Skip to content
Snippets Groups Projects
Commit ad776bb4 authored by Pietro Incardona's avatar Pietro Incardona
Browse files

Adding missing files

parent 3b2b0b3c
No related branches found
No related tags found
No related merge requests found
/*!
* \page Vector_3_md_dyn_gpu_opt Vector 3 molecular dynamic on GPU (optimized version)
*
* [TOC]
*
* # Molecular Dynamic with Lennard-Jones potential on GPU (Optimized) {#e3_md_gpu_opt}
*
* \htmlonly
* <img src="http://openfpm.mpi-cbg.de/web/images/examples/3_md_gpu/md_4_GPU.png"/>
* \endhtmlonly
*
* In this optimized version of the example \ref e3_md_gpu, we operate two optimization:
*
* * We make the access coalesced
* * We use half radius cell-list spacing
*
* ## Coalesced access {#e3_gpu_opt_ca}
*
* In GPU to get the maximum performance it is very important to access in a coalesced way. Access in a coalesced way mean that
* if thread 1 access adress 0x000 thread 2 (in the same Streaming Multiprocessors) should ideally access 0x004 or more in
* general an adress in the same cache line. Another factor that contribute to speed is to overall restrict the threads in
* the same SM should to possibly work on a limited number of caches lines so that the L1 cache of each SM could optimally
* speed up the access to global memory.
*
* Unfortunately particles by nature can be randomly distributed in space and memory, and reach the ideal situation
* in the case of neighborhood access of the particles can be challenging. Suppose that thread 1 take particle 0 and thread 2
* take particle 1, but 0 and 1 are far in space the neighborhood of 0 does not overlap the neighborhood of 1. This mean that
* most probably the access of the neighborhood of 0 will be scattered in memory and the same for 1, having an extremely low
* probability that 2 thread in the SM hit the same cache line and increasing the number of cache lines the SM has to retrieve.
* On the other hand if we reorder the particle in memory by their spatial position using a cell list like in figure.
*
* \htmlonly
<table style="width:100%">
<tr>
<td><img src="http://openfpm.mpi-cbg.de/web/images/examples/3_md_gpu/vector_sorted.jpg"/></td>
<td><img src="http://openfpm.mpi-cbg.de/web/images/examples/3_md_gpu/vector_unsorted.jpg"/></td>
</tr>
<tr>
<td><strong>Fig1: Sorted vector</strong></td>
<td><strong>Fig2: Unsorted vector</strong></td>
</tr>
</table>
\endhtmlonly
*
* We can see that now the neighborhood of particle 0 and particle 1 overlap increasing that chance of cache hit, additionally if
* all particles processed by one SM stay in one cell or few neighborhood cell, the number of cache line that an SM has to read is
* reduced, with a significant speed-up.
*
* In OpenFPM get a Cell-list produce a re-ordered version of the original vector by default. It is possible to offload the sorted
* version vector_dist_gpu instead of the normal one using the function \b toKernel_sorted() \b instead of the function \b toKernel \b.
*
* \snippet Vector/3_molecular_dynamic_gpu_opt/main_gpu.cu calc_force_sorted
*
* The rest remain mainly the same, with the expectation, that we now use the macro GET_PARTICLE_SORT. This macro is similar to GET_PARTICLE
* but with a substantial difference. While in the normal unsorted vector particles in the ghost area are always added at the end
* in the sorted one domain + ghost are reordered, and there is not a clear separation between them. This mean that we need a list of all
* the domain particles, if we want iterate cross them. GET_PARTICLE_SORT use a list to convert thread index to domain particle index.
* Additionally when we get a neighborhood iterator from the Cell-list we must use \bget_sorted_index\b instead of \bget\b
*
* \snippet Vector/3_molecular_dynamic_gpu_opt/main_gpu.cu get_sorted_index
*
* After we launched the kernel all the data are written in the sorted vector. In order to merge back the data to the unsorted one
* we have to use the function \b vd.merge_sort<force>(NN) \b. Where vd is the vector_dist_gpu where we want to merge the
* data from sorted to non sorted. \b force \b is the property we want to merge and \b NN \b is the Cell-list that produced the
* sorted distribution.
*
* \snippet Vector/3_molecular_dynamic_gpu_opt/main_gpu.cu merge_sort
*
* \note it is possible to launch multiple kernel on the sorted version, but consider that at some point the data must be merged
* back because functions like map and ghost_get work on the unsorted version
*
* ## Half radius cell-list spacing {#e3_gpu_opt_hr}
*
* Using Cell-lists with spacing equal to the radius in general require to fetch all the 9 cells in 2D and 27 cells in 3D. All the
* particles in such cells include particles within radius r and others more distant than r. This mean that we have to filter the particles
* checking the radius. It is possible to filter further more the particles using finer cell-list cells. Suppose that you use
* cell-lists with spacing half of the radius. we just the to check the 25 cells in 2D and the 125 cells in 3D. While we have more
* cells the overall volume spanned by the 25/125 cells is just a fraction. In fact the surface of the 25 cells is given by
*
* \f$ (5\frac{h}{2})^2 = \frac{25}{4} h^2 \f$
* \f$ (5\frac{h}{2})^3 = \frac{125}{8} h^3 \f$
*
* while for the normal cell-list is
*
* \f$ (3h)^2 = 9h^2 \f$
* \f$ (3h)^3 = 27h^3 \f$
*
* This mean that the finer cell-list in order to find the neighborhood particles use an area smaller: precisely is 69% of
* the normal cell-list in 2D, and 57% of the normal cell-list in 3D. In particles this mean that normal cell-list return
* in average 45% more particles in 2D and 75% more in 3D.
*
* Constructing an half spacing cell-list is standard. In the function \b getCellListGPU \b we specify half radius
*
* \snippet Vector/3_molecular_dynamic_gpu_opt/main_gpu.cu get_half_cl
*
* while to use it, instead of the \b getNNIteratorBox \b we use
*
* \note \b getNNIteratorBox \b has a template parameter (default = 2) that indicate how many neighborhood cell the NN iterator has to span.
* For example \b getNNIteratorBox<1> \b is the standard 9/27 neighborhood cell-list.\b getNNIteratorBox<2> \b is the 25/125 neighborhood
* and so on.
*
*/
#ifdef __NVCC__
#include "Vector/vector_dist.hpp"
#include "Plot/GoogleChart.hpp"
#include "Plot/util.hpp"
#include "timer.hpp"
#ifdef TEST_RUN
size_t nstep = 100;
#else
size_t nstep = 1000;
#endif
typedef float real_number;
constexpr int velocity = 0;
constexpr int force = 1;
constexpr int energy = 2;
template<typename vector_dist_type,typename NN_type>
__global__ void calc_force_gpu(vector_dist_type vd, NN_type NN, real_number sigma12, real_number sigma6, real_number r_cut2)
{
unsigned int p;
GET_PARTICLE_SORT(p,NN);
// Get the position xp of the particle
Point<3,real_number> xp = vd.getPos(p);
// Reset the force counter
vd.template getProp<force>(p)[0] = 0.0;
vd.template getProp<force>(p)[1] = 0.0;
vd.template getProp<force>(p)[2] = 0.0;
Point<3,real_number> force_;
force_.get(0) = 0.0;
force_.get(1) = 0.0;
force_.get(2) = 0.0;
// Get an iterator over the neighborhood particles of p
auto Np = NN.getNNIteratorBox(NN.getCell(vd.getPos(p)));
// For each neighborhood particle ...
while (Np.isNext())
{
//! \cond [get_sorted_index] \endcond
// ... q
auto q = Np.get_sort();
//! \cond [get_sorted_index] \endcond
// if (p == q) skip this particle
if (q == p) {++Np; continue;};
// Get the position of p
Point<3,real_number> xq = vd.getPos(q);
// Get the distance between p and q
Point<3,real_number> r = xp - xq;
// take the norm of this vector
real_number rn = norm2(r);
if (rn > r_cut2)
{++Np; continue;};
// Calculate the force, using pow is slower
Point<3,real_number> f = 24.0*(2.0 *sigma12 / (rn*rn*rn*rn*rn*rn*rn) - sigma6 / (rn*rn*rn*rn)) * r;
force_ += f;
// Next neighborhood
++Np;
}
// we sum the force produced by q on p
vd.template getProp<force>(p)[0] = force_.get(0);
vd.template getProp<force>(p)[1] = force_.get(1);
vd.template getProp<force>(p)[2] = force_.get(2);
}
template<typename vector_dist_type>
__global__ void update_velocity_position(vector_dist_type vd, real_number dt)
{
auto p = GET_PARTICLE(vd);
// here we calculate v(tn + 0.5)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
// here we calculate x(tn + 1)
vd.getPos(p)[0] += vd.template getProp<velocity>(p)[0]*dt;
vd.getPos(p)[1] += vd.template getProp<velocity>(p)[1]*dt;
vd.getPos(p)[2] += vd.template getProp<velocity>(p)[2]*dt;
}
template<typename vector_dist_type>
__global__ void update_velocity(vector_dist_type vd, real_number dt)
{
auto p = GET_PARTICLE(vd);
// here we calculate v(tn + 1)
vd.template getProp<velocity>(p)[0] += 0.5*dt*vd.template getProp<force>(p)[0];
vd.template getProp<velocity>(p)[1] += 0.5*dt*vd.template getProp<force>(p)[1];
vd.template getProp<velocity>(p)[2] += 0.5*dt*vd.template getProp<force>(p)[2];
}
template<typename vector_dist_type,typename NN_type>
__global__ void particle_energy(vector_dist_type vd, NN_type NN, real_number sigma12, real_number sigma6, real_number shift, real_number r_cut2)
{
unsigned int p;
GET_PARTICLE_SORT(p,NN);
// Get the position of the particle p
Point<3,real_number> xp = vd.getPos(p);
// Get an iterator over the neighborhood of the particle p
auto Np = NN.getNNIteratorBox(NN.getCell(vd.getPos(p)));
real_number E = 0;
// For each neighborhood of the particle p
while (Np.isNext())
{
// Neighborhood particle q
auto q = Np.get_sort();
// if p == q skip this particle
if (q == p) {++Np; continue;};
// Get position of the particle q
Point<3,real_number> xq = vd.getPos(q);
// take the normalized direction
real_number rn = norm2(xp - xq);
if (rn > r_cut2)
{++Np;continue;}
// potential energy (using pow is slower)
E += 2.0 * ( sigma12 / (rn*rn*rn*rn*rn*rn) - sigma6 / ( rn*rn*rn) ) - shift;
// Next neighborhood
++Np;
}
// Kinetic energy of the particle given by its actual speed
vd.template getProp<energy>(p) = E + (vd.template getProp<velocity>(p)[0]*vd.template getProp<velocity>(p)[0] +
vd.template getProp<velocity>(p)[1]*vd.template getProp<velocity>(p)[1] +
vd.template getProp<velocity>(p)[2]*vd.template getProp<velocity>(p)[2]) / 2;
}
template<typename CellList> void calc_forces(vector_dist_gpu<3,real_number, aggregate<real_number[3],real_number[3],real_number> > & vd, CellList & NN, real_number sigma12, real_number sigma6, real_number r_cut2)
{
vd.updateCellList(NN);
// Get an iterator over particles
auto it2 = vd.getDomainIteratorGPU();
//! \cond [calc_force_sorted] \endcond
calc_force_gpu<<<it2.wthr,it2.thr>>>(vd.toKernel_sorted(),NN.toKernel(),sigma12,sigma6,r_cut2);
//! \cond [calc_force_sorted] \endcond
//! \cond [merge_sort] \endcond
vd.merge_sort<force>(NN);
//! \cond [merge_sort] \endcond
}
template<typename CellList> real_number calc_energy(vector_dist_gpu<3,real_number, aggregate<real_number[3],real_number[3],real_number> > & vd, CellList & NN, real_number sigma12, real_number sigma6, real_number r_cut2)
{
real_number rc = r_cut2;
real_number shift = 2.0 * ( sigma12 / (rc*rc*rc*rc*rc*rc) - sigma6 / ( rc*rc*rc) );
vd.updateCellList(NN);
auto it2 = vd.getDomainIteratorGPU();
particle_energy<<<it2.wthr,it2.thr>>>(vd.toKernel_sorted(),NN.toKernel(),sigma12,sigma6,shift,r_cut2);
vd.merge_sort<energy>(NN);
// Calculated energy
return reduce_local<energy,_add_>(vd);
}
int main(int argc, char* argv[])
{
openfpm_init(&argc,&argv);
real_number sigma = 0.01;
real_number r_cut =3.0*sigma;
// we will use it do place particles on a 10x10x10 Grid like
size_t sz[3] = {100,100,100};
// domain
Box<3,float> box({0.0,0.0,0.0},{1.0,1.0,1.0});
// Boundary conditions
size_t bc[3]={PERIODIC,PERIODIC,PERIODIC};
// ghost, big enough to contain the interaction radius
Ghost<3,float> ghost(r_cut);
real_number dt = 0.00005;
real_number sigma12 = pow(sigma,12);
real_number sigma6 = pow(sigma,6);
openfpm::vector<real_number> x;
openfpm::vector<openfpm::vector<real_number>> y;
vector_dist_gpu<3,real_number, aggregate<real_number[3],real_number[3],real_number> > vd(0,box,bc,ghost);
// We create the grid iterator
auto it = vd.getGridIterator(sz);
while (it.isNext())
{
// Create a new particle
vd.add();
// key contain (i,j,k) index of the grid
auto key = it.get();
// The index of the grid can be accessed with key.get(0) == i, key.get(1) == j ...
// We use getLastPos to set the position of the last particle added
vd.getLastPos()[0] = key.get(0) * it.getSpacing(0);
vd.getLastPos()[1] = key.get(1) * it.getSpacing(1);
vd.getLastPos()[2] = key.get(2) * it.getSpacing(2);
// We use getLastProp to set the property value of the last particle we added
vd.template getLastProp<velocity>()[0] = 0.0;
vd.template getLastProp<velocity>()[1] = 0.0;
vd.template getLastProp<velocity>()[2] = 0.0;
vd.template getLastProp<force>()[0] = 0.0;
vd.template getLastProp<force>()[1] = 0.0;
vd.template getLastProp<force>()[2] = 0.0;
++it;
}
vd.hostToDevicePos();
vd.hostToDeviceProp<velocity,force>();
vd.map(RUN_ON_DEVICE);
vd.ghost_get<>(RUN_ON_DEVICE);
timer tsim;
tsim.start();
//! \cond [md steps] \endcond
//! \cond [get_half_cl] \endcond
// Get the Cell list structure
auto NN = vd.getCellListGPU(r_cut / 2.0);
//! \cond [get_half_cl] \endcond
// The standard
// auto NN = vd.getCellList(r_cut);
// calculate forces
calc_forces(vd,NN,sigma12,sigma6,r_cut*r_cut);
unsigned long int f = 0;
// MD time stepping
for (size_t i = 0; i < nstep ; i++)
{
// Get the iterator
auto it3 = vd.getDomainIteratorGPU();
update_velocity_position<<<it3.wthr,it3.thr>>>(vd.toKernel(),dt);
// Because we moved the particles in space we have to map them and re-sync the ghost
vd.map(RUN_ON_DEVICE);
vd.template ghost_get<>(RUN_ON_DEVICE);
// calculate forces or a(tn + 1) Step 2
calc_forces(vd,NN,sigma12,sigma6,r_cut*r_cut);
// Integrate the velocity Step 3
auto it4 = vd.getDomainIteratorGPU();
update_velocity<<<it4.wthr,it4.thr>>>(vd.toKernel(),dt);
// After every iteration collect some statistic about the configuration
if (i % 1000 == 0)
{
vd.deviceToHostPos();
vd.deviceToHostProp<0,1,2>();
// We write the particle position for visualization (Without ghost)
vd.deleteGhost();
vd.write_frame("particles_",f);
// we resync the ghost
vd.ghost_get<>(RUN_ON_DEVICE);
// We calculate the energy
real_number energy = calc_energy(vd,NN,sigma12,sigma6,r_cut*r_cut);
auto & vcl = create_vcluster();
vcl.sum(energy);
vcl.execute();
// we save the energy calculated at time step i c contain the time-step y contain the energy
x.add(i);
y.add({energy});
// We also print on terminal the value of the energy
// only one processor (master) write on terminal
if (vcl.getProcessUnitID() == 0)
std::cout << "Energy: " << energy << std::endl;
f++;
}
}
tsim.stop();
std::cout << "Time: " << tsim.getwct() << std::endl;
// Google charts options, it store the options to draw the X Y graph
GCoptions options;
// Title of the graph
options.title = std::string("Energy with time");
// Y axis name
options.yAxis = std::string("Energy");
// X axis name
options.xAxis = std::string("iteration");
// width of the line
options.lineWidth = 1.0;
// Resolution in x
options.width = 1280;
// Resolution in y
options.heigh = 720;
// Add zoom capability
options.more = GC_ZOOM;
// Object that draw the X Y graph
GoogleChart cg;
// Add the graph
// The graph that it produce is in svg format that can be opened on browser
cg.AddLinesGraph(x,y,options);
// Write into html format
cg.write("gc_plot2_out.html");
openfpm_finalize();
}
#else
int main(int argc, char* argv[])
{
return 0;
}
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment