Skip to content
Snippets Groups Projects
Commit 82c29c4b authored by Pietro Incardona's avatar Pietro Incardona
Browse files

Fixing missing example files

parent d5182efd
No related branches found
No related tags found
No related merge requests found
#include "Vector/vector_dist.hpp"
#include "Plot/GoogleChart.hpp"
#include "Plot/util.hpp"
#include "timer.hpp"
#ifdef TEST_RUN
size_t nstep = 100;
#else
size_t nstep = 1000;
#endif
typedef float real_number;
constexpr int velocity = 0;
constexpr int force = 1;
template<typename CellList> void calc_forces(vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > & vd, CellList & NN, real_number sigma12, real_number sigma6, real_number r_cut2)
{
vd.updateCellList(NN);
// Get an iterator over particles
auto it2 = vd.getDomainIterator();
// For each particle p ...
while (it2.isNext())
{
// ... get the particle p
auto p = it2.get();
// Get the position xp of the particle
Point<3,real_number> xp = vd.getPos(p);
// Reset the force counter
vd.template getProp<force>(p)[0] = 0.0;
vd.template getProp<force>(p)[1] = 0.0;
vd.template getProp<force>(p)[2] = 0.0;
// Get an iterator over the neighborhood particles of p
auto Np = NN.template getNNIterator<NO_CHECK>(NN.getCell(vd.getPos(p)));
// For each neighborhood particle ...
while (Np.isNext())
{
// ... q
auto q = Np.get();
// if (p == q) skip this particle
if (q == p.getKey()) {++Np; continue;};
// Get the position of p
Point<3,real_number> xq = vd.getPos(q);
// Get the distance between p and q
Point<3,real_number> r = xp - xq;
// take the norm of this vector
real_number rn = norm2(r);
if (rn > r_cut2)
{++Np; continue;};
// Calculate the force, using pow is slower
Point<3,real_number> f = 24.0*(2.0 *sigma12 / (rn*rn*rn*rn*rn*rn*rn) - sigma6 / (rn*rn*rn*rn)) * r;
// we sum the force produced by q on p
vd.template getProp<force>(p)[0] += f.get(0);
vd.template getProp<force>(p)[1] += f.get(1);
vd.template getProp<force>(p)[2] += f.get(2);
// Next neighborhood
++Np;
}
// Next particle
++it2;
}
}
template<typename CellList> real_number calc_energy(vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > & vd, CellList & NN, real_number sigma12, real_number sigma6, real_number r_cut2)
{
real_number rc = r_cut2;
real_number shift = 2.0 * ( sigma12 / (rc*rc*rc*rc*rc*rc) - sigma6 / ( rc*rc*rc) );
real_number E = 0.0;
// Get the iterator
auto it2 = vd.getDomainIterator();
// For each particle ...
while (it2.isNext())
{
// ... p
auto p = it2.get();
// Get the position of the particle p
Point<3,real_number> xp = vd.getPos(p);
// Get an iterator over the neighborhood of the particle p
auto Np = NN.template getNNIterator<NO_CHECK>(NN.getCell(vd.getPos(p)));
// For each neighborhood of the particle p
while (Np.isNext())
{
// Neighborhood particle q
auto q = Np.get();
// if p == q skip this particle
if (q == p.getKey()) {++Np; continue;};
// Get position of the particle q
Point<3,real_number> xq = vd.getPos(q);
// take the normalized direction
real_number rn = norm2(xp - xq);
if (rn > r_cut2)
{++Np;continue;}
// potential energy (using pow is slower)
E += 2.0 * ( sigma12 / (rn*rn*rn*rn*rn*rn) - sigma6 / ( rn*rn*rn) ) - shift;
// Next neighborhood
++Np;
}
// Kinetic energy of the particle given by its actual speed
E += (vd.template getProp<velocity>(p)[0]*vd.template getProp<velocity>(p)[0] +
vd.template getProp<velocity>(p)[1]*vd.template getProp<velocity>(p)[1] +
vd.template getProp<velocity>(p)[2]*vd.template getProp<velocity>(p)[2]) / 2;
// Next Particle
++it2;
}
return E;
}
//! \cond [calc energy2] \endcond
int main(int argc, char* argv[])
{
openfpm_init(&argc,&argv);
real_number sigma = 0.01;
real_number r_cut = 3.0*sigma;
// we will use it do place particles on a 10x10x10 Grid like
size_t sz[3] = {100,100,100};
// domain
Box<3,float> box({0.0,0.0,0.0},{1.0,1.0,1.0});
// Boundary conditions
size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};
// ghost, big enough to contain the interaction radius
Ghost<3,float> ghost(r_cut);
real_number dt = 0.00005;
real_number sigma12 = pow(sigma,12);
real_number sigma6 = pow(sigma,6);
openfpm::vector<real_number> x;
openfpm::vector<openfpm::vector<real_number>> y;
vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > vd(0,box,bc,ghost);
// We create the grid iterator
auto it = vd.getGridIterator(sz);
while (it.isNext())
{
// Create a new particle
vd.add();
// key contain (i,j,k) index of the grid
auto key = it.get();
// The index of the grid can be accessed with key.get(0) == i, key.get(1) == j ...
// We use getLastPos to set the position of the last particle added
vd.getLastPos()[0] = key.get(0) * it.getSpacing(0);
vd.getLastPos()[1] = key.get(1) * it.getSpacing(1);
vd.getLastPos()[2] = key.get(2) * it.getSpacing(2);
// We use getLastProp to set the property value of the last particle we added
vd.template getLastProp<velocity>()[0] = 0.0;
vd.template getLastProp<velocity>()[1] = 0.0;
vd.template getLastProp<velocity>()[2] = 0.0;
vd.template getLastProp<force>()[0] = 0.0;
vd.template getLastProp<force>()[1] = 0.0;
vd.template getLastProp<force>()[2] = 0.0;
++it;
}
vd.map();
vd.ghost_get<>();
timer tsim;
tsim.start();
//! \cond [md steps] \endcond
// Get the Cell list structure
auto NN = vd.getCellList(r_cut);
// The standard
// auto NN = vd.getCellList(r_cut);
// calculate forces
calc_forces(vd,NN,sigma12,sigma6,r_cut*r_cut);
unsigned long int f = 0;
// MD time stepping
for (size_t i = 0; i < nstep ; i++)
{
timer t_s;
t_s.start();
// Get the iterator
auto it3 = vd.getDomainIterator();
// integrate velicity and space based on the calculated forces (Step1)
while (it3.isNext())
{
auto p = it3.get();
// here we calculate v(tn + 0.5)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
// here we calculate x(tn + 1)
vd.getPos(p)[0] += vd.template getProp<velocity>(p)[0]*dt;
vd.getPos(p)[1] += vd.template getProp<velocity>(p)[1]*dt;
vd.getPos(p)[2] += vd.template getProp<velocity>(p)[2]*dt;
++it3;
}
// Because we moved the particles in space we have to map them and re-sync the ghost
vd.map();
vd.template ghost_get<>();
// calculate forces or a(tn + 1) Step 2
calc_forces(vd,NN,sigma12,sigma6,r_cut*r_cut);
// Integrate the velocity Step 3
auto it4 = vd.getDomainIterator();
while (it4.isNext())
{
auto p = it4.get();
// here we calculate v(tn + 1)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
++it4;
}
// After every iteration collect some statistic about the configuration
if (i % 500 == 0)
{
// We write the particle position for visualization (Without ghost)
vd.deleteGhost();
vd.write("particles_",f);
// we resync the ghost
vd.ghost_get<>();
// We calculate the energy
real_number energy = calc_energy(vd,NN,sigma12,sigma6,r_cut*r_cut);
auto & vcl = create_vcluster();
vcl.sum(energy);
vcl.execute();
// we save the energy calculated at time step i c contain the time-step y contain the energy
x.add(i);
y.add({energy});
// We also print on terminal the value of the energy
// only one processor (master) write on terminal
if (vcl.getProcessUnitID() == 0)
std::cout << "Energy: " << energy << std::endl;
f++;
}
t_s.stop();
if (i % 100 == 0)
{
// resort the particle for better cache efficency
vd.reorder(5,reorder_opt::LINEAR);
}
}
tsim.stop();
std::cout << "Time: " << tsim.getwct() << std::endl;
// Google charts options, it store the options to draw the X Y graph
GCoptions options;
// Title of the graph
options.title = std::string("Energy with time");
// Y axis name
options.yAxis = std::string("Energy");
// X axis name
options.xAxis = std::string("iteration");
// width of the line
options.lineWidth = 1.0;
// Resolution in x
options.width = 1280;
// Resolution in y
options.heigh = 720;
// Add zoom capability
options.more = GC_ZOOM;
// Object that draw the X Y graph
GoogleChart cg;
// Add the graph
// The graph that it produce is in svg format that can be opened on browser
cg.AddLinesGraph(x,y,options);
// Write into html format
cg.write("gc_plot2_out.html");
openfpm_finalize();
}
#include "Vector/vector_dist.hpp"
#include "Decomposition/CartDecomposition.hpp"
#include "data_type/aggregate.hpp"
#include "Plot/GoogleChart.hpp"
#include "Plot/util.hpp"
#include "timer.hpp"
#ifdef TEST_RUN
size_t nstep = 100;
#else
size_t nstep = 1000;
#endif
typedef float real_number;
constexpr int velocity = 0;
constexpr int force = 1;
template<typename VerletList>
void calc_forces(vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > & vd, VerletList & NN, real_number sigma12, real_number sigma6, real_number r_cut)
{
// Reset force on the ghost
auto itg = vd.getDomainAndGhostIterator();
while (itg.isNext())
{
auto p = itg.get();
// Reset force
vd.getProp<force>(p)[0] = 0.0;
vd.getProp<force>(p)[1] = 0.0;
vd.getProp<force>(p)[2] = 0.0;
++itg;
}
//! \cond [real and ghost] \endcond
// Get an iterator over particles
auto it2 = vd.getParticleIteratorCRS(NN);
//! \cond [real and ghost] \endcond
// For each particle p ...
while (it2.isNext())
{
// ... get the particle p
auto p = it2.get();
// Get the position xp of the particle
Point<3,real_number> xp = vd.getPos(p);
// Get an iterator over the neighborhood particles of p
// Note that in case of symmetric
auto Np = NN.template getNNIterator<NO_CHECK>(p);
// For each neighborhood particle ...
while (Np.isNext())
{
// ... q
auto q = Np.get();
// if (p == q) skip this particle
if (q == p) {++Np; continue;};
// Get the position of q
Point<3,real_number> xq = vd.getPos(q);
// Get the distance between p and q
Point<3,real_number> r = xp - xq;
// take the norm of this vector
real_number rn = norm2(r);
if (rn > r_cut * r_cut) {++Np;continue;}
// Calculate the force, using pow is slower
Point<3,real_number> f = 24.0*(2.0 *sigma12 / (rn*rn*rn*rn*rn*rn*rn) - sigma6 / (rn*rn*rn*rn)) * r;
// we sum the force produced by q on p
vd.template getProp<force>(p)[0] += f.get(0);
vd.template getProp<force>(p)[1] += f.get(1);
vd.template getProp<force>(p)[2] += f.get(2);
//! \cond [add to q] \endcond
// we sum the force produced by p on q
vd.template getProp<force>(q)[0] -= f.get(0);
vd.template getProp<force>(q)[1] -= f.get(1);
vd.template getProp<force>(q)[2] -= f.get(2);
//! \cond [add to q] \endcond
// Next neighborhood
++Np;
}
// Next particle
++it2;
}
// Sum the contribution to the real particles
vd.ghost_put<add_,force>();
}
template<typename VerletList>
real_number calc_energy(vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > & vd, VerletList & NN, real_number sigma12, real_number sigma6, real_number r_cut)
{
real_number E = 0.0;
real_number rc = r_cut*r_cut;
real_number shift = 4.0 * ( sigma12 / (rc*rc*rc*rc*rc*rc) - sigma6 / ( rc*rc*rc) );
// Get an iterator over particles
auto it2 = vd.getParticleIteratorCRS(NN);
// For each particle ...
while (it2.isNext())
{
// ... p
auto p = it2.get();
// Get the position of the particle p
Point<3,real_number> xp = vd.getPos(p);
// Get an iterator over the neighborhood particles of p
auto Np = NN.template getNNIterator<NO_CHECK>(p);
real_number Ep = E;
// For each neighborhood of the particle p
while (Np.isNext())
{
// Neighborhood particle q
auto q = Np.get();
// if p == q skip this particle
if (q == p) {++Np; continue;};
// Get position of the particle q
Point<3,real_number> xq = vd.getPos(q);
// take the normalized direction
real_number rn = norm2(xp - xq);
if (rn >= r_cut*r_cut) {++Np;continue;}
// potential energy (using pow is slower)
E += 4.0 * ( sigma12 / (rn*rn*rn*rn*rn*rn) - sigma6 / ( rn*rn*rn) ) - shift;
// Next neighborhood
++Np;
}
// To note that the crossing scheme go across the domain particles +
// some ghost particles. This mean that we have to filter out the ghost
// particles otherwise we count real_number energies
//
if (p < vd.size_local())
{
// Kinetic energy of the particle given by its actual speed
E += (vd.template getProp<velocity>(p)[0]*vd.template getProp<velocity>(p)[0] +
vd.template getProp<velocity>(p)[1]*vd.template getProp<velocity>(p)[1] +
vd.template getProp<velocity>(p)[2]*vd.template getProp<velocity>(p)[2]) / 2;
}
// Next Particle
++it2;
}
// Calculated energy
return E;
}
int main(int argc, char* argv[])
{
real_number dt = 0.00005;
real_number sigma = 0.01;
real_number r_cut = 3.0*sigma;
real_number r_gskin = 1.3*r_cut;
real_number sigma12 = pow(sigma,12);
real_number sigma6 = pow(sigma,6);
openfpm::vector<real_number> x;
openfpm::vector<openfpm::vector<real_number>> y;
openfpm_init(&argc,&argv);
Vcluster<> & v_cl = create_vcluster();
// we will use it do place particles on a 10x10x10 Grid like
size_t sz[3] = {100,100,100};
// domain
Box<3,float> box({0.0,0.0,0.0},{1.0,1.0,1.0});
// Boundary conditions
size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};
// ghost, big enough to contain the interaction radius
Ghost<3,float> ghost(r_gskin);
ghost.setLow(0,0.0);
ghost.setLow(1,0.0);
ghost.setLow(2,0.0);
vector_dist<3,real_number, aggregate<real_number[3],real_number[3]> > vd(0,box,bc,ghost,BIND_DEC_TO_GHOST);
size_t k = 0;
size_t start = vd.accum();
auto it = vd.getGridIterator(sz);
while (it.isNext())
{
vd.add();
auto key = it.get();
vd.getLastPos()[0] = key.get(0) * it.getSpacing(0);
vd.getLastPos()[1] = key.get(1) * it.getSpacing(1);
vd.getLastPos()[2] = key.get(2) * it.getSpacing(2);
vd.template getLastProp<velocity>()[0] = 0.0;
vd.template getLastProp<velocity>()[1] = 0.0;
vd.template getLastProp<velocity>()[2] = 0.0;
vd.template getLastProp<force>()[0] = 0.0;
vd.template getLastProp<force>()[1] = 0.0;
vd.template getLastProp<force>()[2] = 0.0;
k++;
++it;
}
vd.map();
vd.ghost_get<>();
timer tsim;
tsim.start();
// Get the Cell list structure
auto NN = vd.getVerletCrs(r_gskin);;
// calculate forces
calc_forces(vd,NN,sigma12,sigma6,r_cut);
unsigned long int f = 0;
int cnt = 0;
real_number max_disp = 0.0;
// MD time stepping
for (size_t i = 0; i < nstep ; i++)
{
// Get the iterator
auto it3 = vd.getDomainIterator();
real_number max_displ = 0.0;
// integrate velicity and space based on the calculated forces (Step1)
while (it3.isNext())
{
auto p = it3.get();
// here we calculate v(tn + 0.5)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
Point<3,real_number> disp({vd.template getProp<velocity>(p)[0]*dt,vd.template getProp<velocity>(p)[1]*dt,vd.template getProp<velocity>(p)[2]*dt});
// here we calculate x(tn + 1)
vd.getPos(p)[0] += disp.get(0);
vd.getPos(p)[1] += disp.get(1);
vd.getPos(p)[2] += disp.get(2);
if (disp.norm() > max_displ)
max_displ = disp.norm();
++it3;
}
if (max_disp < max_displ)
max_disp = max_displ;
// Because we moved the particles in space we have to map them and re-sync the ghost
if (cnt % 10 == 0)
{
vd.map();
vd.template ghost_get<>();
// Get the Cell list structure
vd.updateVerlet(NN,r_gskin,VL_CRS_SYMMETRIC);
}
else
{
vd.template ghost_get<>(SKIP_LABELLING);
}
cnt++;
// calculate forces or a(tn + 1) Step 2
calc_forces(vd,NN,sigma12,sigma6,r_cut);
// Integrate the velocity Step 3
auto it4 = vd.getDomainIterator();
while (it4.isNext())
{
auto p = it4.get();
// here we calculate v(tn + 1)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
++it4;
}
// After every iteration collect some statistic about the confoguration
if (i % 100 == 0)
{
// We write the particle position for visualization (Without ghost)
vd.deleteGhost();
vd.write("particles_",f);
// we resync the ghost
vd.ghost_get<>();
// We calculate the energy
real_number energy = calc_energy(vd,NN,sigma12,sigma6,r_cut);
auto & vcl = create_vcluster();
vcl.sum(energy);
vcl.max(max_disp);
vcl.execute();
// we save the energy calculated at time step i c contain the time-step y contain the energy
x.add(i);
y.add({energy});
// We also print on terminal the value of the energy
// only one processor (master) write on terminal
if (vcl.getProcessUnitID() == 0)
std::cout << "Energy: " << energy << " " << max_disp << " " << std::endl;
max_disp = 0.0;
f++;
}
}
tsim.stop();
std::cout << "Time: " << tsim.getwct() << std::endl;
// Google charts options, it store the options to draw the X Y graph
GCoptions options;
// Title of the graph
options.title = std::string("Energy with time");
// Y axis name
options.yAxis = std::string("Energy");
// X axis name
options.xAxis = std::string("iteration");
// width of the line
options.lineWidth = 1.0;
// Object that draw the X Y graph
GoogleChart cg;
// Add the graph
// The graph that it produce is in svg format that can be opened on browser
cg.AddLinesGraph(x,y,options);
// Write into html format
cg.write("gc_plot2_out.html");
openfpm_finalize();
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment