_t rf = map_row[r] * 3 + r_rest;
size_t cf = map_row[c] * 3 + c_rest;
auto position_row = ginfo.InvLinId(rf / 3);
auto position_col = ginfo.InvLinId(cf / 3);
double valf = Al.getValue(rf,cf);
if (val != valf)
{
int debug = 0;
debug++;
}
///////////////////////////////////////////
// std::cout << "(" << trpl.last().row() << "," << trpl.last().col() << "," << trpl.last().value() << ")" << "\n";
}
b(g_map.template get<0>(key)*Sys_eqs::nvar + id) = num;
cols.clear();
// std::cout << "\n";
// if SE_CLASS1 is defined check the position
#ifdef SE_CLASS1
// T::position(key,gs,s_pos);
#endif
++row;
++row_b;
++it;
}
}
typename Sys_eqs::SparseMatrix_type A;
/*! \brief produce the Matrix
*
* \return the Sparse matrix produced
*
*/
typename Sys_eqs::SparseMatrix_type & getA()
{
#ifdef SE_CLASS1
consistency();
#endif
A.resize(g_map.size()*Sys_eqs::nvar,g_map.size()*Sys_eqs::nvar);
///////////////// DEBUG SAVE //////////////////
// A.save("debug_matrix_single_processor");
////////////////////////////////////////////////
return A;
}
typename Sys_eqs::SparseMatrix_type A;
/*! \brief produce the Matrix
*
* \return the Sparse matrix produced
*
*/
typename Sys_eqs::SparseMatrix_type & getA()
{
#ifdef SE_CLASS1
consistency();
#endif
A.resize(g_map.size()*Sys_eqs::nvar,g_map.size()*Sys_eqs::nvar);
///////////////// DEBUG SAVE //////////////////
// A.save("debug_matrix_single_processor");
////////////////////////////////////////////////
return A;
}
/*! \brief produce the B vector
*
* \return the vector produced
*
*/
typename Sys_eqs::Vector_type & getB()
{
#ifdef SE_CLASS1
consistency();
#endif
// size of the matrix
// B.resize(g_map.size()*Sys_eqs::nvar);
// copy the vector
// for (size_t i = 0; i < row_b; i++)
// B.insert(i,b.get(i));
return b;
}
};
/*! \brief Given an external ghost box, I have an internal ghost box with the same id this function link them
*
*
*/
void link_ebox_with_ibox()
{
/*
#ifdef SE_CLASS1
// No box must be unlinked
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
for (size_t j = 0 ; j < proc_int_box.get(i).ibx.size() ; j++)
proc_int_box.get(i).ibx.get(j).link = -1;
for (size_t j = 0 ; j < proc_int_box.get(i).ebx.size() ; j++)
proc_int_box.get(i).ebx.get(j).link= -1;
}
#endif
// Get the number of near processors
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
std::unordered_map<size_t,std::pair<size_t,size_t>> from_id_to_ibox;
std::unordered_map<size_t,std::pair<size_t,size_t>> from_id_to_ebox;
for (size_t j = 0 ; j < getProcessorNIGhost(i) ; j++)
{
std::pair<size_t,size_t> & ele = from_id_to_ibox[getProcessorIGhostId(i,j)];
ele.first = i;
ele.second = j;
}
for (size_t j = 0 ; j < getProcessorNEGhost(i) ; j++)
{
std::pair<size_t,size_t> & ele = from_id_to_ebox[getProcessorEGhostId(i,j)];
ele.first = i;
ele.second = j;
}
// iterate across all the ibox
for ( auto it = from_id_to_ibox.begin(); it != from_id_to_ibox.end(); ++it )
{
auto ite = from_id_to_ebox.find(it->first);
if(ite == from_id_to_ebox.end())
std::cerr << __FILE__ << ":" << __LINE__ << " error exist an internal ghost box that does not have an external ghost box" << std::endl;
if (ite->first != it->first)
std::cerr << __FILE__ << ":" << __LINE__ << " error exist an internal ghost box with inconsistent information about its origin" << std::endl;
proc_int_box.get(i).ibx.get(it->second.second).link = ite->second.second;
proc_int_box.get(i).ebx.get(ite->second.second).link = it->second.second;
}
}
#ifdef SE_CLASS1
// No box must be unlinked
for (size_t i = 0 ; i < proc_int_box.size() ; i++)
{
for (size_t j = 0 ; j < proc_int_box.get(i).ibx.size() ; j++)
{
if (proc_int_box.get(i).ibx.get(j).link == -1)
std::cerr << __FILE__ << ":" << __LINE__ << " error detected unlinked internal ghost box" << std::endl;
}
for (size_t j = 0 ; j < proc_int_box.get(i).ebx.size() ; j++)
{
if (proc_int_box.get(i).ibx.get(j).link == -1)
std::cerr << __FILE__ << ":" << __LINE__ << " error detected unlinked external ghost box" << std::endl;
}
}
#endif*/
/* for (size_t i = 0 ; i < this->getNNProcessors() ; i++)
{
for (size_t j = 0 ; j < this->getProcessorNIGhost(i) ; j++)
{
size_t id_i = this->getProcessorIGhostId(i,j);
long int link = this->getProcessorIGhostLink(i,j);
if (link == -1)
return false;
size_t id_e = this->getProcessorEGhostId(i,link);
if (id_i != id_e)
return false;
}
}*/
}
/////////////////////////////// Fixing IG BOX not clear if it is really needed /////////////////
/*! \brief Fix the destination box based on the source box
*
* in case of periodic grids external ghost box and internal ghost box can miss-match
* in size if the external ghost box is outside the domain, or more practically
* if internal and external ghost boxes are linked by periodicity.
* The two boxes has been calculated in two different way and round-off problem can happen
* In this call we fix such problem maching the received ghost box to the external ghost box
*
* \param bs source box
* \param dom_i domain from where the source box has been created
* \param bd destination box
* \param cmb sector of the destination box
*
*/
inline bool fix_box_ig(Box<dim,size_t> & bs, Box<dim,long int> & dom_i, const Box<dim,size_t> & bd, comb<dim> & cmb)
{
// Each dimension must match
for (size_t k = 0 ; k < dim ; k++)
{
size_t iw = bs.getHigh(k) - bs.getLow(k);
size_t ew = bd.getHigh(k) - bd.getLow(k);
if (iw != ew)
{
std::cout << "Fixing internal external" << std::endl;
Box<dim,size_t> & bst = bs;
if (cmb.c[k] == -1)
bst.setHigh(k,bd.getHigh(k) - (iw - ew));
else if (cmb.c[k] == 1)
bst.setLow(k,bs.getLow(k) + (iw - ew));
else
return false;
// points in direction k of the domain
long int dom_ext = dom_i.getHigh(k) - dom_i.getLow(k);
// points in direction k of the internal ghost box
long int ext_ibox = bst.getHigh(k) - bst.getLow(k);
// internal ghost box cannot be bigger than the domain
// notify the failure in fixing
if (dom_ext < ext_ibox)
return false;
bs = bst;
}
}
return true;
}
/////////////// GHOST LOCAL FIX
bool ret = fix_box_ig(bx_src,gdb_ext.get(i).Dbox,bx_dst,loc_eg_box.get(sub_id_dst).bid.get(k).cmb);
if (ret == false)
std::cerr << "ERROR FAIL TO FIX " << std::endl;
/////////////////////
/*! \brief Fix the internal and external ghost box to be consistent
*
* in case of periodic grids external ghost box and internal ghost box can miss-match
* in size if the external ghost box is outside the domain, or more practically
* if internal and external ghost boxes are linked by periodicity.
* The two boxes has been calculated in two different way and round-off problem can happen
* In this call we fix such problem maching each processor communicate its calculate external
* ghost boxes out of the boundary of the domain the receiving processor fix the size of the
* connected internal ghost box
*
*/
inline void fix_ie_g_box()
{
if (init_fix_ie_g_box == true) return;
comb<dim> zero;
zero.zero();
// Here we collect all the external ghost box in the sector different from 0 that this processor has
openfpm::vector<size_t> prc;
openfpm::vector<size_t> prc_recv;
openfpm::vector<size_t> sz_recv;
openfpm::vector<openfpm::vector<Box_fix<dim>>> box_ext_send(dec.getNNProcessors());
openfpm::vector<openfpm::vector<Box_fix<dim>>> box_ext_recv;
// It contain the map g_id as key, and the pair, processor id, box-id
std::unordered_map<long int,std::pair<long int,long int>> iglist;
// Here we create list of all the internal ghost box linked with an external ghost box
// by periodicity
for(size_t i = 0 ; i < dec.getNNProcessors() ; i++)
{
for (size_t j = 0 ; j < ig_box.get(i).bid.size() ; j++)
{
if (ig_box.get(i).bid.get(j).cmb != zero)
{
auto & ele = iglist[ig_box.get(i).bid.get(j).g_id];
ele.first = i;
ele.second = j;
}
}
}
for(size_t i = 0 ; i < dec.getNNProcessors() ; i++)
{
for (size_t j = 0 ; j < eg_box.get(i).bid.size() ; j++)
{
if (eg_box.get(i).bid.get(j).cmb != zero)
{
box_ext_send.get(i).add();
box_ext_send.get(i).last().bx = eg_box.get(i).bid.get(j).l_e_box;
box_ext_send.get(i).last().g_id = eg_box.get(i).bid.get(j).g_id;
}
}
prc.add(dec.IDtoProc(i));
}
v_cl.SSendRecv(box_ext_send,box_ext_recv,prc,prc_recv,sz_recv);
// Received the external boxes we do fixation for each processor
for (size_t i = 0 ; i < box_ext_recv.size() ; i++)
{
// For each received external ghost box
for (size_t j = 0 ; j < box_ext_recv.get(i).size() ; j++)
{
// ig box linked
size_t proc_id = dec.ProctoID(prc_recv.get(i));
auto it = g_id_to_internal_ghost_box.get(proc_id).find(box_ext_recv.get(i).get(j).g_id);
#ifdef SE_CLASS1
if (it == g_id_to_internal_ghost_box.get(proc_id).end())
{
std::cerr << __FILE__ << ":" << __LINE__ << " warning unlinked external ghost box" << std::endl;
continue;
}
#endif
size_t link = it->second;
Box<dim,size_t> & box_i = ig_box.get(proc_id).bid.get(link).box;
// local Sub-domain from where this internal ghost box is calculated
Box<dim,long int> & box_sub_i = gdb_ext.get(ig_box.get(proc_id).bid.get(link).sub).Dbox;
comb<dim> cmb = ig_box.get(proc_id).bid.get(link).cmb;
// the fixing can fail
// if it fail put the ig_box into a list
// The fix can fail (for example) if the external ghost box require 7 point on x
// but the domain has 6 point, in this case we cannot correct the internal ghost box
bool ret = fix_box_ig(box_i,box_sub_i,box_ext_recv.get(i).get(j).bx,cmb);
if (ret == false)
std::cerr << __FILE__ << ":" << __LINE__ << " and inconsistency between internal and external ghost boxes has been detected. The fix is not possible please change your ghost size (by a small amount) on the order of 10^-5 if you use float 10^-14 if you use double" << std::endl;
// Invalidate the ig_box in the list
auto & ele = iglist[box_ext_recv.get(i).get(j).g_id];
ele.first = -1;
ele.second = -1;
}
}
// Here we check if all the internal ghost box has been explored
// if one internal ghost box has not been explored, it been that, there is not
// corresponding external ghost box on the other side. so we invalidate
for ( auto it = iglist.begin(); it != iglist.end(); ++it )
{
// If has not been explored invalidate, there is not external ghost
if (it->second.first != -1)
{
size_t a = it->second.first;
size_t b = it->second.second;
ig_box.get(a).bid.get(b).box.invalidate();
}
}
}
//////////////////////////////////////////////////////////////
// Fix the exteenal and internal ghost boxes in ghost get
fix_ie_g_box();
//////////////////////
/* Point<dim,long int> p;
p.get(0) = 0;
p.get(1) = 81;
p.get(2) = 79;
if (ib.isInside(p))
{
int debug = 0;
debug++;
}
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_domain.getLow(i) == ib_dom.getLow(i) &&
(sub_domain_other.getHigh(i) == sub_domain.getLow(i) || cmb.c[i] == 1))
{
if (g.getHigh(i) != INVALID_GHOST && (ib.getHigh(i) - ib.getLow(i) + 1) > g.getHigh(i))
{
ib.setHigh(i,ib.getLow(i) + g.getHigh(i) - 1);
}
}
if (sub_domain.getHigh(i) == ib_dom.getHigh(i) &&
(sub_domain_other.getLow(i) == sub_domain.getHigh(i) || cmb.c[i] == 1))
{
if (g.getLow(i) != -INVALID_GHOST && (ib.getHigh(i) - ib.getLow(i) + 1) > abs(g.getLow(i)))
{
ib.setLow(i, g.getHigh(i) - g.getLow(i) + 1);
}
}
}
// This is a special case because a domain intersect itself by
// periodicity
if (sub_domain == sub_domain_other)
{
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_domain.getLow(i) == ib_dom.getLow(i) &&
sub_domain.getLow(i) == domain.getLow(i) &&
sub_domain_other.getHigh(i) == domain.getHigh(i) &&
cmb.c[i] == 1)
{
if (g.getHigh(i) != INVALID_GHOST && (ib.getHigh(i) - ib.getLow(i) + 1) > g.getHigh(i))
{
ib.setHigh(i,ib.getLow(i) + g.getHigh(i) - 1);
}
}
if (sub_domain.getHigh(i) == ib_dom.getHigh(i) &&
sub_domain.getHigh(i) == domain.getHigh(i) &&
sub_domain_other.getLow(i) == sub_domain.getHigh(i) &&
cmb.c[i] == -1)
{
if (g.getLow(i) != -INVALID_GHOST && (ib.getHigh(i) - ib.getLow(i) + 1) > abs(g.getLow(i)))
{
ib.setLow(i, g.getHigh(i) - g.getLow(i) + 1);
}
}
}
}*/
//////////////////////////
#endif /* GARGABE_HPP_ */