Skip to content
Snippets Groups Projects
Commit 104f989e authored by Pietro Incardona's avatar Pietro Incardona
Browse files

New classes

parent 31a775b5
No related branches found
No related tags found
No related merge requests found
/*
* BasicDecomposition.hpp
*
* Created on: Oct 07, 2015
* Author: Antonio Leo
*/
#ifndef BASICDECOMPOSITION_HPP
#define BASICDECOMPOSITION_HPP
#include "config.h"
#include <cmath>
#include "VCluster.hpp"
#include "Graph/CartesianGraphFactory.hpp"
#include "Decomposition.hpp"
#include "Vector/map_vector.hpp"
#include <vector>
#include <initializer_list>
#include "SubdomainGraphNodes.hpp"
#include "parmetis_util.hpp"
#include "dec_optimizer.hpp"
#include "Space/Shape/Box.hpp"
#include "Space/Shape/Point.hpp"
#include "NN/CellList/CellDecomposer.hpp"
#include <unordered_map>
#include "NN/CellList/CellList.hpp"
#include "Space/Ghost.hpp"
#include "common.hpp"
#include "ie_loc_ghost.hpp"
#include "ie_ghost.hpp"
#include "nn_processor.hpp"
#include "GraphMLWriter.hpp"
#define BASICDEC_ERROR 2000lu
// Macro that decide what to do in case of error
#ifdef STOP_ON_ERROR
#define ACTION_ON_ERROR() exit(1);
#elif defined(THROW_ON_ERROR)
#define ACTION_ON_ERROR() throw BASICDEC_ERROR;
#else
#define ACTION_ON_ERROR()
#endif
/**
* \brief This class decompose a space into subspaces
*
* \tparam dim is the dimensionality of the physical domain we are going to decompose.
* \tparam T type of the space we decompose, Real, Integer, Complex ...
* \tparam Memory Memory factory used to allocate memory
* \tparam Domain Structure that contain the information of your physical domain
*
* Given an N-dimensional space, this class decompose the space into a Cartesian grid of small
* sub-sub-domain. At each sub-sub-domain is assigned an id that identify which processor is
* going to take care of that part of space (in general the space assigned to a processor is
* simply connected), a second step merge several sub-sub-domain with same id into bigger region
* sub-domain with the id. Each sub-domain has an extended space called ghost part
*
* Assuming that VCluster.getProcessUnitID(), equivalent to the MPI processor rank, return the processor local
* processor id, we define
*
* * local processor: processor rank
* * local sub-domain: sub-domain given to the local processor
* * external ghost box: (or ghost box) are the boxes that compose the ghost space of the processor, or the
* boxes produced expanding every local sub-domain by the ghost extension and intersecting with the sub-domain
* of the other processors
* * Near processors are the processors adjacent to the local processor, where with adjacent we mean all the processor
* that has a non-zero intersection with the ghost part of the local processor, or all the processors that
* produce non-zero external boxes with the local processor, or all the processor that should communicate
* in case of ghost data synchronization
* * internal ghost box: is the part of ghost of the near processor that intersect the space of the
* processor, or the boxes produced expanding the sub-domain of the near processors with the local sub-domain
* * Near processor sub-domain: is a sub-domain that live in the a near (or contiguous) processor
* * Near processor list: the list of all the near processor of the local processor (each processor has a list
* of the near processor)
* * Local ghosts interal or external are all the ghosts that does not involve inter-processor communications
*
* \see calculateGhostBoxes() for a visualization of internal and external ghost boxes
*
* ### Create a Cartesian decomposition object on a Box space, distribute, calculate internal and external ghost boxes
* \snippet BasicDecomposition_unit_test.hpp Create BasicDecomposition
*
*/
template<unsigned int dim, typename T, typename Memory = HeapMemory, template<unsigned int, typename > class Domain = Box>
class BasicDecomposition: public ie_loc_ghost<dim, T>, public nn_prcs<dim, T>, public ie_ghost<dim, T> {
public:
//! Type of the domain we are going to decompose
typedef T domain_type;
//! It simplify to access the SpaceBox element
typedef SpaceBox<dim, T> Box;
private:
//! This is the key type to access data_s, for example in the case of vector
//! acc_key is size_t
typedef typename openfpm::vector<SpaceBox<dim, T>, Memory, openfpm::vector_grow_policy_default,
openfpm::vect_isel<SpaceBox<dim, T>>::value>::access_key acc_key;
//! the set of all local sub-domain as vector
openfpm::vector<SpaceBox<dim, T>> sub_domains;
//! for each sub-domain, contain the list of the neighborhood processors
openfpm::vector<openfpm::vector<long unsigned int> > box_nn_processor;
//! Structure that contain for each sub-sub-domain box the processor id
//! exist for efficient global communication
openfpm::vector<size_t> fine_s;
//! Structure that store the cartesian grid information
grid_sm<dim, void> gr;
//! Structure that decompose your structure into cell without creating them
//! useful to convert positions to CellId or sub-domain id in this case
CellDecomposer_sm<dim, T> cd;
//! rectangular domain to decompose
Domain<dim, T> domain;
//! Box Spacing
T spacing[dim];
//! Runtime virtual cluster machine
Vcluster & v_cl;
//! Cell-list that store the geometrical information of the local internal ghost boxes
CellList<dim, T, FAST> lgeo_cell;
/*! \brief Constructor, it decompose and distribute the sub-domains across the processors
*
* \param v_cl Virtual cluster, used internally for communications
*
*/
void CreateDecomposition(Vcluster & v_cl) {
#ifdef SE_CLASS1
if (&v_cl == NULL)
{
std::cerr << __FILE__ << ":" << __LINE__ << " error VCluster instance is null, check that you ever initialized it \n";
ACTION_ON_ERROR()
}
#endif
// Calculate the total number of box and and the spacing
// on each direction
// Get the box containing the domain
SpaceBox<dim, T> bs = domain.getBox();
for (unsigned int i = 0; i < dim; i++) {
// Calculate the spacing
spacing[i] = (bs.getHigh(i) - bs.getLow(i)) / gr.size(i);
}
//! MPI initialization
int MPI_PROC_ID = 0;
MPI_Comm_rank(MPI_COMM_WORLD, &MPI_PROC_ID);
// Here we use PARMETIS
// Create a cartesian grid graph
CartesianGraphFactory<dim, Graph_CSR<nm_v, nm_e>> g_factory_part;
// Processor graph
Graph_CSR<nm_v, nm_e> gp = g_factory_part.template construct<NO_EDGE, nm_v::id, T, dim - 1, 0, 1, 2>(gr.getSize(), domain);
//! Add computation information to each vertex (shape can change)
addWeights(gp, HYPERBOLOID);
//! Init ids vector
gp.init_map_ids();
// Get the number of processing units
size_t Np = v_cl.getProcessingUnits();
// Division of vertices in Np graphs
// Put (div+1) vertices in mod graphs
// Put div vertices in the rest of the graphs
size_t mod_v = gp.getNVertex() % Np;
size_t div_v = gp.getNVertex() / Np;
//! Init vtxdist needed for Parmetis
idx_t *vtxdist = new idx_t[Np + 1];
for (int i = 0; i <= Np; i++) {
if (i < mod_v)
vtxdist[i] = (div_v + 1) * (i);
else
vtxdist[i] = (div_v) * (i) + mod_v;
}
// Just for output purpose
if (MPI_PROC_ID == 0) {
VTKWriter<Graph_CSR<nm_v, nm_e>, GRAPH> gv2(gp);
gv2.write("test_graph_0.vtk");
}
//TODO transform in factory
//! Create subgraph
Graph_CSR<nm_v, nm_e> sub_g;
//! Put vertices into processor graph (different for each processor)
fillSubGraph(sub_g, gp, vtxdist, MPI_PROC_ID, Np);
// Convert the graph to parmetis format
Parmetis<Graph_CSR<nm_v, nm_e>> parmetis_graph(sub_g, Np);
// Decompose
parmetis_graph.decompose<nm_v::proc_id>(vtxdist);
// Get result partition for this processors
idx_t *partition = parmetis_graph.getPartition();
// Prepare MPI objects for communication
MPI_Request *requests_recv = new MPI_Request[Np];
MPI_Request *requests_send = new MPI_Request[Np];
MPI_Status *statuses = new MPI_Status[Np];
//-----------------------------------------------
/*
/* create a type for struct nm_v */
const int nitems = 9;
int blocklengths[9] = {1,1};
MPI_Datatype types[9] = {MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT, MPI_INT};
MPI_Datatype MPI_VERTEX_TYPE;
MPI_Aint offsets[9];
offsets[0] = offsetof(nm_v, x);
offsets[1] = offsetof(nm_v, y);
offsets[2] = offsetof(nm_v, z);
offsets[3] = offsetof(nm_v, communication);
offsets[4] = offsetof(nm_v, computation);
offsets[5] = offsetof(nm_v, memory);
offsets[6] = offsetof(nm_v, id);
offsets[7] = offsetof(nm_v, sub_id);
offsets[8] = offsetof(nm_v, proc_id);
MPI_Type_create_struct(nitems, blocklengths, offsets, types, &MPI_VERTEX_TYPE);
MPI_Type_commit(&MPI_VERTEX_TYPE);
//-----------------------------------------------
// Prepare vector of arrays to contain all partitions
int **partitions = new int*[Np];
partitions[MPI_PROC_ID] = partition;
for (int i = 0; i < Np; i++) {
if (i != MPI_PROC_ID)
partitions[i] = new int[gp.getNVertex()];
}
// Exchange partitions with other processors
exchangePartitions(partitions, gp.getNVertex(), sub_g.getNVertex(), requests_recv, requests_send, statuses, MPI_PROC_ID, Np);
// Init data structure to keep trace of new vertices distribution in processors (needed to update main graph)
std::vector<size_t> *v_per_proc = new std::vector<size_t>[Np];
// Update graphs with the new distributions
updateGraphs(partitions, gp, sub_g, v_per_proc, vtxdist, statuses, MPI_PROC_ID, Np);
if (MPI_PROC_ID == 0) {
VTKWriter<Graph_CSR<nm_v, nm_e>, GRAPH> gv2(gp);
gv2.write("test_graph_2.vtk");
}
// Renumbering subgraph
sub_g.reset_map_ids();
for (size_t j = vtxdist[MPI_PROC_ID], i = 0; j < vtxdist[MPI_PROC_ID + 1]; j++, i++) {
sub_g.set_map_ids(j, sub_g.vertex(i).template get<nm_v::id>());
sub_g.vertex(i).template get<nm_v::id>() = j;
}
gp.reset_map_ids();
// Renumbering main graph
for (size_t p = 0; p < Np; p++) {
for (size_t j = vtxdist[p], i = 0; j < vtxdist[p + 1]; j++, i++) {
gp.set_map_ids(j, gp.vertex(v_per_proc[p][i]).template get<nm_v::id>());
gp.vertex(v_per_proc[p][i]).template get<nm_v::id>() = j;
}
}
if (MPI_PROC_ID == 0) {
VTKWriter<Graph_CSR<nm_v, nm_e>, GRAPH> gv2(gp);
gv2.write("test_graph_3.vtk");
}
// Reset parmetis graph and reconstruct it
parmetis_graph.reset(gp);
// Refine
parmetis_graph.refine<nm_v::proc_id>(vtxdist);
// Get result partition for this processor
partition = parmetis_graph.getPartition();
// Reset partitions array
partitions[MPI_PROC_ID] = partition;
for (int i = 0; i < Np; i++) {
if (i != MPI_PROC_ID) {
delete partitions[i];
partitions[i] = new int[gp.getNVertex()];
}
}
// Reset data structure to keep trace of new vertices distribution in processors (needed to update main graph)
for (int i = 0; i < Np; ++i) {
v_per_proc[i].clear();
}
// Exchange partitions with other processors
exchangePartitions(partitions, gp.getNVertex(), sub_g.getNVertex(), requests_recv, requests_send, statuses, MPI_PROC_ID, Np);
// Update graphs with the new distributions
updateGraphs(partitions, gp, sub_g, v_per_proc, vtxdist, statuses, MPI_PROC_ID, Np);
if (MPI_PROC_ID == 0) {
VTKWriter<Graph_CSR<nm_v, nm_e>, GRAPH> gv2(gp);
gv2.write("test_graph_4.vtk");
}
/*
// fill the structure that store the processor id for each sub-domain
fine_s.resize(gr.size());
// Optimize the decomposition creating bigger spaces
// And reducing Ghost over-stress
dec_optimizer<dim,Graph_CSR<nm_v,nm_e>> d_o(gp,gr.getSize());
// set of Boxes produced by the decomposition optimizer
openfpm::vector<::Box<dim,size_t>> loc_box;
// optimize the decomposition
d_o.template optimize<nm_v::sub_id,nm_v::id>(gp,p_id,loc_box,box_nn_processor);
// Initialize ss_box and bbox
if (loc_box.size() >= 0)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(0);
SpaceBox<dim,T> sub_d(sub_dc);
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
ss_box = sub_d;
ss_box -= ss_box.getP1();
bbox = sub_d;
}
// convert into sub-domain
for (size_t s = 1 ; s < loc_box.size() ; s++)
{
SpaceBox<dim,size_t> sub_dc = loc_box.get(s);
SpaceBox<dim,T> sub_d(sub_dc);
// re-scale and add spacing (the end is the starting point of the next domain + spacing)
sub_d.mul(spacing);
sub_d.expand(spacing);
// Fixing sub-domains to cover all the domain
// Fixing sub_d
// if (loc_box) is a the boundary we have to ensure that the box span the full
// domain (avoiding rounding off error)
for (size_t i = 0 ; i < dim ; i++)
{
if (sub_dc.getHigh(i) == cd.getGrid().size(i) - 1)
{
sub_d.setHigh(i,domain.getHigh(i));
}
}
// add the sub-domain
sub_domains.add(sub_d);
// Calculate the bound box
bbox.enclose(sub_d);
// Create the smallest box contained in all sub-domain
ss_box.contained(sub_d);
}
nn_prcs<dim,T>::create(box_nn_processor, sub_domains);
// fill fine_s structure
// fine_s structure contain the processor id for each sub-sub-domain
// with sub-sub-domain we mean the sub-domain decomposition before
// running dec_optimizer (before merging sub-domains)
it = gp.getVertexIterator();
while (it.isNext())
{
size_t key = it.get();
// fill with the fine decomposition
fine_s.get(key) = gp.template vertex_p<nm_v::id>(key);
++it;
}
// Get the smallest sub-division on each direction
::Box<dim,T> unit = getSmallestSubdivision();
// Get the processor bounding Box
::Box<dim,T> bound = getProcessorBounds();
// calculate the sub-divisions
size_t div[dim];
for (size_t i = 0 ; i < dim ; i++)
div[i] = (size_t)((bound.getHigh(i) - bound.getLow(i)) / unit.getHigh(i));
// Create shift
Point<dim,T> orig;
// p1 point of the Processor bound box is the shift
for (size_t i = 0 ; i < dim ; i++)
orig.get(i) = bound.getLow(i);
// Initialize the geo_cell structure
ie_ghost<dim,T>::Initialize_geo_cell(domain,div,orig);
lgeo_cell.Initialize(domain,div,orig);
*/
}
// Save the ghost boundaries
Ghost<dim, T> ghost;
/*! \brief Create the subspaces that decompose your domain
*
*/
void CreateSubspaces() {
// Create a grid where each point is a space
grid_sm<dim, void> g(div);
// create a grid_key_dx iterator
grid_key_dx_iterator < dim > gk_it(g);
// Divide the space into subspaces
while (gk_it.isNext()) {
//! iterate through all subspaces
grid_key_dx < dim > key = gk_it.get();
//! Create a new subspace
SpaceBox<dim, T> tmp;
//! fill with the Margin of the box
for (int i = 0; i < dim; i++) {
tmp.setHigh(i, (key.get(i) + 1) * spacing[i]);
tmp.setLow(i, key.get(i) * spacing[i]);
}
//! add the space box
sub_domains.add(tmp);
// add the iterator
++gk_it;
}
}
/* /brief types of weights distributions
*
*/
enum weightShape {
UNIFORM, SPHERE, HYPERBOLOID
};
/* \brief add vertex weights to the main domain, follow a shape
*
** 0 - weights are all 1 on all vertices
** 1 - weights are distributed as a sphere
*
* \param i id of the shape
*
*/
void addWeights(Graph_CSR<nm_v, nm_e> & gp, int i)
{
float c_x = 0, c_y = 0, c_z = 0 , radius2, eq;
float x = 0, y = 0, z = 0;
switch (i) {
case UNIFORM:
// Add computation information to each vertex
for (int i = 0; i < gp.getNVertex(); i++) {
gp.vertex(i).template get<nm_v::computation>() = 1;
}
break;
case SPHERE:
// Fill vertices weights with a sphere (if dim=2 is a circle)
radius2 = pow(4, 2);
c_x = 2;
c_y = 2;
if(dim == 3)
c_z = 2;
for (int i = 0; i < gp.getNVertex(); i++) {
x = gp.vertex(i).template get<nm_v::x>() * 10;
y = gp.vertex(i).template get<nm_v::y>() * 10;
if(dim == 3)
z = gp.vertex(i).template get<nm_v::z>() * 10;
eq = pow((x - c_x), 2) + pow((y - c_y), 2) + pow((z - c_z), 2);
if (eq <= radius2) {
gp.vertex(i).template get<nm_v::computation>() = 5;
} else {
gp.vertex(i).template get<nm_v::computation>() = 1;
}
}
break;
case HYPERBOLOID:
// Fill vertices weights with a elliptic hyperboloid (if dim=2 is an hyperbole)
c_x = 5;
c_y = 5;
if(dim == 3)
c_z = 5;
for (int i = 0; i < gp.getNVertex(); i++) {
x = gp.vertex(i).template get<nm_v::x>() * 10;
y = gp.vertex(i).template get<nm_v::y>() * 10;
if(dim == 3)
z = gp.vertex(i).template get<nm_v::z>() * 10;
eq = - pow((x - c_x), 2)/3 - pow((y - c_y), 2)/3 + pow((z - c_z), 2)/2;
if (eq >= 1) {
gp.vertex(i).template get<nm_v::computation>() = 5;
} else {
gp.vertex(i).template get<nm_v::computation>() = 1;
}
}
break;
}
}
/* \brief fill the graph of the processor with the first decomposition (linear)
*
* Put vertices into processor graph (different for each processor)
*
* \param sub_g sub graph to fill
* \param gp mai graph, source for the vertices
* \param vtxdist array with the distribution of vertices through processors
* \param proc_id rank of the processor
* \param Np total number of processors
*/
void fillSubGraph(Graph_CSR<nm_v, nm_e> &sub_g, Graph_CSR<nm_v, nm_e> &gp, idx_t* &vtxdist, int proc_id, int Np)
{
for (size_t j = vtxdist[proc_id], local_j = 0; j < vtxdist[proc_id + 1]; j++, local_j++) {
// Add vertex
nm_v pv = gp.vertexById(j);
sub_g.addVertex(pv);
// Add edges of vertex
for (size_t s = 0; s < gp.getNChilds(j); s++) {
sub_g.template addEdge<NoCheck>(local_j, gp.getChildByVertexId(j, s));
}
}
// Just for output purpose
if (proc_id == 0) {
for (int i = 0; i < Np; i++) {
for (size_t j = vtxdist[i]; j < vtxdist[i + 1]; j++) {
gp.vertexById(j).template get<nm_v::proc_id>() = i;
}
}
VTKWriter<Graph_CSR<nm_v, nm_e>, GRAPH> gv2(gp);
gv2.write("test_graph_1.vtk");
}
}
/* \brief exchange partitions with other processors
*
* \param partitions array to store all the partitions
* \param gp_nv number of vertices on main graph
* \param sub_g_nv number of vertices on sub graph
* \param requests_recv array of requests
* \param requests_send array of requests
* \param statuses array of statsu objects
* \param proc_id current processors rank
* \param Np total umber of processors
*/
void exchangePartitions(int** &partitions, int gp_nv, int sub_g_nv, MPI_Request* &requests_recv, MPI_Request* &requests_send,
MPI_Status* &statuses, int proc_id, int Np)
{
// Receive other partitions, each partition can contain max NVertex of main graph
for (int i = 0; i < Np; i++) {
if (i != proc_id)
MPI_Irecv(partitions[i], gp_nv, MPI_INT, i, 0, MPI_COMM_WORLD, &requests_recv[i]);
}
// Send processor partition to other processors
for (int i = 0; i < Np; i++) {
if (i != proc_id)
MPI_Isend(partitions[proc_id], sub_g_nv, MPI_INT, i, 0, MPI_COMM_WORLD, &requests_send[i]);
}
// Wait for all partitions from other processors
for (int i = 0; i < Np; i++) {
if (i != proc_id)
MPI_Wait(&requests_recv[i], &statuses[i]);
}
}
/* \brief update main graph ad subgraph with the partition in partitions param
*
* \param partitions array storing all the partitions
* \param gp main graph
* \param sub_g sub graph
* \param v_per_proc array needed to recontruct the main graph
* \param vtxdist array with the distribution of vertices through processors
* \param statuses array of statsu objects
* \param proc_id current processors rank
* \param Np total umber of processors
*/
void updateGraphs(int** &partitions,Graph_CSR<nm_v, nm_e> &gp, Graph_CSR<nm_v, nm_e> &sub_g, std::vector<size_t>* &v_per_proc, idx_t* &vtxdist, MPI_Status* &statuses, int proc_id, int Np) {
int size_p = sub_g.getNVertex();
int local_j = 0;
sub_g.clear();
// Init n_vtxdist to gather informations about the new decomposition
idx_t *n_vtxdist = new idx_t[Np + 1];
for (int i = 0; i <= Np; i++)
n_vtxdist[i] = 0;
// Update main graph with other partitions made by Parmetis in other processors and the local partition
for (int i = 0; i < Np; i++) {
int ndata = 0;
MPI_Get_count(&statuses[i], MPI_INT, &ndata);
if (i == proc_id)
ndata = size_p;
// Update the main graph with received informations
for (int k = 0, l = vtxdist[i]; k < ndata && l < vtxdist[i + 1]; k++, l++) {
// Create new n_vtxdist (1) (just count processors vertices)
n_vtxdist[partitions[i][k] + 1]++;
// Update proc id in the vertex
gp.vertexById(l).template get<nm_v::proc_id>() = partitions[i][k];
// Add vertex to temporary structure of distribution (needed to update main graph)
v_per_proc[partitions[i][k]].push_back(gp.vertexById(l).template get<nm_v::id>());
// Add vertices belonging to this processor in sub graph
if (partitions[i][k] == proc_id) {
nm_v pv = gp.vertexById(l);
sub_g.addVertex(pv);
// Add edges of vertex
for (size_t s = 0; s < gp.getNChildsByVertexId(l); s++) {
sub_g.template addEdge<NoCheck>(local_j, gp.getChildByVertexId(l, s));
}
local_j++;
}
}
}
// Create new n_vtxdist (2) (write boundaries)
for (int i = 2; i <= Np; i++) {
n_vtxdist[i] += n_vtxdist[i - 1];
}
// Copy the new decomposition in the main vtxdist
for (int i = 0; i <= Np; i++) {
vtxdist[i] = n_vtxdist[i];
}
}
// Heap memory receiver
HeapMemory hp_recv;
// vector v_proc
openfpm::vector<size_t> v_proc;
// Receive counter
size_t recv_cnt;
public:
/*! \brief Basic decomposition constructor
*
* \param v_cl Virtual cluster, used internally to handle or pipeline communication
*
*/
BasicDecomposition(Vcluster & v_cl) :
nn_prcs<dim, T>(v_cl), v_cl(v_cl) {
// Reset the box to zero
bbox.zero();
}
//! Basic decomposition destructor
~BasicDecomposition() {
}
// openfpm::vector<size_t> ids;
/*! \brief class to select the returned id by ghost_processorID
*
*/
class box_id {
public:
/*! \brief Return the box id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return box id
*
*/
inline static size_t id(p_box<dim, T> & p, size_t b_id) {
return b_id;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class processor_id {
public:
/*! \brief Return the processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return processor id
*
*/
inline static size_t id(p_box<dim, T> & p, size_t b_id) {
return p.proc;
}
};
/*! \brief class to select the returned id by ghost_processorID
*
*/
class lc_processor_id {
public:
/*! \brief Return the near processor id
*
* \param p structure containing the id informations
* \param b_id box_id
*
* \return local processor id
*
*/
inline static size_t id(p_box<dim, T> & p, size_t b_id) {
return p.lc_proc;
}
};
/*! It calculate the internal ghost boxes
*
* Example: Processor 10 calculate
* B8_0 B9_0 B9_1 and B5_0
*
*
*
\verbatim
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| | |
| | |
++--------------+---+---------------------------+----+ Processor 9 |
| | | B8_0 | | Subdomain 0 |
| +------------------------------------+ |
| | | | | |
| | | XXXXXXXXXXXXX XX |B9_0| |
| | B | X Processor 10 X | | |
| Processor 5 | 5 | X Sub-domain 0 X | | |
| Subdomain 0 | _ | X X +----------------------------------------+
| | 0 | XXXXXXXXXXXXXXXX | | |
| | | | | |
| | | | | Processor 9 |
| | | |B9_1| Subdomain 1 |
| | | | | |
| | | | | |
| | | | | |
+--------------+---+---------------------------+----+ |
| |
+-----------------------------------+
\endverbatim
and also
G8_0 G9_0 G9_1 G5_0 (External ghost boxes)
\verbatim
+----------------------------------------------------+
| |
| Processor 8 |
| Sub-domain 0 +-----------------------------------+
| +---------------------------------------------+ |
| | G8_0 | | |
++--------------+------------------------------------+ | Processor 9 |
| | | | | Subdomain 0 |
| | | |G9_0| |
| | | | | |
| | | XXXXXXXXXXXXX XX | | |
| | | X Processor 10 X | | |
| Processor|5 | X Sub-domain 0 X | | |
| Subdomain|0 | X X +-----------------------------------+
| | | XXXXXXXXXXXXXXXX | | |
| | G | | | |
| | 5 | | | Processor 9 |
| | | | | | Subdomain 1 |
| | 0 | |G9_1| |
| | | | | |
| | | | | |
+--------------+------------------------------------+ | |
| | | |
+----------------------------------------+----+------------------------------+
\endverbatim
*
*
*
* \param ghost margins for each dimensions (p1 negative part) (p2 positive part)
*
*
\verbatim
^ p2[1]
|
|
+----+----+
| |
| |
p1[0]<-----+ +----> p2[0]
| |
| |
+----+----+
|
v p1[1]
\endverbatim
*
*
*/
void calculateGhostBoxes() {
#ifdef DEBUG
// the ghost margins are assumed to be smaller
// than one sub-domain
for (size_t i = 0; i < dim; i++) {
if (ghost.template getLow(i) >= domain.template getHigh(i) / gr.size(i)
|| ghost.template getHigh(i) >= domain.template getHigh(i) / gr.size(i)) {
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one domain" << "\n";
}
}
#endif
// Intersect all the local sub-domains with the sub-domains of the contiguous processors
// create the internal structures that store ghost information
ie_ghost<dim, T>::create_box_nn_processor_ext(v_cl, ghost, sub_domains, box_nn_processor, *this);
ie_ghost<dim, T>::create_box_nn_processor_int(v_cl, ghost, sub_domains, box_nn_processor, *this);
// ebox must come after ibox (in this case)
ie_loc_ghost<dim, T>::create_loc_ghost_ibox(ghost, sub_domains);
ie_loc_ghost<dim, T>::create_loc_ghost_ebox(ghost, sub_domains);
// get the smallest sub-domain dimension on each direction
for (size_t i = 0; i < dim; i++) {
if (ghost.template getLow(i) >= ss_box.getHigh(i) || ghost.template getHigh(i) >= domain.template getHigh(i) / gr.size(i)) {
std::cerr << "Error " << __FILE__ << ":" << __LINE__ << " : Ghost are bigger than one domain" << "\n";
}
}
}
/*! \brief The default grid size
*
* The default grid is always an isotropic grid that adapt with the number of processors,
* it define in how many cell it will be divided the space for a particular required minimum
* number of sub-domain
*
*/
static size_t getDefaultGrid(size_t n_sub) {
// Calculate the number of sub-sub-domain on
// each dimension
return openfpm::math::round_big_2(pow(n_sub, 1.0 / dim));
}
/*! \brief Given a point return in which processor the particle should go
*
* \return processorID
*
*/
template<typename Mem> size_t inline processorID(encapc<1, Point<dim, T>, Mem> p) {
return fine_s.get(cd.getCell(p));
}
// Smallest subdivision on each direction
::Box<dim, T> ss_box;
/*! \brief Get the smallest subdivision of the domain on each direction
*
* \return a box p1 is set to zero
*
*/
const ::Box<dim, T> & getSmallestSubdivision() {
return ss_box;
}
/*! \brief Given a point return in which processor the particle should go
*
* \return processorID
*
*/
size_t inline processorID(const T (&p)[dim]) const {
return fine_s.get(cd.getCell(p));
}
/*! \brief Set the parameter of the decomposition
*
* \param div_ storing into how many domain to decompose on each dimension
* \param domain_ domain to decompose
*
*/
void setParameters(const size_t (&div_)[dim], Domain<dim, T> domain_, Ghost<dim, T> ghost = Ghost<dim, T>()) {
// set the ghost
this->ghost = ghost;
// Set the decomposition parameters
gr.setDimensions(div_);
domain = domain_;
cd.setDimensions(domain, div_, 0);
//! Create the decomposition
CreateDecomposition(v_cl);
}
/*! \brief Get the number of local sub-domains
*
* \return the number of sub-domains
*
*/
size_t getNLocalHyperCube() {
return sub_domains.size();
}
/*! \brief Get the local sub-domain
*
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim, T> getLocalHyperCube(size_t lc) {
// Create a space box
SpaceBox<dim, T> sp;
// fill the space box
for (size_t k = 0; k < dim; k++) {
// create the SpaceBox Low and High
sp.setLow(k, sub_domains.template get < Box::p1 > (lc)[k]);
sp.setHigh(k, sub_domains.template get < Box::p2 > (lc)[k]);
}
return sp;
}
/*! \brief Get the local sub-domain with ghost extension
*
* \param i (each local processor can have more than one sub-domain)
* \return the sub-domain
*
*/
SpaceBox<dim, T> getSubDomainWithGhost(size_t lc) {
// Create a space box
SpaceBox<dim, T> sp = sub_domains.get(lc);
// enlarge with ghost
sp.enlarge(ghost);
return sp;
}
/*! \brief Return the structure that store the physical domain
*
* \return The physical domain
*
*/
Domain<dim, T> & getDomain() {
return domain;
}
/*! \brief Check if the particle is local
*
* \param p object position
*
* \return true if it is local
*
*/
template<typename Mem> bool isLocal(const encapc<1, Point<dim, T>, Mem> p) const {
return processorID<Mem>(p) == v_cl.getProcessUnitID();
}
/*! \brief Check if the particle is local
*
* \param p object position
*
* \return true if it is local
*
*/
bool isLocal(const T (&pos)[dim]) const {
return processorID(pos) == v_cl.getProcessUnitID();
}
::Box<dim, T> bbox;
/*! \brief Return the bounding box containing union of all the sub-domains for the local processor
*
* \return The bounding box
*
*/
::Box<dim, T> & getProcessorBounds() {
return bbox;
}
////////////// Functions to get decomposition information ///////////////
/*! \brief Write the decomposition as VTK file
*
* The function generate several files
*
* * subdomains_X.vtk domain for the local processor (X) as union of sub-domain
* * subdomains_adjacent_X.vtk sub-domains adjacent to the local processor (X)
* * internal_ghost_X.vtk Internal ghost boxes for the local processor (X)
* * external_ghost_X.vtk External ghost boxes for the local processor (X)
* * local_internal_ghost_X.vtk internal local ghost boxes for the local processor (X)
* * local_external_ghost_X.vtk external local ghost boxes for the local processor (X)
*
* where X is the local processor rank
*
* \param output directory where to write the files
*
*/
bool write(std::string output) const {
//! subdomains_X.vtk domain for the local processor (X) as union of sub-domain
VTKWriter<openfpm::vector<::SpaceBox<dim, T>>, VECTOR_BOX> vtk_box1;
vtk_box1.add(sub_domains);
vtk_box1.write(output + std::string("subdomains_") + std::to_string(v_cl.getProcessUnitID()) + std::string(".vtk"));
nn_prcs<dim, T>::write(output);
ie_ghost<dim, T>::write(output, v_cl.getProcessUnitID());
ie_loc_ghost<dim, T>::write(output, v_cl.getProcessUnitID());
return true;
}
/*! \brief function to check the consistency of the information of the decomposition
*
* \return false if is inconsistent
*
*/
bool check_consistency() {
if (ie_loc_ghost<dim, T>::check_consistency(getNLocalHyperCube()) == false)
return false;
return true;
}
void debugPrint() {
std::cout << "Subdomains\n";
for (size_t p = 0; p < sub_domains.size(); p++) {
std::cout << ::SpaceBox<dim, T>(sub_domains.get(p)).toString() << "\n";
}
std::cout << "External ghost box\n";
for (size_t p = 0; p<nn_prcs < dim, T>::getNNProcessors(); p++) {
for (size_t i = 0; i<ie_ghost < dim, T>::getProcessorNEGhost(p); i++) {
std::cout << ie_ghost<dim, T>::getProcessorEGhostBox(p, i).toString() << " prc=" << nn_prcs<dim, T>::IDtoProc(p)
<< " id=" << ie_ghost<dim, T>::getProcessorEGhostId(p, i) << "\n";
}
}
std::cout << "Internal ghost box\n";
for (size_t p = 0; p<nn_prcs < dim, T>::getNNProcessors(); p++) {
for (size_t i = 0; i<ie_ghost < dim, T>::getProcessorNIGhost(p); i++) {
std::cout << ie_ghost<dim, T>::getProcessorIGhostBox(p, i).toString() << " prc=" << nn_prcs<dim, T>::IDtoProc(p)
<< " id=" << ie_ghost<dim, T>::getProcessorIGhostId(p, i) << "\n";
}
}
}
};
#endif
#ifndef BASICDECOMPOSITION_UNIT_TEST_HPP
#define BASICDECOMPOSITION_UNIT_TEST_HPP
#include "BasicDecomposition.hpp"
#include "util/mathutil.hpp"
BOOST_AUTO_TEST_SUITE( BasicDecomposition_test )
#define SUB_UNIT_FACTOR 1024
BOOST_AUTO_TEST_CASE( BasicDecomposition_test_use)
{
// Vcluster
Vcluster & vcl = *global_v_cluster;
// Initialize the global VCluster
init_global_v_cluster(&boost::unit_test::framework::master_test_suite().argc,&boost::unit_test::framework::master_test_suite().argv);
//! [Create CartDecomposition]
BasicDecomposition<3,float> dec(vcl);
// Physical domain
Box<3,float> box({0.0,0.0,0.0},{1.0,1.0,1.0});
size_t div[3];
// Get the number of processor and calculate the number of sub-domain
// for each processor (SUB_UNIT_FACTOR=64)
size_t n_proc = vcl.getProcessingUnits();
size_t n_sub = n_proc * SUB_UNIT_FACTOR;
// Set the number of sub-domains on each dimension (in a scalable way)
for (int i = 0 ; i < 3 ; i++)
{div[i] = openfpm::math::round_big_2(pow(n_sub,1.0/3));}
// Define ghost
Ghost<3,float> g(0.01);
// Decompose
dec.setParameters(div,box,g);
// create a ghost border
dec.calculateGhostBoxes();
//! [Create BasicDecomposition]
// For each calculated ghost box
for (size_t i = 0 ; i < dec.getNIGhostBox() ; i++)
{
SpaceBox<3,float> b = dec.getIGhostBox(i);
size_t proc = dec.getIGhostBoxProcessor(i);
// sample one point inside the box
Point<3,float> p = b.rnd();
// Check that ghost_processorsID return that processor number
const openfpm::vector<size_t> & pr = dec.template ghost_processorID<BasicDecomposition<3,float>::processor_id>(p);
bool found = false;
for (size_t j = 0; j < pr.size() ; j++)
{
if (pr.get(j) == proc)
{found = true; break;}
}
if (found == false)
{
const openfpm::vector<size_t> pr3 = dec.template ghost_processorID<BasicDecomposition<3,float>::processor_id>(p);
}
BOOST_REQUIRE_EQUAL(found,true);
}
// Check the consistency
bool val = dec.check_consistency();
BOOST_REQUIRE_EQUAL(val,true);
}
BOOST_AUTO_TEST_SUITE_END()
#endif
/*
* parmetis_util.hpp
*
* Created on: Oct 07, 2015
* Author: Antonio Leo
*/
#ifndef PARMETIS_UTIL_HPP
#define PARMETIS_UTIL_HPP
#include <iostream>
#include "parmetis.h"
#include "VTKWriter.hpp"
/*! \brief Metis graph structure
*
* Metis graph structure
*
*/
struct Parmetis_graph {
//! The number of vertices in the graph
idx_t * nvtxs;
//! number of balancing constrains
//! more practical, are the number of weights for each vertex
//! PS even we you specify vwgt == NULL ncon must be set at leat to
//! one
idx_t * ncon;
//! For each vertex it store the adjacency lost start for the vertex i
idx_t * xadj;
//! For each vertex it store a list of all neighborhood vertex
idx_t * adjncy;
//! Array that store the weight for each vertex
idx_t * vwgt;
//! Array of the vertex size, basically is the total communication amount
idx_t * vsize;
//! The weight of the edge
idx_t * adjwgt;
//! number of part to partition the graph
idx_t * nparts;
//! Desired weight for each partition (one for each constrain)
real_t * tpwgts;
//! For each partition load imbalance tollerated
real_t * ubvec;
//! Additional option for the graph partitioning
idx_t * options;
//! return the total comunication cost for each partition
idx_t * objval;
//! Is a output vector containing the partition for each vertex
idx_t * part;
//! Upon successful completion, the number of edges that are cut by the partitioning is written to this parameter.
idx_t * edgecut;
//! This parameter describes the ratio of inter-processor communication time compared to data redistri- bution time. It should be set between 0.000001 and 1000000.0. If ITR is set high, a repartitioning with a low edge-cut will be computed. If it is set low, a repartitioning that requires little data redistri- bution will be computed. Good values for this parameter can be obtained by dividing inter-processor communication time by data redistribution time. Otherwise, a value of 1000.0 is recommended.
real_t * itr;
//! This is used to indicate the numbering scheme that is used for the vtxdist, xadj, adjncy, and part arrays. (0 for C-style, start from 0 index)
idx_t * numflag;
//! This is used to indicate if the graph is weighted. wgtflag can take one of four values:
// 0 No weights (vwgt and adjwgt are both NULL).
// 1 Weights on the edges only (vwgt is NULL).
// 2 Weights on the vertices only (adjwgt is NULL).
// 3 Weights on both the vertices and edges.
idx_t * wgtflag;
};
//! Balance communication and computation
#define BALANCE_CC 1
//! Balance communication computation and memory
#define BALANCE_CCM 2
//! Balance computation and comunication and others
#define BALANCE_CC_O(c) c+1
/*! \brief Helper class to define Metis graph
*
* \tparam graph structure that store the graph
*
*/
template<typename Graph>
class Parmetis {
// Graph in metis reppresentation
Parmetis_graph Mg;
// Original graph
Graph & g;
// Communticator for OpenMPI
MPI_Comm comm = NULL;
// Process rank information
int MPI_PROC_ID = 0;
/*! \brief Construct Adjacency list
*
* \param g Reference graph to get informations
*
*/
void constructAdjList(Graph &refGraph) {
// create xadj and adjlist
Mg.vwgt = new idx_t[g.getNVertex()];
Mg.xadj = new idx_t[g.getNVertex() + 1];
Mg.adjncy = new idx_t[g.getNEdge()];
//! starting point in the adjacency list
size_t prev = 0;
// actual position
size_t id = 0;
// property id
size_t real_id;
// boolan to check if ref is the main graph
bool main = refGraph.getNVertex() != g.getNVertex();
// for each vertex calculate the position of the starting point in the adjacency list
for (size_t i = 0; i < g.getNVertex(); i++) {
// Add weight to vertex
Mg.vwgt[i] = g.vertex(i).template get<nm_v::computation>();
// Calculate the starting point in the adjacency list
Mg.xadj[id] = prev;
if (main)
real_id = g.get_real_id(g.vertex(i).template get<nm_v::id>());
else
real_id = i;
// Create the adjacency list and the weights for edges
for (size_t s = 0; s < refGraph.getNChilds(real_id); s++) {
size_t child = refGraph.getChild(real_id, s);
if (main)
Mg.adjncy[prev + s] = refGraph.vertex(child).template get<nm_v::id>();
else
Mg.adjncy[prev + s] = child;
}
// update the position for the next vertex
prev += refGraph.getNChilds(real_id);
id++;
}
// Fill the last point
Mg.xadj[id] = prev;
/*
std::cout << MPI_PROC_ID << "\n";
for(int i=0; i<= g.getNVertex();i++){
std::cout << Mg.xadj[i] << " ";
}
std::cout << "\n\n";
for(int i=0; i< g.getNEdge();i++){
std::cout << Mg.adjncy[i] << " ";
}
std::cout << "\n\n";
*/
}
/*! \brief Construct Adjacency list
*
* \param g Reference graph to get informations
*
*/
/*
void constructAdjList(Graph &refGraph, idx_t* &old_vtxdist ) {
// create xadj and adjlist
Mg.vwgt = new idx_t[g.getNVertex()];
Mg.xadj = new idx_t[g.getNVertex() + 1];
Mg.adjncy = new idx_t[g.getNEdge()];
//! starting point in the adjacency list
size_t prev = 0;
// actual position
size_t id = 0;
// for each vertex calculate the position of the starting point in the adjacency list
for (size_t i = 0; i < g.getNVertex(); i++) {
// Add weight to vertex
Mg.vwgt[i] = g.vertex(i).template get<nm_v::computation>();
// Calculate the starting point in the adjacency list
Mg.xadj[id] = prev;
// Create the adjacency list and the weights for edges
for (size_t s = 0; s < refGraph.getNChilds(i); s++) {
size_t child = refGraph.getChild(i, s);
// Check if child is not in this processor
if(child > old_vtxdist[MPI_PROC_ID+1] || child < old_vtxdist[MPI_PROC_ID])
Mg.adjncy[prev + s] = child;
}
// update the position for the next vertex
prev += refGraph.getNChilds(i);
id++;
}
// Fill the last point
Mg.xadj[id] = prev;
std::cout << MPI_PROC_ID << "\n";
for(int i=0; i<= g.getNVertex();i++){
std::cout << Mg.xadj[i] << " ";
}
std::cout << "\n\n";
for(int i=0; i< g.getNEdge();i++){
std::cout << Mg.adjncy[i] << " ";
}
std::cout << "\n\n";
}
*/
public:
/*! \brief Constructor
*
* Construct a metis graph from Graph_CSR
*
* \param g Graph we want to convert to decompose
* \param nc number of partitions
*
*/
Parmetis(Graph & g, size_t nc) :
g(g) {
// Init OpenMPI structures
MPI_Comm_dup(MPI_COMM_WORLD, &comm);
MPI_Comm_rank(MPI_COMM_WORLD, &MPI_PROC_ID);
// Get the number of vertex
Mg.nvtxs = new idx_t[1];
Mg.nvtxs[0] = g.getNVertex();
// Set the number of constrains
Mg.ncon = new idx_t[1];
Mg.ncon[0] = 1;
// Set to null the weight of the vertex
Mg.vwgt = NULL;
// construct the adjacency list
constructAdjList(g);
// Put the total communication size to NULL
Mg.vsize = NULL;
// Set to null the weight of the edge
Mg.adjwgt = NULL;
// Set the total number of partitions
Mg.nparts = new idx_t[1];
Mg.nparts[0] = nc;
//! Set option for the graph partitioning (set as default)
Mg.options = new idx_t[4];
Mg.options[0] = 1;
Mg.options[1] = 3;
Mg.options[2] = 0;
Mg.options[3] = 0;
//! is an output vector containing the partition for each vertex
Mg.part = new idx_t[g.getNVertex()];
for (int i = 0; i < g.getNVertex(); i++)
Mg.part[i] = MPI_PROC_ID;
//! adaptiveRepart itr value
Mg.itr = new real_t[1];
Mg.itr[0] = 1000.0;
//! init tpwgts to have balanced vertices and ubvec
Mg.tpwgts = new real_t[Mg.nparts[0]];
Mg.ubvec = new real_t[Mg.nparts[0]];
for (int s = 0; s < Mg.nparts[0]; s++) {
Mg.tpwgts[s] = 1.0 / Mg.nparts[0];
Mg.ubvec[s] = 1.05;
}
Mg.edgecut = new idx_t[1];
Mg.edgecut[0] = 0;
//! This is used to indicate the numbering scheme that is used for the vtxdist, xadj, adjncy, and part arrays. (0 for C-style, start from 0 index)
Mg.numflag = new idx_t[1];
Mg.numflag[0] = 0;
//! This is used to indicate if the graph is weighted. wgtflag can take one of four values:
Mg.wgtflag = new idx_t[1];
Mg.wgtflag[0] = 2;
}
//TODO deconstruct new variables
/*! \brief destructor
*
* Destructor, It destroy all the memory allocated
*
*/
~Parmetis() {
// Deallocate the Mg structure
if (Mg.nvtxs != NULL) {
delete[] Mg.nvtxs;
}
if (Mg.ncon != NULL) {
delete[] Mg.ncon;
}
if (Mg.xadj != NULL) {
delete[] Mg.xadj;
}
if (Mg.adjncy != NULL) {
delete[] Mg.adjncy;
}
if (Mg.vwgt != NULL) {
delete[] Mg.vwgt;
}
if (Mg.adjwgt != NULL) {
delete[] Mg.adjwgt;
}
if (Mg.nparts != NULL) {
delete[] Mg.nparts;
}
if (Mg.tpwgts != NULL) {
delete[] Mg.tpwgts;
}
if (Mg.ubvec != NULL) {
delete[] Mg.ubvec;
}
if (Mg.options != NULL) {
delete[] Mg.options;
}
if (Mg.part != NULL) {
delete[] Mg.part;
}
if (Mg.edgecut != NULL) {
delete[] Mg.edgecut;
}
if (Mg.numflag != NULL) {
delete[] Mg.numflag;
}
if (Mg.wgtflag != NULL) {
delete[] Mg.wgtflag;
}
}
/*! \brief Decompose the graph
*
* \tparam i which property store the decomposition
*
*/
template<unsigned int i>
void decompose(idx_t *vtxdist) {
// Decompose
ParMETIS_V3_PartKway(vtxdist, Mg.xadj, Mg.adjncy, Mg.vwgt, Mg.adjwgt, Mg.wgtflag, Mg.numflag, Mg.ncon, Mg.nparts, Mg.tpwgts,
Mg.ubvec, Mg.options, Mg.edgecut, Mg.part, &comm);
/*
ParMETIS_V3_AdaptiveRepart( vtxdist, Mg.xadj,Mg.adjncy,Mg.vwgt,Mg.vsize,Mg.adjwgt, &(Mg.wgtflag), &(Mg.numflag),
Mg.ncon, Mg.nparts, Mg.tpwgts, Mg.ubvec, &(Mg.itr), Mg.options, &(Mg.edgecut),
Mg.part, &comm );
*/
// For each vertex store the processor that contain the data
for (size_t j = 0, id = 0; j < g.getNVertex(); j++, id++) {
g.vertex(j).template get<i>() = Mg.part[id];
}
}
/*! \brief Refine the graph
*
* \tparam i which property store the refined decomposition
*
*/
template<unsigned int i>
void refine(idx_t *vtxdist) {
// Refine
ParMETIS_V3_RefineKway(vtxdist, Mg.xadj, Mg.adjncy, Mg.vwgt, Mg.adjwgt, Mg.wgtflag, Mg.numflag, Mg.ncon, Mg.nparts, Mg.tpwgts,
Mg.ubvec, Mg.options, Mg.edgecut, Mg.part, &comm);
// For each vertex store the processor that contain the data
for (size_t j = 0, id = 0; j < g.getNVertex(); j++, id++) {
g.vertex(j).template get<i>() = Mg.part[id];
}
}
/*! \brief Get graph partition vector
*
*/
idx_t* getPartition() {
return Mg.part;
}
/*! \brief Reset graph and reconstruct it
*
*/
void reset(Graph & mainGraph) {
// Deallocate the graph structures
if (Mg.xadj != NULL) {
delete[] Mg.xadj;
}
if (Mg.adjncy != NULL) {
delete[] Mg.adjncy;
}
if (Mg.vwgt != NULL) {
delete[] Mg.vwgt;
}
if (Mg.adjwgt != NULL) {
delete[] Mg.adjwgt;
}
if (Mg.part != NULL) {
delete[] Mg.part;
}
Mg.nvtxs[0] = g.getNVertex();
Mg.part = new idx_t[g.getNVertex()];
for (int i = 0; i < g.getNVertex(); i++)
Mg.part[i] = MPI_PROC_ID;
// construct the adjacency list
constructAdjList(mainGraph);
}
};
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment